This scientific publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Velasquez et al. Rev. Fac. Agron. (LUZ). 2022, 39(1): e223901
Hernández, R., Fernández, C., Baptista, P., Méndez, S. & Mendoza, C.
(2014). Metodología de la investigación. México, DF: Mcgraw-
hill.
InfoStat Group. (2015). Versión libre 20151. Córdoba: Universidad
Nacional de Córdoba, www.infostat.com.ar
Instituto Nacional de Preinversión. (2014). Atlas Bioenergético de la
República del Ecuador. First edition. Quito: Esin-consultora
S.A.
Kaleta, A. & Górnicki, K. (2010). Some remarks on evaluation of
drying models of red beet particles. Energy Conversion and
Management, 51(12), 2967–2978. https://doi.org/10.1016/j.
enconman.2010.06.040
Karathanos, V. T. & Belessiotis, V. G. (1999). Application of a thin-
layer equation to drying data of fresh and semi-dried fruits.
Journal of Agricultural Engineering Research, 74(4), 355–361.
https://doi.org/10.1006/jaer.1999.0473
Liu, Q. & Bakker-Arkema, F. W. (1997). Stochastic modelling of grain
drying: Part 2. Model development. Journal of Agricultural
Engineering Research, 66(4), 275–280. https://doi.org/10.1006/
jaer.1996.0145
Melendez, J. R., Velasquez-Rivera, J., El Salous, A. & Peñalver, A.
(2021). Management for the production of 2G biofuels: Review
of the technological and economic scenario. Revista Venezolana
de Gerencia, 26(93), 78–91. https://doi.org/10.37960/rvg.
v26i93.34965
Mendoza, B., Béjar, J., Luna, D., Osorio, M., Jimenez, M. & Melendez,
J. R. (2020a). Differences in the ratio of soil microbial
biomass carbon (MBC) and soil organic carbon (SOC) at
various altitudes of Hyperalic Alisol in the Amazon region
of Ecuador. F1000Research, 9. https://doi.org/10.12688/
f1000research.22922.1
Mendoza, B., Guananga, N., Melendez J. R. & Lowy, D. A. (2020b).
Differences in total iron content at various altitudes of
amazonian andes soil in Ecuador. F1000Research, 9: 128.
https://doi.org/10.12688/f1000research.22411.1
Mokhtarian, M., Majd, M. H., Garmakhany, A. D. & Zaerzadeh,
E. (2021). Predicting the moisture ratio of dried tomato
slices using articial neural network and genetic algorithm
Modeling. Journal of Research and Innovation in Food Science
and Technology, 9(4), 411–422. https://doi.org/10.22101/
jrifst.2021.258797.1203
O’Callaghan, J. R., Menzies, D. J. & Bailey, P. H. (1971). Digital
simulation of agricultural drier performance. Journal of
Agricultural Engineering Research, 16(3), 223–244. https://doi.
org/10.1016/S0021-8634(71)80016-1
Omolola, A. O., Kapila, P. F. & Silungwe, H. M. (2019). Mathematical
Modeling of drying characteristics of Jew’s mallow (Corchorus
olitorius) leaves. Information Processing in Agriculture, 6(1),
109-115. https://doi.org/10.1016/j.inpa.2018.08.003
Overhults, D. D., White, G. M., Hamilton, M. E. & Ross, I. J. (1973).
Drying soybeans with heated air. Transactions of the American
Society of Agricultural Engineers, 16, 195–200. https://doi.
org/10.13031/2013.37459
Padilha, J. H. D., Steinmacher, D. & Quoirin, M. (2021). Peach palm
plantlet growth in different culture media in a temporary
immersion system. Ciência Rural, 51(3). https://doi.
org/10.1590/0103-8478cr20190075
Rajoriya, D., Bhavya, M. L. &. Hebbar, H. U. (2021). Impact of process
parameters on drying behaviour, mass transfer, and quality
prole of refractance window dried banana puree. LWT-Food
Science and Technology, 145: 111330. https://doi.org/10.1016/j.
lwt.2021.111330
Rezzadori, K., Benedetti, S. & Amante, E. R. (2012). Proposals for
the residues recovery: Orange waste as raw material for new
products. Food and Bioproducts Processing, 90(4), 606–614.
https://doi.org/10.1016/j.fbp.2012.06.002
Ribeiro, S. A., Coneglian, R. C. C., Da Silva, B. C., De Deco, T. A.,
Prudêncio, E. R. & Dias, A. (2021). Shelf life extension of peach
palm heart packed in different plastic packages. Horticultura
Brasileira, 39(1), 26–31. https://doi.org/10.1590/s0102-0536-
20210104
Rojas-Garbanzo, C., Pérez, A. M., Pineda Castro, M. L. & Vaillan, F.
(2012). Major physicochemical and antioxidant changes during
peach-palm (Bactris gasipaes H.B.K.) our processing. Fruits,
67(6), 415–427. https://doi.org/10.1051/fruits/2012035
Sadaka, S. (2020). Reanalyze previous data to develop a universal
kinetic model for grain sorghum drying process. In 2020 ASABE
Annual International Virtual Meeting (p. 1). American Society of
Agricultural and Biological Engineers. https://doi.org/10.13031/
aim.202000218
Santacruz, S., Cárdenas, G. y Mero, V. (2020). Compuestos fenólicos y
aceite de semillas de naranja y maracuyá. Revista de la Facultad
de Agronomía de la Universidad del Zulia, 37(1), 51–68. https://
cutt.ly/fEgZ6bQ
Schroth, G., Elias, M. E. A., Macêdo, J. L., Mota, M. S. S. & Lieberei,
R. (2002). Mineral nutrition of peach palm (Bactris gasipaes)
in Amazonian agroforestry and recommendations for foliar
analysis. European Journal of Agronomy, 17(2), 81–92. https://
doi.org/10.1016/S1161-0301(01)00142-3
Sharma, G. P., Verma, R. C. & Pathare, P. (2005). Mathematical
Modeling of infrared radiation thin layer drying of onion
slices. Journal of Food Engineering, 71(3), 282–286. https://doi.
org/10.1016/j.jfoodeng.2005.02.010
Shi, J., Pan, Z., McHugh, T. H., Wood, D., Hirschberg, E. & Olson, D.
(2008). Drying and quality characteristics of fresh and sugar-
infused blueberries dried with infrared radiation heating. LWT-
Food Science and Technology, 41(10), 1962–1972. https://doi.
org/10.1016/j.lwt.2008.01.003
Simal, S., Femenia, A., Garau, M. C. & Rosselló, C. (2005). Use of
exponential, Page’s and diffusional models to simulate the
drying kinetics of kiwi fruit. Journal of Food Engineering, 66:
323–328. https://doi.org/10.1016/j.jfoodeng.2004.03.025
Simpson, R., Ramírez, C., Nuñez, H., Jaques, A. & Almonacid, S. (2017).
Understanding the success of Page’s model and related empirical
equations in tting experimental data of diffusion phenomena
in food matrices. Trends in Food Science and Technology, 62:
194–201. https://doi.org/10.1016/j.tifs.2017.01.003
Sozzi, A., Zambon, M., Mazza, G. & Salvatori, D. (2021). Fluidized
bed drying of blackberry wastes: Drying kinetics, particle
characterization and nutritional value of the obtained granular
solids. Powder Technology, 385: 37–49. https://doi.org/10.1016/j.
powtec.2021.02.058
StatSoft Inc. (2007). Statistica (Data Analysis Software System) version
8.0 www.statsoft.com. Palo Alto, California, USA.
Taghian-Dinani, S., Hamdami, N., Shahedi, M. & Havet, M. (2014).
Mathematical Modeling of hot air/electrohydrodynamic
(EHD) drying kinetics of mushroom slices. Energy Conversion
and Management, 86, 70–80. https://doi.org/10.1016/j.
enconman.2014.05.010
To-rul, H. (2006). Suitable drying model for infrared drying of carrot.
Journal of Food Engineering, 77(3), 610–619. https://doi.
org/10.1016/j.jfoodeng.2005.07.020
Togrul, I. T. & Pehlivan, D. (2002). Mathematical modelling of solar
drying of apricots in thin layers. Journal of Food Engineering,
55(3), 209–216. https://doi.org/10.1016/S0260-8774(02)00065-1
Velásquez, J. R., Roca-Argüelles, M., Rodríguez-Sánchez, J. L., Díaz,
R., Hernández-Monzón, A. y Montiel, C. (2017). Caracterización
de la harina de subproductos de palmito. Ciencia y Tecnología
de Alimentos, 27(1), 24–28. https://cutt.ly/CEgJXN2
Vieira, T. F., Corrêa, R. C. G., Moreira, R. D. F. P. M., Peralta, R. A., de
Lima, E. A., Helm, C. V., ... & Peralta, R. M. (2021). Valorization
of Peach Palm (Bactris gasipaes Kunth) Waste: Production
of Antioxidant Xylooligosaccharides. Waste and Biomass
Valorization, 1-14. https://doi.org/10.1007/s12649-021-01457-3
Waldron, K. W., Parker, M. L. & Smith, A. C. (2003). Plant cell walls and
food quality. Comprehensive Reviews in Food Science and Food
Safety, 2(4), 128–146. https://doi.org/10.1111/j.1541-4337.2003.
tb00019.x
Westerman, P. W., White, G. M. & Ross, I. J. (1973). Relative
humidity effect on the high temperature drying of shelled corn.
Transactions of the American Society of Agricultural Engineers,
16: 1136–1139. https://doi.org/10.13031/2013.37715
White, G.M., Ross, I. J. & Ponelert, R. (1981). Fully exposed drying of
popcorn. Transactions of the American Society of Agricultural
Engineers, 24:466–468. https://doi.org/10.13031/2013.34276
Yaldiz, O. & Ertekin, C. (2001). Thin layer solar drying some different
vegetables. Drying Technology, 19(3–4), 583–597. https://doi.
org/10.1081/DRT-100103936
Zhang, Q. & Litcheld, J. B. (1991). An optimization of intermittent corn
drying in a laboratory scale thin layer dryer. Drying Technology,
9(2), 383–395. https://doi.org/10.1080/07373939108916672
Zhao, P., Ge, S., Ma, D., Areeprasert, C. & Yoshikawa, K. (2014).
Effect of hydrothermal pretreatment on convective drying
characteristics of paper sludge. ACS Sustainable Chemistry &
Engineering, 2(4), 665–671. https://doi.org/10.1021/sc4003505
7-7|