Multiple linear regression to predict carcass tissue composition in hair lambs raised under commercial system
Abstract
The aim of the present study was to predict the carcass tissue composition of hair lambs reared on a commercial system, based on the characteristics of commercial cuts using multiple linear regression. In the study, thirty crossbred male lambs (Pelibuey × Dorper/Katahdin), with an average live weight of 51.12 ± 0.97 kg, were used. After slaughter of lambs, the carcasses were stored in refrigeration at 4 °C for 24 hours. Subsequently, they were weighed and split longitudinally. The left half of carcasses was divided into eight cuts (shank, neck, shoulder, rib, flank, loin, sirloin, and leg), which were individually weighed (kg) and dissected into muscle, fat, and bone. Also, the total weight of muscle, total fat content, and total bone content in the complete carcass was determined. In general, total weight of muscle, total fat content, and total bone contentshowed moderate to high positive correlations (0.32 ≤ r ≤ 0.87; P < 0.05, P < 0.001) with the characteristics of commercial cuts. The best predictors of total muscle content were shoulder muscle content, shank weight, leg muscle content, and rib muscle content (R² = 0.96; MSE = 3.94; AIC = -1.28). The total fat content can be adequately predicted using rib fat content, loin fat content, and shoulder fat content (R²=0.96; MSE=3.29; AIC=- 7.71). While total bone content can be predicted from leg bone content, sirloin bone content, shoulder bone content, and shank bone content (R2 = 0.91; MSE = 0.75; AIC = -16.42). All linear regression equations were found to be significant (P < .001). It is concluded that the carcass tissue composition of hair lambs is highly correlated with characteristics of commercial cuts. Consequently, the regression equations obtained in the study had high accuracy. Therefore, they can be used by technicians, producers, and researchers to obtain information on the carcass composition of hair lambs reared on commercial systems.
Downloads
References
Villarreal-Ornelas EC, Navarrete-Molina C, Meza-Herrera CA, Herrera-Machuca MA, Altamirano-Cárdenas JR, Macias-Cruz U, García de la Peña C, Veliz-Deras FG. Sheep production and sustainability in Latin America & the Caribbean: A combined productive, socio-economic & ecological footprint approach. Small Rumin. Res. [Internet]. 2022; 211:106675. doi: https://doi.org/qmmw DOI: https://doi.org/10.1016/j.smallrumres.2022.106675
Vera-Arias MI, Camacho-Pérez E, Casanova-Lugo F, Herrera-Camacho J, Vargas-Bello-Pérez E, Chay-Canul AJ. Challenges for Mexican sheep production in the era of precision livestock farming and artificial intelligence. Vet. México OA. [Internet]. 2025; 12:1-12. doi: https://doi.org/qmm2 DOI: https://doi.org/10.22201/fmvz.24486760e.2025.1479
Macedo R, Arredondo V, Jiménez A, Haubi C, Herrera A. Early growth model of Pelibuey lambs raised under an intensive production system in Colima, Mexico. Chilean J. Agric. Anim. Sci. [Internet]. 2021; 37(3):221-227. doi: https://doi.org/qmm4 DOI: https://doi.org/10.29393/CHJAAS37-24EGRA50024
Cavalcante ITR, Sousa WH, Azevedo PS, Ribeiro NL, Santos RC, Cartaxo FQ, Ramos JPF, Cézar MF, Pereira DM, Santos EM, de Oliveira JS, da Silva MV, Ferreira MB, Pandorfi H, de Oliveira-Júnior JF, de Oliveira HFE, Salomão LC, Jordan RA, de Carvalho AA, Silva TD, da Silva JLB. Biometric and carcass analysis of lambs fed with forage palm silage and cottonseed cake. Small Rumin. Res. [Internet]. 2025; 244:107460. doi: https://doi.org/qmm5 DOI: https://doi.org/10.1016/j.smallrumres.2025.107460
Ekiz B, Baygul O, Yalcintan H, Ozcan M. Comparison of the decision tree, artificial neural network and multiple regression methods for prediction of carcass tissues composition of goat kids. Meat Sci. [Internet]. 2018; 161:108011. doi: https://doi.org/qmm6 DOI: https://doi.org/10.1016/j.meatsci.2019.108011
Muñoz-Osorio GA, Tirink C, Tyasi TL, Ramírez-Bautista MA, Cruz-Tamayo AA, Dzib-Cauich DA, García-Herrera RA, Chay-Canul AJ. Using fat thickness and longissimus thoracis traits real-time ultrasound measurements in Black Belly ewe lambs to predict carcass tissue composition through multiresponse multivariate adaptive regression splines algorithm. Meat Sci. [Internet]. 2024; 207:109369. doi: https://doi.org/qmm8 DOI: https://doi.org/10.1016/j.meatsci.2023.109369
Carrasco S, Ripoll G, Panea B, Álvarez-Rodríguez J, Joy M. Carcass tissue composition in light lambs: Influence of feeding system and prediction equations. Livest. Sci. [Internet]. 2009; 126(1–3):112-121. doi: https://doi.org/dc46sc DOI: https://doi.org/10.1016/j.livsci.2009.06.006
Maciel MdS, Arandas JKG, de Carvalho FFR, da Cruz GRB, Costa RG, Ribeiro NL, Ribeiro MN. 2024. Multivariate modeling to estimate the composition of carcass tissues of Santa Inês sheep. Acta Sci. Anim. Sci. [Internet]. 2024; 46:e64555. doi: https://doi.org/qmm9 DOI: https://doi.org/10.4025/actascianimsci.v46i1.64555
Chaves-Gurgel AL, dos Santos-Difante G, Vinhas-Ítavo LC, Emerenciano-Neto JV, Ferreira-Ítavo CCB, Bezerra-Fernandes P, Marques-Costa C, da Silva-Roberto FF, Chay-Canul AJ. Aspects related to the importance of using predictive models in sheep production. Review. Rev. Mex. Cienc. Pecu. [Internet]. 2023; 14(1):204-227. doi: https://doi.org/qmnc DOI: https://doi.org/10.22319/rmcp.v14i1.6126
Luaces ML, Calvo-Santalla C, Fernández B, Fernández A, Viana JL, Sánchez-García L. Ecuaciones predictoras de la composición tisular de las canales de corderos de raza Gallega. Arch. Zootec. [Internet]. 2008 [cited 22 Jun 2025]; 57(217):3-14. Available in: https://goo.su/v20s
Camacho A, Pérez V, Mata J, Bermejo LA. Ecuaciones predictoras de la composición tisular de la canal en dos razas ovinas canarias. Arch. Zootec. [Internet]. 2011; 60(232):1125-1135. doi: https://doi.org/qmnj DOI: https://doi.org/10.4321/S0004-05922011000400028
Alves AAC, Pinzon AC, Costa RM, Silva MSS, Vieira EHM, Mendonça IB, Viana, VSS, Lôbo RNB. Multiple regression and machine learning based methods for carcass traits and saleable meat cuts prediction using non-invasive in vivo measurements in commercial lambs. Small. Rumin. Res. [Internet]. 2019; 171:49-56. doi: https://doi.org/qmnk DOI: https://doi.org/10.1016/j.smallrumres.2018.12.008
Gastelum-Delgado MA, Aguilar-Quiñonez JA, Arce-Recinos C, García-Herrera RA, Macías-Cruz U, Lee-Rangel HA, Cruz-Tamayo AA, Ángeles-Hernández JC, Vargas-Bello-Pérez E, Chay-Canul AJ. Estimation of Carcass Tissue Composition from the Neck and Shoulder Composition in Growing Blackbelly Male Lambs. Foods. [Internet]. 2022; 11,1396. doi: https://doi.org/qmnm DOI: https://doi.org/10.3390/foods11101396
Portillo-Salgado R, Escobedo-Canul J, Sierra-Vàsquez ÀC, Dzib-Cauich DA, Chay-Canul AJ, Parra-Bracamonte GM, Estrada-León RJ. Carcass traits and tissue composition of commercial cuts in hair lambs of different genetic groups finished at 50 kg: Multivariate Approach. Small Rumin. Res. [Internet]. 2025; 252:107585. doi: https://doi.org/qmnn DOI: https://doi.org/10.1016/j.smallrumres.2025.107585
Norma Oficial Mexicana NOM-008-ZOO140 1994. Especificaciones zoosanitarias para la construcción y equipamiento de establecimientos para el sacrificio de animales y los dedicados a la industrialización de productos cárnicos. [Internet]. Diario Oficial. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. México D.F.: Secretaría de Agricultura, Ganadería y Desarrollo Rural, Gobierno de México; 1999 [cited 10 Jul 2025]. Available in: https://goo.su/aXRxYJH
Norma Oficial Mexicana NOM-009-ZOO-1994. Proceso sanitario de la carne. [Internet]. Diario Oficial. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. México D.F.: Secretaría de Agricultura, Ganadería y Desarrollo Rural, Pesca y Alimentación, Gobierno de México; 2007 [cited 10 Jul 2025]. Available in: https://goo.su/QUBpbn
Norma Oficial Mexicana NOM-033-SAG/ZOO-2014. Métodos para dar Muerte a los Animales Domésticos y Silvestres. [Internet]. Diario Oficial de la Federación. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. México, D.F.: Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, Gobierno de México; 2014 [cited 12 Jul 2025]. Available in: https://goo.su/30oYuO
Esenbuga N, Yanar M, Dayioglu H. Physical, chemical and organoleptic properties of ram lamb carcasses from four fat-tailed genotypes. Small Rumin. Res. [Internet]. 2001; 39(2):99-105. doi: https://doi.org/cdsxfg DOI: https://doi.org/10.1016/S0921-4488(00)00187-5
Yakubu A, Oluremi OIA, Ibrahim ZN. Modelling egg production in Sasso dual-purpose birds using linear, quadratic, artificial neural network and classification regression tree methods in the tropic. Livest. Res. Rural Dev. [Internet]. 2018 [cited 12 Jul 2025]; 30(10):172. Available in: https://goo.su/ybN2uR
Díaz MT, Cañeque V, Lauzurica S, Velasco S, Ruíz de Huidobro F, Pérez C. Prediction of suckling lamb carcass composition from objective and subjective carcass measurements. Meat Sci. [Internet]. 2004; 66(4):895–902. doi: https://doi.org/ff2xrz DOI: https://doi.org/10.1016/j.meatsci.2003.08.013
Keçici PD, Öztürk N, Yalçintan H, Koçak Ö, Yilmaz A, Ekiz B. Prediction of carcass composition of lambs by joint dissection and carcass traits. Turk. J. Vet. Anim. Sci. [Internet]. 2020; 44(5):1125-1135. doi: https://doi.org/qmnq DOI: https://doi.org/10.3906/vet-2004-74
Atencio-Valladares O, Huerta-Leidenz NN, Jerez-Timaure N. Predicción del rendimiento en cortes de carnicería de bovinos venezolanos. Revista Científica, FCV-LUZ. [Internet]. 2008 [cited 11 Jul 2025]; 18(6):704–714. Available in: https://goo.su/gZv8















