© The Authors, 2021, Published by the Universidad del Zulia*Corresponding author: betzabeth.perez@correo.buap.mx
Keywords:
Physical control
Natural control
Corn weevil
Damage
Agroecological strategies for Sitophilus zeamais handling in maize stored
Estratégias agroecológicas para el manejo de Sitophilus zeamais en maíz almacenado
Estratégias agroecológicas para o manejo de Sitophilus zeamais em milho armazenado
1
Maestría en Manejo Sostenible de Agroecosistemas.
Centro de Agroecología Instituto de Ciencias. Benemérita
Universidad Autónoma de Puebla, Puebla, México. Edicio
VAL 1, km 1.7 carretera a San Baltazar Tétela, C.P.
72960,
San Pedro Zacachimalpa, Puebla, México.
2
Centro de Agroecología, Instituto de Ciencias, Benemérita
Universidad Autónoma de Puebla. Edicio VAL 1 , km
1.7 carretera a San Baltazar Tétela, C.P. 72960, San Pedro
Zacachimalpa, Puebla, México.
Received: 17-06-2021
Accepted: 05-12-2021
Published:
28-02-2022
Abstract
Sitophilus zeamais is an economically important pest because it feeds
on stored corn, since its control is carried out with increasingly toxic
insecticides, the objective of the effect of more ecological alternatives
such as the application of CaO (quicklime 2 %), Beauveria bassiana
(1.10
9
espores.mL
-1
), Ricinus communis powder aqueous (1.5 %), modied
atmosphere storage (20 L silo) and airtight environment (in barrel of 20 L) on
the incidence and damage of S. zeamais in stored corn, in the municipality of
Tlacotepec de Benito Juarez, Puebla. The experiment was carried out under
a completely randomized block design with ve repetitions, where the ve
control methods mentioned above were tested and compared with a control
treatment (plastic bag). Quicklime, storage in a modied atmosphere and
storage in a hermetic environment signicantly decreased (Tukey, p <0.05)
the number of weevils in corn grains during 247 days of storage and the
percentage of damage to the grains remained below from 1 %. Therefore,
these results showed that the application of quicklime, airtight environment
and storage in a modied atmosphere controlled the damage caused by S.
zeamais and are highly favorable for the conservation and protection of
stored corn grains.
Areli Idalia Matías Oregán
1
Betzabeth Cecilia Pérez Torres
2*
Agustín Aragón García
2
Dionicio Juárez Ramón
2
Jesús Francisco López Olguín
2
Miguel Aragón Sánchez
2
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223921
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v39.n1.21
Crop Production
Associate editor: Dra. Lilia Urdaneta
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223921 January - March. ISSN 2477-9407.
2-5 |
Resumen
Sitophilus zeamais es una plaga de importancia económica, debido
a que se alimenta de maíz almacenado, ya que su control se realiza
con insecticidas cada vez más tóxicos, el objetivo de este estudio fue
evaluar el efecto de alternativas más ecológicas como la aplicación
de CaO (cal viva al 2 %), Beauveria bassiana (1.10
9
esporas.mL
-1
),
extracto de polvo de Ricinus communis (1,5 %), almacenamiento
en atmósfera modicada (silo de 20 L) y ambiente hermético
(garrafas de 20 L) sobre la incidencia y daños de S. zeamais en maíz
almacenado, en el municipio de Tlacotepec de Benito Juárez, Puebla.
El experimento se realizó bajo un diseño de bloques completamente al
azar con cinco repeticiones, donde fueron probados los cinco métodos
de control antes mencionados, y comparados con un tratamiento
testigo (costal de plástico). La cal viva, almacenamiento en atmósfera
modicada y almacenamiento en ambiente hermético disminuyeron
signicativamente (Tukey, p < 0,05) el número de gorgojos en los
granos de maíz durante 247 días de almacenamiento y el porcentaje
de daños de los granos se mantuvo por debajo del 1 %. Por tanto,
estos resultados demostraron que la aplicación de cal, ambiente
hermético y el almacenamiento en atmósfera modicada controlaron
los daños ocasionados por S. zeamais y son altamente favorables para
la conservación y protección de los granos de maíz almacenados.
Palabras clave: control físico, control natural, gorgojo del maíz,
daño.
Resumo
Sitophilus zeamais é uma praga de importância econômica, pois
se alimenta de milho armazenado, uma vez que seu controle é feito
com inseticidas cada vez mais tóxicos, o objetivo deste trabalho foi
avaliar o efeito de alternativas mais ecológicas como a aplicação de
CaO (2 % cal virgem), Beauveria bassiana (1.10
9
esporos.mL
-1
), extrato
em pó de Ricinus communis (1,5 %), armazenamento em atmosfera
modicada (silo de 20 L) e ambiente hermético (garrafas de 20
L), na incidência e danos de S. zeamais em milho armazenado, no
município de Tlacotepec de Benito Juárez, Puebla. O experimento foi
conduzido em delineamento de blocos inteiramente casualizados com
cinco repetições, onde os cinco métodos de controle mencionados
acima foram testados e comparados com um tratamento controle
(sacola plástica). A cal viva, o armazenamento em atmosfera
modicada e o armazenamento em ambiente hermético diminuíram
signicativamente (Tukey, p < 0,05) o número de gorgulhos nos
grãos de milho durante 247 dias de armazenamento e a porcentagem
de danos aos grãos permaneceu abaixo de 1 %. Portanto, esses
resultados mostraram que a aplicação de calcário, ambiente hermético
e armazenamento em atmosfera modicada controlam os danos
causados por S. zeamais e são altamente favoráveis a conservação e
proteção dos grãos de milho armazenados.
Palavras-chave: controle físico, controle natural, gorgulho do milho,
danos.
Introduction
Mexico is considered the center of origin and biodiversity of
corn (Barrera-Guzmán et al., 2020); its production and conservation
is fundamental, providing many benets as human and animal food
(Gul et al., 2021). The Agenda for Services for the Marketing and
Development of Agricultural Markets (ASERCA, 2019) indicated
that in Mexico the capacity of agricultural warehouses was 39.56
million tons in 2019, of which 83.7 % are stored indoors and 16.3
% outdoors, allowing small producers to guarantee the conservation
of grains (Vázquez & Moreno, 2016), and a source of food (Turrent,
2013).
Unfortunately, this activity is hampered by insect pests of stored
grains, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae)
is considered the most important postharvest pest of corn (Da Silva
et al., 2020; De Assis et al., 2014), causing losses of 4 to 25 % of
its grains (Ortiz et al., 2015). To reduce losses and protect the seed
against this pest, synthetic insecticides are used (Isman, 2015);
whose intensive application causes damage to the environment
and wild biota, contaminates soil and water, and causes resistance
of some pests, in addition its use represents a risk to the health of
living beings, affecting the neurological, reproductive, respiratory,
cardiovascular and respiratory systems and thyroid damage (Silveira
et al., 2018). One option is to apply adequate management through
the use of plant species that have an insecticidal effect and are found
in each region, to evaluate in different formulations (extracts, oils
and powders), which has the advantage of being degradable in stored
grains and crops, causing a low impact on human being, environment
and the economic income of the producers (Lanza et al., 2020; Pérez-
Torres et al., 2017). In addition, the use of physical methods that help
conservation and storage of grains is proposed, to generate sustainable
and environmentally friendly alternatives, in addition to being
protable for the benet of low-income producers and proposing
practical solutions to the problem of warehouse pests, the objective
of this research was to evaluate the effect of the application of CaO
(quicklime), Beauveria bassiana (Bals) Vuill, Ricinus communis L.
powder extract, storage in a modied atmosphere and storage in an
airtight environment for the agroecological management of Sitophilus
zeamais in stored corn.
Materials and methods
The experiment was held in the municipality of Tlacotepec de
Benito Juárez, Puebla; Mexico (18º 14’ 12’ and 18º 21’ 00’ north
latitude and meridians 96º 55’ 24’ and 96º 43’ 00’ west longitude),
where the predominant climate is temperate semi-dry (National
Institute of Statistics and Geography [INEGI], 2009). The treatments
were established in a corn warehouse (4 m long by 3 m wide) made of
concrete block with an access door that remained closed.
The corn that was used was white creole, the cob was left to dry
in the open eld for two months (October-November) harvesting in
December 2014, it was shelled and placed in 50-kilo rafa bags for
storage. Before establishing the experiment, a sampling was made,
taking two kilos of corn from each sack, it was checked and was
checked and the presence or absence of insects was veried. The
experiment began on January 30, 2015, six treatments were applied
for the agroecological management of S. zeamais in stored corn (table
1). The methodology and concentrations of the treatments that were
adopted in this research were proposed by Castillo (2014), using
quicklime powder at 2 % per kilo of corn grains and B. bassiana, and
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
3-5 |
by experience in previous studies, R. communis powder was used at a
concentration of 1.5 % per kilo of corn.
Table 1. Treatments used for the agroecological management of
Sitophilus zeamais in stored corn.
Treatment
Code assigned
to treatments
Concentration
(%)
Container
Quicklime (CaO) cv 2.0
Plastic sack
(rafa)
Beauveria bassiana Bb 1.10
9
Ricinus communis Rc 1.5
Storage in modied
atmosphere
am ---- 25k silos
Storage in hermetic
environment
ah ----
20 L plastic
bottle
Control tg ----
Plastic sack
(rafa)
Calcium oxide or quicklime (CaO) (limestone), was obtained
in the municipality of Tecali de Herrera, Puebla from the company
“Oxical de Tecali S. A. de C. V.” dedicated to the production of
calcium oxide, specialized in pulverized high purity quicklime. It was
manually sprinkled at a concentration of 2 % p/p per kilo of corn in
a homogeneous way before being stored in rafa sacks with a single
dose.
Thirty-two g p/p of Beauveria bassiana product (Organic Vel)
were applied at a concentration of 1.10
9
spores.mL
-1
.
The treatment with R. communis was made from the mature
fruit of the plant that was collected in the study area in its fruiting
stage, the taxonomic determination was made in the herbarium of the
Benemérita Universidad Autónoma de Puebla (BUAP). The material
was dried on brown paper under shade for 25 days until constant
weight was obtained. It was crushed in a NIXTAMATIC brand electric
mill for grain, until obtaining a ne powder that was applied to the
corresponding experimental units, at a concentration of 1.5 % p/p
per kilo of corn, manually sprinkling the corn seeds homogeneously.
These concentrations were applied for each experimental unit. In the
case of Bb and Rc, the applications were made every two months
according to the amount of grain contained in the experimental unit,
the sacks were opened and the extract powder was applied manually
with a plastic spoon.
For modied atmosphere storage treatment, galvanized sheet
containers (silos) of 25 kg capacity were used, inside which, 16 kg
of corn and a lighted candle were placed on top of the grain with the
purpose of generating a reaction of combustion, sealing the container
to prevent the possible access of air inside. This procedure was
repeated each time a corn sample was taken.
The purpose of storage in an airtight environment was to limit
the respiration of the grain. Twenty liter jugs with 16 kg of corn were
used, which remained closed to prevent the entry of air and were
placed in a horizontal position to ensure that the exit of the corn
samples was always through the lowest part of the container.
The control was the grain stored in rafa sacks (16 kg), without
application of any treatment (what the farmer normally does to store
it).
Sampling was carried out every 20 days, for which they were
collected from the top of each storage container using 250 g of corn
seeds and the following variables were evaluated: 1) number of
individuals: the number of adult weevils was quantied, which were
Matías et al. Rev. Fac. Agron. (LUZ). 2022, 39(1): e223921
identied in the Laboratorio de Diagnóstico y Sistemática de Plagas
of Centro de Agroecología of Instituto de Ciencias of BUAP, and 2)
percentage of damage: the grains affected by the weevil were placed
against the light to estimate the amount of damaged surface in each
grain. The assessment of the percentage of damage in the grain of the
sample was obtained with the following formula:
Where:
PDG: Percentage of damage in the grains of the sample
n: # of grains in the sample
Pi: Proportion of damage in the i-th grain with i=1,2,3…,n
A randomized complete block design with six treatments (table 1)
and ve repetitions per treatment (6x5) was used, generating a total of
30 experimental units, consisted each of 16 kg of corn.
The producer stores his corn for eight months, based on this, the
experiment ended at 247 days, so the data obtained on the number of
adult individuals, and percentage of damage were processed at 127 and
247 days (half and end of maize storage time). The data obtained were
subjected to an analysis of variance and Tukey’s test of means, with a
signicance of p < 0.05 to see differences between treatments, prior to
this, the hypothesis of homogeneous variances was veried by means
of the Barttlet test, using the statistical software STATGRAPHICS
Centurion XVII (StatPoint, 2014).
Results and Discussion
Number of adult individuals
The ANOVA results indicated that there were signicant
differences between the treatments on the two evaluation dates (p <
0.05) and the comparison of means determined that, for day 127, the
two types of storage, the use of quicklime and B. bassiana exerted a
decrease in individuals in relation to the treatments of R. communis
and the control, where the largest number of adults were present.
At 247 days, the application of R. communis and B. bassiana was
not effective for the control of the insect pest when comparing the
number of individuals with the control, while in the treatments storage
in an airtight environment, quicklime and storage in an modied
atmosphere, the lowest number of weevils were collected with 0.6,
1.2 and 3.4 individuals, respectively (table 2).
Table 2. Number of adult individuals of
Sitophius zeamais for
each tr
eatment at 127 and 247 days of evaluation.
Treatment
Number of adult
individuals 127 d
Treatment
Number of adult
individuals 247 d
Control
46.8 + 11.1
b
B. bassiana
78.4 + 6.1
c
R. communis
38.4 + 8.9
b
Control 66.0 + 5.0
bc
B. bassiana
8.4 + 3.1
a
R. communis
55.0 + 2.5
b
Storage in modied
atmosphere
8.2 + 2.6
a
Storage in
hermetic
environment
3.4 + 1.5
a
Quicklime 0.2 + 0.2
a
Quicklime 1.2 + 0.2
a
Storage in hermetic
environment
0.2 + 0.2
a
Storage in
modied
atmosphere
0.6 + 0.8
a
a, b, c
Mean value ± standard error followed by different lowercase letters between
columns indicate signicant differences (p < 0.05), by Tukey’s test.
PDG =

=0
100
1
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223921 January - March. ISSN 2477-9407.
4-5 |
In the case of the hermetic environment, if the grain is stored
without weevils as in this investigation, they cannot enter the storage
container because it is kept closed, however, the fact that weevils
were found in this treatment (0.2 and 0.6), indicates that some corn
seeds could be infested by the insect during the drying process in
the eld, according to Patiño (2019), the females open a hole in
the grain to oviposit the egg in their interior (one egg per grain), it
seals the hole with a secretion that hardens, the larva hatches and
feeds, developing inside the grain until pupating; it usually leaves
the kernel completely hollow until it becomes an adult. Despite this
possibility, as long as the infestation in the eld is low, the hermetic
environment is still a good method to avoid the proliferation of S.
zeamais in stored maize.
Regarding CaO powder, the results coincide with the evaluations
carried out by Silva et al. (2004), who pointed out that calcium
carbonate powders maintained their effectiveness for prolonged
periods, avoiding the infestation of S. zeamais in stored corn grains,
achieving percentages of 70 and 84 % mortality. This way of acting
is due to the fact that calcium oxide or quicklime, due to its caustic,
dehydrating, lipoid-dissolving and albuminoid-destroying action,
destroys the chitinous substances that form part of the envelope
of the scabies parasites (mites) and makes its eggs sterile (Bietti,
2019), in addition to contact with water, an exothermic reaction
is caused causing the death of the insect (Osorno, 2012). This
response was corroborated by collecting some adults in grains
where quicklime powder was applied to observe them with a
stereoscopic microscope (Olympus SZX7 and Nikon Eclipse 80i)
and it was noticed that the joints of the weevils were covered with
lime, which prevented them from move, this prevented copulation,
oviposition and reproduction. Other inert powders such as volcanic
ash and diatomaceous earth are viable for managing S. zeamais,
since they act in a similar way to quicklime Jairoce et al. (2016),
obtained a mortality rate of 100 % ve days after establishing the
experiment in the laboratory.
The Secretaria de Agricultura, Ganadería, Desarrollo rural,
Pesca y Ganadería (SAGARPA, 2016), indicates that when seeds
are stored in a modied atmosphere, gaseous and moisture exchange
is avoided, grain respiration decreases and the low concentration of
Oxygen kills insects.
Regarding the botanical insecticide evaluated, the dust from the
fruits of R. communis had no effect on the adults of S. zeamais,
allowing the population of weevils to increase signicantly
throughout the experiment. According to Arboleda (2012), it
produces secondary metabolites such as albumin, ricin and alkaloids
(ricinin), which are toxic compounds and are present in all parts of
the plant, although they have a higher concentration in the fruit.
Millán (2008), presenting toxicity on mites, nematodes, insects and
rats. It is very likely that this effect is due to the fact that substances
of natural origin are unstable, because they are highly biodegradable
in the face of solar radiation and microclimatic humidity, reducing
their action and making frequent applications necessary (Morales
and García, 2000; Silva et al., 2005).
In relation to the treatment based on B. bassiana, this did not
have the expected effect at the concentration used (1.10
9
spores.mL
-
1
), since it was where the largest number of individuals appeared,
these results agree with those obtained by Molina and Espinal
(2000), who determined that the populations of S. zeamais where
B. bassiana was incorporated at a concentration of 1.10
10
conidia
were similar to that of the control, the authors explaining that this
was due to the fact that the pest was already within the cobs before
the application of the product, hindering the contact of the pest with
the conidia of the entomopathogenic fungus.
Percentage of grain damage
The lowest percentage values of grain damage were obtained
in the treatments with quicklime, storage in a modied atmosphere
and storage in an airtight environment, as a consequence of the low
populations of weevils found in them (table 3). These results are
similar to those reported by Rodríguez et al. (2017), who evaluated
in the laboratory the effect of white marble powder on S. zeamais
(1.74 g per 105 g of corn), recording that there were no percentages
of losses in the corn seed by the weevil, they also determined that
the higher the dose of the powder, the lower the affectation of the
grain by this insect, obtaining a repellency index of 0.9 %. This
grain conservation method, due to its ancestral knowledge and its
easy acquisition, has been used in the North of Puebla, for which
a very thin layer of quicklime or calcium oxide (CaO) is applied,
alternated with a layer of 30 cm of corn shelled or on the cob,
avoiding the damage of the corn weevil for a period of six months
(Rodríguez, 2008). Quicklime is an economical treatment unlike
other treatments and it is very easy to handle, it is also easily
removed from the corn grain, at the time of sale it is passed through
a sieve and in the case of nixtamalization the cooking of corn is
done with water and quicklime.
Table 3. Percentage of grain damage for each treatment at 127
and 247 days of evaluation.
Treatment
Grain damage
percentage 127 d
Treatment
Grain damage
percentage 247
Control 2.12 + 0.7c Control 50.30 + 4.1c
R. communis 1.72 + 0.2bc B. bassiana 34.90 + 2.8b
B. bassiana 0.44 + 0.1ab R. communis 26.20 + 2.5b
Storage in
modied
atmosphere
0.30 + 0.1ab
Storage in
hermetic
environment
0.90 + 0.2a
Storage in
hermetic
environment
0.04 + 0.0a
Storage in
modied
atmosphere
0.16 + 0.1a
Quicklime 0.02 + 0.0a Quicklime 0.02 + 0.0a
a, b, c
Mean value ± standard error followed by different lowercase letters between
columns indicate signicant differences (p < 0.05), by Tukey’s test.
According to Garcia et al. (2007), the use of warehouses
with modied atmosphere and airtight environment reduces the
percentage of damage caused by insects, also does not leave toxic
residues in food, decreases environmental contamination, reduces
selective pressure on resistant insects and lengthens shelf life. of
the grains. According to Ortiz et al. (2015), a good storage system
allows to reduce losses caused by pests and diseases, which allows,
in turn, to face periods of food scarcity, it is for this reason that
the storage of corn grains in Modied atmosphere conditions in
this research is considered an effective and simple method to apply
by producers since weevils are not introduced, and the decrease
in oxygen inside the container does not allow fungi and insects to
proliferate.
Regarding the Rc and Bb treatments, on the two evaluation dates
there were no signicant differences with the control and at 247
days a grain damage percentage of 26.2 and 34.9 %, respectively,
was found. The effectiveness of R. communis contrasts with that
reported by Gómez et al. (2018), who cited that this treatment
causes a 4 % repellency to the insect under laboratory conditions,
Aragón et al. (2021), mentions that the Bb bioinsecticide for the
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
5-5 |
control S. zeamais at the same concentration, the percentage of
damage was not as effective as when a combination of B. bassiana
1.10
9
+ Quicklime is made, reducing damage by 3.3 % at 81 days
in the laboratory.
To ensure that grain damage was caused by weevils and not
by the temperature and humidity concentrations in the store, it
was determined that, for quicklime treatments, R. communis, B.
bassiana and the control, stored in sacks of plastic, the temperature
was kept below 35 °C and humidity at 14 %, values that are within
the parameters of the Mexican Standard NMX-FF-034/1-SCFI-
PARTE-1 (2002). These two climatic factors act as catalysts for
metabolic processes, increasing the respiration rate of the grains
and the loss of dry matter; increases in temperature and humidity
affect the quality of stored grains (Chulze, 2010).
Conclusions
The quicklime, the modied atmosphere and the hermetic
environment allow an agroecological management of Sitophilus
zeamais in corn grains in prolonged storage.
These management practices are feasible to carry out, especially
by small farmers who store corn for self-consumption.
Literature cited
Agenda de Servicios a la Comercialización y Desarrollo de Mercado
Agropecuario. (2019). Consulta de infraestructura de acopio. Centro de
Información de Mercado Agroalimentarios https://www.cima.aserca.
gob.mx/es_mx/cima/sistema_consulta_infraestructura_acopio %20.
Aragón, G. A., Castillo, V. H., Pérez, T. B. C., Cuate, M. V. A., Hernández, L.
R., & Aragón, S. M. (2021). Evaluation of quicklime and Beauveria
bassiana for the management of maize weevil (Sitophilus zeamais)
under laboratory and eld conditions. Journal of Agricultural and Crop
Research, 9(6), 159-164. Doi: 10.33495/jacr_v9i6.21.135.
Arboleda, F. J., Guzmán, O. A., Mejia, L. F. (2012). Efecto de extractos cetónicos
de higuerilla (Ricinus communis Linneo) sobre el nematodo barrenador
[Radopholus similis (Cobb) Thorne] en condiciones in vitro. Luna azul
(35), 28 - 47. http://www.scielo.org.co/pdf/luaz/n35/n35a03.pdf.
Barrera-Guzmán, L., Legaria-Solano, J., y Ortega-Paczka, R. (2020). Diversidad
genética en poblaciones de razas mexicanas de maíz. Revista Fitotecnia
Mexicana, 43(1), 121-125. https://doi.org/10.35196/rfm.2020.1.121.
Bietti, A. A. (2019). Los usos corrientes de la cal en las prácticas ganaderas.
Revista de Agricultura, 1, 219-221. http://www.mag.go.cr/rev-histo/ra-
20-06-219.pdf.
Castillo, V. H. (2014). Evaluación de cal viva y Beauveri bassiana para el manejo
del gorgojo del maíz (Sitophilus zeamais Motschulsky) en condiciones
de laboratorio. Tesis de Licencia. Facultad de Ingeniería Química.
Unidad Regional Acatzingo. Benemérita Universidad Autónoma de
Puebla. 55 p. https://hdl.handle.net/20.500.12371/5346.
Chulze, S. N. (2010). Strategies to reduce mycotoxin levels in maize during
storage: a review. Food Additives and Contaminants Part A-chemistry
Analysis Control Exposure & Risk Assessment, 27(5), 651-657. Doi:
10.1080/19440040903573032.
Da Silva, J. C., Pérez, R. Y., Valdés, H. R., Castellano, G. L., and Álvarez, S.
A. (2020). Activity of the plant powders of Eugenia asperifolia O. Ber
on Sitophilus oryzae L., (Coleoptera: Curculionidae). Revista Cientíca
Agroecosistemas, 8(3), 153-157. https://aes.ucf.edu.cu/index.php/aes/
article/view/440.
De Assis, C. A., Da Silva, P. J., Queiroga, V. de P., Figueiredo, A., Cárdenas,
N., y Rojas, B. G. (2014). Eciencia de extractos vegetales como
insecticida sobre Sitophilus zeamais en granos de maíz almacenados.
Revista Ciencias Técnicas Agropecuarias, 23(2), 57-62. Doi: 10.1590/
S1413-70542006000400029, v.30.
García, L. M de L., Aguirre, G. J., Narro, S. J., Cortés B. E., y Rivera R. J. (2007).
Silo hermético para el control de plagas de granos almacenados en
Guanajuato, México. Agricultura Técnica en México, 33(3), 231-239.
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0568-
25172007000300002&lng=es&tlng=es.
Gómez, H. H., González, M. O., y González, C. J. (2018). Vegetales pulverizados
para el manejo de Sitophilus zeamais Motschulsky en almacenamiento.
Revista Mexicana de Ciencias Agrícolas, 9(4), 787-798. https://doi.
org/10.29312/remexca.v9i4.1396.
Gul, H., Rahman, S., Shahzad, A., Gul, S., Qian, M., Xiao, Q., and Liu, Z. (2021).
Maize (Zea mays L.) productivity in response to nitrogen management
in Pakistan. American Journal of Plant Sciences, 12, 1173-1179. Doi:
10.4236/ajps.2021.128081.
Instituto Nacional de Estadística y Geografía. (2009). Prontuarios de información
geográco municipal de los Estados Unidos Mexicanos. Tlacotepec
de Benito Juárez, Puebla. Clave geoestadística 21177. Consultado el
3 julio 2021. http://www3.inegi.org.mx/contenidos/app/mexicocifras/
datos_geogracos/21/21177.pdf.
Isman, M. B. (2015). A renaissance for botanical insecticides?. Pest Management
Science, 71(12), 1587-1590. https://doi.org/10.1002/ps.4088.
Jairoce, C. F., Teixeira, C. M., Nunes, A. M., Holdefer, D. R., Krüge, A. P., &
Garcia F. R. (2016). Efciency of inert mineral dusts in the control of
corn weevil. Revista Brasileira de Engenharia Agrícola e Ambiental
20(2), 158-162. Doi:10.1590/1807-1929/agriambi.v20n2p158-162.
Lanza, G. E. V., Pérez, R. Y., y Pérez, G. J. L. (2020). Comportamiento del
costo de protección para la conservación de semilla de maíz, mediante
alternativas naturales. Cooperativismo y Desarrollo, 8(3), 569-586.
http://scielo.sld.cu/pdf/cod/v8n3/2310-340X-cod-8-03-569.pdf.
Millán, C. (2008). Las plantas una opción saludable para el control de
plagas. Montevideo: RAP-AL. 99 p. https://itscv.edu.ec/wp-content/
uploads/2018/10/Plantas.pdf.
Molina, J. D., y Espinal, J. R. (2000). Evaluación de Beauveria bassiana
para el combate de insectos plaga en maíz almacenado. Agronomía
Mesoamericana, 11(2), 15-23. Doi:10.15517/am.v11i2.17301.
Morales, S. L., y García, P. C. (2000). Metodología para la evaluación del
potencial insecticida de especies forestales. Revista Facultad Nacional
de Agronomía Medellín, 53(1), 787-800. https://repositorio.unal.edu.
co/handle/unal/36326.
NMX-FF-034/l-SCFI-PARTE -1 (2002). Norma Mexicana para Maíces
Destinados al Proceso de Nixtamalización. Productos alimenticios
no industrializados para consumo humano-cereales-maíz blanco
para proceso alcalino para tortillas de maíz y productos de maíz
nixtamalizado. Especicaciones y Métodos de prueba. Secretaria
de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación
(SAGARPA). Dirección General de Normas. México, D. F. 6 p.
Ortiz, R. M. Á., Ramírez, A. O., González, E. J., y Velázquez, M. A.
(2015). Almacenes de maíz en México: tipología y caracterización.
Estudios Sociales, 23(45),163-184. http://www.scielo.org.mx/scielo.
php?script=sci_arttext&pid=S0188-45572015000100007&lng=pt&tln
g=es.
Osorno, H. H. (2012). Mitos y Realidades de las cales y enmiendas en Colombia.
Trabajo de grado. Universidad Nacional de Colombia sede Medellín,
Medellín. 70 p. https://repositorio.unal.edu.co/bitstream/handle/
unal/9810/70660741.2012.pdf?sequence=1&isAllowed=y.
Patiño, R. A. (2019). Control de insectos de granos almacenados mediante
volátiles provenientes de bacterias marinas del Caribe Colombiano.
Tesis de Licencia. Facultad de Ciencias. Departamento de Química.
Unidad Nacional de Colombia, Bogotá, Colombia. 78 p. https://
repositorio.unal.edu.co/handle/unal/76950.
Pérez-Torres, B., Aragón-García, A., Cuate-Mozo, V., López-Olguín, J., Aragón-
Sánchez, M., & Lugo-García, G. (2017). Efecto de la aplicación en
campo de mezclas de extractos vegetales sobre la presencia y daños de
insectos plaga del cultivo de Amaranthus hypochondiacus L. Revista
de la Facultad de Agronomía de la Universidad del Zulia, 34(4), 477-
496. https://produccioncienticaluz.org/index.php/agronomia/article/
view/27249.
Rodríguez, H. C. (2008). Alternativas para el manejo integrado de gorgojos en
graneros rústicos. LEISA Revista de Agroecología, pp.32-35. http://
www.cm.colpos.mx/cesareo/Divulgaci %C3 %B3n/Alternativas %20
para %20el %20manejo %20integrado %20de %20gorgojos.pdf.
Rodríguez, L. Y., Mirabal, G. R., Suárez, P. C., García, G. M., Albert, R. A., &
Orrantia, C. I. (2017). Control de Sithophilus zeamais Motschulsky con
polvos de mármol en granos de maíz almacenados. Pastros y Forrajes,
40(4), 278-283. http://www.redalyc.org/articulo.oa?id=269158176006
SAGARPA Secretaria de Agricultura, Ganadería, Desarrollo rural, Pesca y
Alimentación. (2016). Identicación y control de insectos en granos
almacenados. Claridades Agropecuarias. https://www.gob.mx/cms/
uploads/attachment/le/185452/revista_271.pdf
Silva, A. G., González, G. P., Hepp, G. R., y Casals, B. P. (2004). Control de
Sitophilus zeamais Motschulsky con polvos inertes. Agrociencia, 38(5),
259-236. https://www.redalyc.org/articulo.oa?id=30238507.
Silva, G., Orrego, O., Hepp, R., y Tapia, M. (2005). Búsqueda de plantas con
propiedades insecticidas para el control de Sitophilus zeamais en
maíz almacenado. Pesquisa Agropecuária Brasileira, 40(1), 11-17.
Doi:10.1590/S0100-204X2005001000002.
Silveira, G. A. I., Aldana, M. M. L., Piri, S. J., Valenzuela, Q. A. I., Jasa, S. G., y
Rodríguez, O. G. (2018). Plaguicidas agrícolas un marco de referencia
para evaluar riesgos a la salud en comunidades rurales en el estado de
Sonora, México. Revista Internacional de Contaminación Ambiental,
34(1), 7-21.
https://doi.org/10.20937/rica.2018.34.01.01.
StatPoint (2014). Statgraphics® Centurion XVII. Manual de usuario. USA. 341
pp.
Turrent, F. A. (2013). Potencial productivo del campo mexicano para producir
maíz no transgénico en los próximos 25 años. Análisis Plural. 2, 187-
204. https://rei.iteso.mx/bitstream/handle/11117/702/AP %202012-2
%20SEM %2014_potencial.pdf?sequence=2.
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223921 January - March. ISSN 2477-9407.