© The Authors, 2021, Published by the Universidad del Zulia*Corresponding manuel.hernandez@unicach.mx
Francisco Guevara-Hernández
1
Manuel Antonio Hernández-Ramos
2*
Manuel Alejandro La O-Arias
1
René Pinto-Ruíz
1
Luis Alfredo Rodríguez-Larramendi
2
Deb Raj Aryal
3
Rev. Fac. Agron. (LUZ). 2022, 39(2): e223924
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v39.n2.02
Food Technology
Associate editor: Professor Andreina Garcia
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
Keywords:
Zea mays
Cultivars
Grains
Physical-chemical characterization of local maize from Chiapas, Mexico
Caracterización físico-química de maíces locales de Chiapas, México
Caracterização físico-química do milho local de Chiapas, México
1
Universidad Autónoma de Chiapas. Facultad de Ciencias
Agronómicas, Carretera Ocozocoautla–Villaores Km. 84.5,
Apdo. Postal 78, C.P. 30470 Villaores, Chiapas, México.
2
Universidad de Ciencias y Artes de Chiapas. Facultad de
Ingeniería, Sede Villa Corzo. Carretera a Monterrey Km 3.0.
Villa Corzo PC 30520. Chiapas. México.
3
Programa Cátedras CONACYT, Facultad de Ciencias
Agronómicas Campus V, Universidad Autónoma de Chiapas.
Received: 09-08-2021
Accepted: 03-02-2022
Published: 21-03-2022
Abstract
The physical-chemical quality of maize has become important for the
food industry, so it is a condition for the selection of any local cultivar or
improved varieties. The physical-chemical quality of local maize from La
Sepultura Biosphere Reserve (REBISE), Chiapas, was characterized, to
demonstrate that the maize diversity in the reserve presents potential for the
our and tortilla industry in Mexico. Collections of eighteen local maize
populations associated with different races and two commercial hybrid
materials were evaluated. Nineteen variables were characterized using
multivariate techniques of Factor Analysis and Clusters. By reduction of
data, six components were extracted. Typology of maize varieties merged
into four groups: Group I) Of high projection in the components of breaking
strength (Fu Rup RE, 300.25 gf) and pericarp dissolution (pericarp, 5.39
%; retained pericarp, 47.91 %); Group II) also high scoring in breaking
strength and its persistence (Fu Rup RE, 277.25 gf), but low scoring for grain
consistence and protein yield (otation index 24.50); weight of 100 grains
33.31 g, (grain proteins 9.94 %); Group III) presented greater projection
in the component of grain density, and moisture of the "nixtamal" and the
dough (hectoliter weight 73.5 kg-hl, elongation 13.60 mm, dough moisture
57.95 %, Fu Rup RE, 220.83 gf); Group IV) showed lower projection in
"nixtamal" moisture (44.48 %) and dough, so as elasticity of the "tortillas"
(12.94 mm). The physical-chemical variables contributed to identify cultivar
groups on the quality of the grain.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(2): e223924. April - June. ISSN 2477-9407.
2-7 |
Resumen
La calidad físico-química del maíz ha adquirido importancia para
la industria alimenticia; por lo que es una condición para la selección
de germoplasmas mejorados. Se caracterizó la calidad físico-
química de maíces locales de la Reserva de la Biosfera La Sepultura
(REBISE), Chiapas; para demostrar que la diversidad existente en la
reserva, presenta potencial para la industria de la harina y la "tortilla"
en México. Se evaluaron colectas de 18 poblaciones de maíces locales
asociadas a diferentes razas y dos materiales híbridos comerciales.
Se
caracterizaron 19 variables, mediante técnicas multivariadas
de Análisis Factorial y Conglomerados. Por reducción de datos se
denieron seis componentes. Las tipologías fueron: Grupo I) de alta
proyección en los componentes de fuerza de ruptura (Fu Rup RE,
300,25 gf) y dilución del pericarpio (pericarpio, 5,39 %; pericarpio
retenido, 47,91 %); Grupo II) también de alta puntuación en la fuerza
de ruptura (Fu Rup RE, 277,25 gf), pero bajas puntuaciones para la
consistencia del grano y rendimiento proteico (índice de otación,
24,50); peso de 100 granos de 33,31 g (proteínas del grano 9,94 %);
Grupo III) presentó mayor proyección en el componente de densidad
del grano y humedad del nixtamal y la masa (Peso hectolítrico, 73,5
kg
-hl
; elongación 13,60 mm; humedad de la masa 57,95 %; Fu Rup
RE, 220,83 gf); Grupo IV) mostró menor proyección en la
humedad del nixtamal (44,48 %) y la masa, así como elasticidad de
las tortillas (12,94 mm). Las variables físico-químicas contribuyeron
a identificar agrupaciones de cultivares sobre la calidad del grano.
Palabras clave: Zea mays, cultivares, granos
Resumo
A qualidade físico-química do milho tornou-se importante para
a indústria alimentar e é, portanto, uma condição para a selecção de
germoplasma melhorado. Caracterizou-se a qualidade físico-química
do milho local da Reserva da Biosfera La Sepultura (REBISE),
Chiapas; para demonstrar que a diversidade existente na reserva tem
potencial para a indústria de farinha e tortilha no México. Foram
avaliadas coleções de 18 populações locais de milho associadas a
diferentes raças e dois materiais híbridos comerciais.19 variáveis
foram caracterizadas por meio de técnicas multivariadas de Análise
Fatorial e Clusters.Por redução de dados, seis componentes foram
denidos. A tipologia gerou quatro grupos: Grupo I) com alta
projeção nos componentes da força de ruptura (Fu Rup RE, 300,25
gf) e diluição do pericarpo (pericarpo, 5,39%; pericarpo retido,
47,91%); Grupo II) também pontuou alto na força de ruptura (Fu Rup
RE, 277,25 gf), mas pontuações baixas para consistência de grãos e
rendimento de proteína (índice de otação, 24,50); peso de 100 grãos
de 33,31 g (proteínas dos grãos 9,94%); Grupo III) apresentou maior
projeção no componente densidade de grãos e umidade de "nixtamal"
e massa (peso hectolitro, 73,5 kg
-hl
; alongamento 13,60 mm; umidade
da massa 57,95%; Fu Rup RE, 220,83 gf); Grupo IV) apresentou
menor projeção na umidade do "nixtamal" (44,48%) e da massa,
bem como elasticidade das tortilhas (12,94 mm). As variáveis físico-
químicas contribuíram para identicar agrupamentos de cultivares na
qualidade do grão.
Palavras-chave: Zea mays, cultivares, grãos
Introduction
The maize crop is prone to develop local variability due to its
allogamous condition. This variability is manifested from the
morpho-agronomic aspects of the cultivars, to the physical and
chemical characteristics of the grains. The diversity of maize has its
origin in the interactions between human, cultural, environmental,
management, use factors, among others, since its domestication and
its distribution through various routes to the entire cultural region of
Mesoamerica (Guevara et al., 2020).
In this way, the crop developed adaptation to extreme
conditions of altitude, fertility and climate, among other variables
of its environment. Only in Mexico, at least eight racial groups are
recognized (ancient indigenous, exotic, pre-Columbian, "mestizo",
prehistoric, incipient modern, races not well dened and unclassied
races), with 59 races and a large intra-racial morphological diversity,
mainly in cobs and grains, as well as phenological cycles; however,
this diversity is also subjected to cultural and economic issues
(Hernández-Ramos et al., 2020). This fact leads to the reasoning that
culture and economics ultimately impose guidelines on the indirect
selection of the physical and chemical characteristics of the grains,
ours and "tortillas" produced.
Scientic research framed in the physical and chemical
properties of maize, must take on the challenge of recognizing the
cultural contexts and commercial interests as factors that dene the
desirable properties and the local diversity of maize (Guevara et al.,
2020 and NMX-FF-034/1-SCFI-2002, 2002, p.1-22); as well as the
complexity of relationships between the variables of grain quality
and the "tortilla" (Vázquez-Carillo et al., 2020), which leads to the
hypothesis of the differentiation of local maize from the physical-
chemical characteristics of the grains, by limiting the potential for
the our and "tortillas" industry. However, the simple approach of
this hypothesis could have a secondary relevance given the need to
unravel the interactions and relationships between these individual
variables that ultimately dene the general properties and underlie
these local differences.
In the present research, the objective was to characterize the
physical-chemical quality of local maize cultivated in La Sepultura
Biosphere Reserve (REBISE), Chiapas; in order to answer the
following question: ¿What relationships exist between the physical
and chemical variables of the grains that allow typifying and
characterizing the local maize in the Frailesca region in relation to
the potential for the our and "tortilla" industry and to demonstrate
that the existing diversity in the reserve has potential for the our and
"tortilla" industry.
Materials and methods
Study area and sample
The study was carried out in nine communities of the REBISE,
located in the southwestern region of the state of Chiapas, in the
northwestern portion of the Sierra Madre de Chiapas.
It is a territory shared by the municipalities of Arriaga, Cintalapa,
Jiquipilas, Tonalá, Villa Corzo and Villaores; geographically, it is
located between parallels 16º00’18’ and 16º29’01’ north latitude and
meridians 93º24’34’ and 94º07’35’ west longitude.
In the REBISE there are climates of type A(C)m(w) (semi-
warm humid), AW2(w) (warm sub-humid), with abundant rainfall in
summer. Eutric regosol soils predominate and in the vegetation we
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Guevara-Hernández et al. Rev. Fac. Agron. (LUZ). 2022, 39(2): e2239243-7 |
can nd mesophilic mountain forest, pine-oak, as well as agricultural
areas (Hernández-Ramos et al., 2020).
Eighteen local varieties of rainfed maize were collected, during
November and December 2019, in correspondence with the following
criteria: presence, distribution, prevalence and permanence within
and between communities. Three kilograms of maize were collected
and stored at room temperature, without the application of chemical
products. Commercial hybrids H-WP8063 and H-27 also grown in
the study area were included in the research (table 1).
Table 1. Description of local maize varieties sampled in La
Sepultura Biosphere Reserve, Chiapas, Mexico.
Local variety
Place of
collection
Related race
Acronym
Amarillo California
Olotillo + Tepecintle +
Tuxpeño
AmarilloC
Precoz California
Tuxpeño (GA) +
Vandeño
PrecozC
Maíz Negro California
Olotillo + Vandeño +
Tuxpeño
Maíz Negro
Crema California
Tuxpeño (GA) +
Tepecintle
Crema
Jarocho Tres Picos
Tuxpeño (GA) +
Vandeño
JarochoTP
Precoz Tres Picos Tuxpeño (GA) PrecozTP
Huesito Tres Picos
Olotillo + Tuxpeño +
Conejo
Huesito
Amarillo
Ricardo Flores
Magón
Tuxpeño (GA) AmarilloRFM
Jarocho
Ricardo Flores
Magón
Tuxpeño (GA) JarochoRFM
Tornamil
Ricardo Flores
Magón
Tuxpeño (GA) Tornamil
Jarocho Villahermosa
Olotillo + Tuxpeño +
Vandeño + Tepecintle
JarochoV
Olote Rojo Nueva Esperanza
Tuxpeño (GA) +
Vandeño
Olote Rojo
Pollito
Ricardo Flores
Magón
Without classication Pollito
Jarocho El Triunfo
Tuxpeño (GA) +
Vandeño
JarochoET
Amarillo Villahermosa
Tuxpeño (GA) + Olotillo
+ Tepecintle
AmarilloV
Amarillo
Josefa Ortiz de
Domínguez
Olotillo + Tepecintle AmarilloJOD
Morales
La Sombra de la
Selva
Tuxpeño (GA) + Olotillo
+ Tepecintle
Morales
San Gregorio La Sierrita
Tuxpeño (GA) +
Vandeño
San Gregorio
The race relationship described here was dened by the authors according to the
classication made by Wellhausen et al. (1952).
The race in the rst place is the characteristic that most predominates in the maize
population. GA: Advanced generation.
Variables used for characterization
For the physical-chemical analysis of maize from the National
Institute of Forestry, Agricultural and Livestock Research (INIFAP),
Texcoco, state of Mexico, 19 physical and chemical variables were
chosen for the evaluation of grain and "tortilla" quality, with two
repetitions. The measurements and the processing of the samples
were carried out using the methodologies described by Salinas and
Vázquez (2006).
The variables evaluated were: grain moisture, hectoliter weight
by method 84-10 (American Association of Cereal Chemists
[AACC], 2000, 350), otation index (Salinas et al., 1992), weight
of 100 grains, percentage of pedicel, pericarp and germ. "Nixtamal"
quality was evaluated based on the variables of "nixtamal" moisture,
loss of solids and retained pericarp. For the quality of the dough and
the "tortilla", the variables of freshly made and 24 h "tortillas" were
evaluated, as well as moisture, elongation and breaking strength, and
"tortilla" yield (Salinas and Vázquez, 2006). Protein and tryptophan
content in grain and "tortilla" were also evaluated with Technicon
Instruments equipment (Galicia-Flores et al., 2011).
Nixtamalization and "tortillas" processing
One hundred grams of grain, in 1 % calcium oxide and 200 mL of
distilled water were used. The components were mixed in 600 mL of
water and heated to boiling. The boiling time was in correspondence
with the hardness of the grain. The samples were left at rest for 14-16
h at room temperature (Salinas and Vázquez, 2006).
Treatment and data analysis
A data matrix of order A
(21,20),
was formed, placing the 18 varieties
by rows and the 19 characterization variables by columns. To reduce
the dimensionality of the characterization variables, a Factor Analysis
was applied, by the principal components (PCA) method, in which
the components with eigenvalues greater than one (1) were assumed
and that as a whole managed to explain more than 75% of the total
variability (Tovar and García, 2017). The extracted components were
considered new variables, labeled according to their relationships
with the original variables, and were used in cluster analysis to form
local maize clusters, using Ward’s method. These groupings were
validated using ANOVA for linear models and descriptive statistics
of the original variables. Statistica software, version 8.0 was used for
the analyses (StatSoft, 2012).
Results and discussion
The PCA reduced the dimensionality of the 19 variables to 6
components, which were able to explain 77% of the total variance.
Table 2 shows the variables associated with each principal component
(PC) and the explained variance. These PC are dened as: I) Flotation
index and grain protein, II) Hectoliter weight, "nixtamal" and dough
moisture; III) Remaining pericarp, IV) Breaking strength, V) "tortilla"
moisture and VI) Percentage of solids.
In PC I, the highest proportion of the germ is associated with the
increase in grain and "tortilla" proteins (table 2). The germ contains an
important protein fraction and it is not lost during the nixtamalization
(Paredes-López et al., 2009). PC II is described by the association
of a lower hectoliter weight with a higher proportion of moisture
in the "nixtamal" and dough. Hardness inuences the structural
composition and therefore the composition of water assimilated by
the grain (Arámbula-Villa et al., 2004).
The behavior after nixtamalization is one of the main aspects
of maize quality for the our and "tortilla" industry. It was found
that during this process the variables acquire independence as the
transformation to "tortilla" takes place; as reected in the separation
of the components. PC II describes the remaining pericarp that
according to Salinas and Vázquez (2006) favors plasticity, dough
manageability and "tortilla" softness. PC IV is associated with
breaking strength; according to Vázquez-Carrillo et al. (2014) this
variable is linked to "tortilla" texture and, therefore, to the oil content
of the grain. PC V is described by the "tortilla" moisture, which is
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(2): e223924. April - June. ISSN 2477-9407.
4-7 |
not always associated with higher "nixtamal" moisture, because
the loss of water depends on factors such as thickness, temperature
and cooking time (Arámbula-Villa et al., 2004); it is also not a
determinant in "tortilla" texture (Salinas-Moreno et al., 2010). PC
VI by percentage of solids refers to the pericarp retained during
cooking (Vidal-Martínez et al., 2008).
Table 2. Association of variables and explained variance of the
PC obtained for the grouping of local maize from La
Sepultura Biosphere Reserve, Chiapas, Mexico.
PC Associated variables Eigenvalue
Explained
variance
(%)
I. Flotation
index and
protein in
"tortilla" and
grain
Flotation index (-0.60),
Weight of 100 grains
(0.63), Pedicel (-0.70),
Germ (0.65), "tortilla"
protein (0.72) and grain
protein (0.89)
4.88 23.24
II. Hectoliter
weight,
"nixtamal"
and dough
moisture
Hectoliter weight (-0.87),
"nixtamal" moisture
(0,72), dough moisture
(0.82) and Elongation
RH (0.63)
3.58 40.31
III. Remaining
pericarp
Pericarp (0.82), Retained
pericarp (-0.70) and
"tortilla" yield (-0.79)
2.56 52.49
IV. Breaking
strength
Breaking strength RH
(0.66), Breaking strength
at 24 h (0.88)
2.21 63.01
V. "Tortilla"
moisture
"Tortilla" moisture
(0.77), "tortilla" moisture
at 24 h (0.93)
1.59 70.59
VI. Percentage
of solids
Percentage of solids
(0.89)
1.36 77.05
RH: freshly made. PC: Principal Components.
However, the non-correlation of the components is paramount in the
reduction of original variables to justify the variance represented
(Tovar and García, 2017). For example, the idea that the variables
of hectoliter weight and otation index are related to grain hardness
is assumed. Both are inversely correlated, the higher the hectolitric
weight maize has, the harder it will be and its otation index will be
lower. However, in the results obtained in the present study, these
two variables were located in different components (PC II and PC
I, respectively). This raises a new hypothesis of interaction with
other variables, where the variation of one could be independent of
the variation of other; therefore, it is necessary to conduct studies
in this sense, which contribute to enriching the interaction between
the different variables.
Cluster Analysis (Maize groups)
Base on the factor scores, cluster analysis was performed,
resulting in four main groups and two varieties. The dendrogram
(gure 1) shows two local varieties and the four groups of varieties.
Figure 2 shows the differential aspects between groups.
In turn, gure 2 allows identifying the differential aspects
between the groups.
The singular varieties were H-WP8063 and Pollito. The rst
is a commercial hybrid and was projected with low scores in the
grain consistency component and protein content, and the breaking
strength component and its persistence. The Pollito variety was
characterized by a high projection in the pericarp dissolution
component and percentage of solids. This indicates that a large
amount of pericarp is released and remains suspended in the
"nejayote" (residual liquid from nixtamalization).
Figure 1. Grouping dendrogram of local maize varieties
according to some physical-chemical characteristics
of the grain.
Group I (GI) included four of them and was characterized by
having a high projection in the PC III (pericarp dissolution) and
PC IV (breaking strength and its persistence). Group II (GII) was
composed of four varieties and was characterized by high scores for
the breaking strength component and its persistence, but low scores
for the grain consistency component and protein content (gure 1).
The group III (GIII) included six varieties. It presented higher
projection in the moisture component of the "nixtamal" and the
dough with more elastic "tortillas", grains of lower density and
higher development and dissolution of the pericarp.
Group IV (GIV) was of ve varieties. It showed the lowest
projection within the moisture component of the "nixtamal" and
dough, as well as elasticity of the "tortillas", with grains of lower
density.
Figure 2. Differentiation between groups identied in the
diversity of local maize characterized on the basis of
the factor scores.
The variables combined in the rst component differentiate the
maize H-WP8063, Pollito and the group GII from de rest of the
variables (gure 1). The maize H-WP8063 and Pollito, resulted
of intermediate hardness and medium grains, according to their
otation indexes and weight of 100 grains. The Mexican Standard
(NMX-FF-034/1-SCFI-2002, 2002, p.1-22), classies maize with
otation indexes between 38 and 62 as semi-hard. The rest of
the varieties studied are classied as hard, with otation indexes
between 18 and 25. For its, part group GII is classied as hard corn,
but with small grains, similar to the H-WP8063 and Pollito varieties
(table 3).
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Guevara-Hernández et al. Rev. Fac. Agron. (LUZ). 2022, 39(2): e2239245-7 |
According to the criteria of Gómez et al. (2003), the grains of
H-WP8063, Pollito and those included in GII are medium-sized
grains (<33 g.100
-1
grains); the groups GI, GIII and GIV are large-
sized (>36 g.100
-1
grains). Salinas and Vázquez (2006) used similar
classication criteria, more than 38 g for large grains and between
33 and 38 g for medium grains. The Mexican our industry requires
medium-grain maize, while the dough and "tortilla" industry requires
grains of this size or smaller, which hydrate more easily than large
grains, favoring the yield of the high moisture products marketed
(Salinas-Moreno et al., 2010). Likewise Sierra-Macías et al. (2016)
used these classication thresholds in high protein quality cultivars
to report that their grains were small in size; on the other hand,
Coutiño-Estrada et al. (2008) reported values between 28 and 43
g. Grain size is a characteristic with great environmental inuence.
According to Salazar-Martínez et al. (2015), water regime is one
of the environmental factors with signicant inuence on grain
dimensions.
The proportion of germ was lower than those published
by Salinas-Moreno et al. (2013). The germ must represent
approximately 11.5% and contributes to the highest protein quality
(Paredes-López et al., 2009). The protein values, both in the grain
and in the "tortillas", were lower than those indicated in improved
maize (Coutiño-Estrada et al., 2008) and in varieties of high protein
value (Sierra-Macías et al., 2016), but higher for other local
varieties (Cázares-Sánchez et al., 2015).
For this study, the grains with the highest protein content were
the hardest (H-WP8063). Vidal-Martínez et al. (2008) argued
that the direct proportionality relationship between hardness and
protein content is given by a higher proportion of prolamins (zeins),
majority fraction (50-70 %) in the protein of the maize endosperm,
and decient in the essential amino acids lysine and tryptophan;
however, these authors reported a higher protein fraction (higher
than 10.3 %) in improved varieties with grains of intermediate
hardness. However, grain hardness is mainly associated with the
proportions of oury and crystalline endosperm. Maize with soft
endosperm have lower densities, with a value of 63-87% of the
otation index; compared to very hard or hard grains, which have
0-12 and 13-37 % of otation index, respectively (NMX-FF-034/1-
SCFI-2002, 2002, p.1-22; Salinas and Vázquez, 2006).
According to Salinas-Moreno et al. (2010), the percentage of
pedicel in maize grain is relevant in the dough and "tortilla" industry
(NMX-FF-034/1-SCFI-2002, 2002, p.1 -22), because this structure
is made up of lignin, and it is not hydrolyzed during nixtamalization,
although it acquires a dark hue that affects the appearance of the
"tortilla", since the higher the percentage, the greater the abundance
of black spots on the surface. For this reason, the our industry
eliminates this structure during the screening process. Even so, it
establishes a maximum of 2% of pedicel. All cultivars considered
in this study met this requirement.
Table 3. Behavior of original variables that contributed to the classication of local maize groups in La Sepultura Biosphere Reserve,
Chiapas, Mexico
Original variables H-WP8063 Pollito
GI GII GIII GIV Sig
Average E.E. Average E.E. Average E.E. Average E.E.
Flotation index 47.00 40.00 18.00 4.56 24.50 4.34 23.33 4.06 21.80 1.93
0.70
Weight of 100 grains (g) 24.87 30.46 41.35
a
1.01 33.31
b
1.10 39.13
a
2.06 39.39
a
1.03
0.02
Pedicel (%) 1.63 1.95 1.65
ab
0.14 1.79
a
0.11 1.52
bc
0.03 1.36
c
0.05
0.01
Germ (%) 7.49 8.45 8.83 0.25 8.34 0.11 8.95 0.25 8.90 0.09
0.20
Protein in grain (%) 9.30 10.00 10.41 0.33 9.94 0.48 11.08 0.39 10.80 0.30
0.22
Protein in "tortilla" (%) 9.55 12.20 11.43 0.23 10.98 0.23 1208 0.38 12.05 0.46
0.16
Hectoliter weight (kg
-hl
) 74.17 75.36 77.01 0.91 75.25 0.91 73.50 1.67 76.82 0.35
0.16
"Nixtamal" moisture
(%)
50.24 48.32 44.86 1.38 48.17 1.39 47.78 0.96 44.78 0.62
0.07
Dough moisture (%) 56.93 58.03 56.48
b
0.15 56.72
b
0.52 57.95
a
0.42 56.31
b
0.38
0.03
Elongation RH (mm) 13.99 12.76 13.09
b
0.19 13.84
a
0.20 13.60
ab
0.20 12.94
b
0.27
0.04
Pericarp (%) 4.36 6.37 5.39 0.06 4.98 0.25 5.35 0.08 5.09 0.13
0.15
Retained pericarp (%) 49.95 30.97 47.91 3.84 51.97 3.14 44.39 2.31 50.15 2.61
0.29
Fu Rup RE gf 230 214 300
a
14 277
ab
10 220
c
17 248
bc
13
0.01
Fu Rup 24 h 293 281.00 376
a
12 356
a
21 288
b
12 286
b
17
0.00
a, b, c
Superscript letters per row indicate signicant differences between Groups I, II, III and IV when applying Tukey’s Test (Honest Signicant Difference) (Winer et al.,
1991). PCI and PCII cases were not included in the analysis of variance or in the multiple comparisons of means.
The physical-chemical indicators of the second component
allow differentiating the maize from the group GIII. Characteristics
such as: lower density grains (according to hectolitric weight),
higher humidity of the "nixtamal" and dough, as well as higher
elongation of the "tortillas", are combined. On the other hand, the
varieties included in groups GI and GIV were the ones with the
most discrete behaviors in these variables.
The observed hectoliter weight classies them as suitable for
the our industry, with values higher than 74 kg
-hl
, according to the
indicators established in the Mexican Standard for nixtamalized
maize, although slightly lower in group GIII and those reported by
Arellano-Vasquez et al. (2010)
The "nixtamal" moisture and dough moisture values coincide
with those published by Sierra-Macías et al. (2016), somewhat
higher than the maximum established by the Mexican Standard,
44% and 48% referred by Salinas-Moreno et al. (2010). The
standard for the nixtamalized our industry responds to certain
requirements of industrial processes, storage and marketing.
However, traditional and domestic processes do not strictly conform
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(2): e223924. April - June. ISSN 2477-9407.6-7 |
to these requirements. In this regard, Coutiño-Estrada et al. (2008)
indicated that experience has shown that maize with characteristics
outside these ranges are suitable for the traditional preparation of
dough and "tortillas".
For "tortilla" quality, it is important that maize have the capacity
to absorb water and retain it, which is reected in "tortilla" yield
(Vázquez-Carrillo et al., 2014). The "tortilla" yield values obtained
in this research are higher than those reported by Sierra-Macías et al.
(2016) and Coutiño-Estrada et al. (2008). This capacity is indirectly
related to grain hardness and starch composition; the modication of
the amylose/amylopectin ratio in the ours inuenced the hardness
and color of the "tortillas", as well as, the moisture conservation
(Salinas-Moreno et al., 2010).
Pericarp values are within acceptable ranges for the nixtamalized
our industry (4.5 to 5.5 mg) and are higher than those obtained
for the Pollito variety and lower for H-WP8063. The retained
pericarp values published by Coutiño-Estrada et al. (2008) are
also similar with improved varieties in Chiapas. The our industry
requires values higher than 40 % in this indicator. Salinas-Moreno
et al. (2010) mention that the pericarp is a structure made up of
hemicellulose (> 50 %), cellulose (22 %), phenolic acids (5 %) and
lignin (1 %). Therefore, hemicellulose is hydrolyzed by alkali during
the nixtamalization process and transformed into heteroxylans
associated with ferulic acid residues that have properties that favor
dough and "tortilla" texture.
The breaking strength tends to be higher in the groups GI
and GII; the values, both for freshly made "tortillas" and at 24 h,
are similar to those published by Sánchez et al. (2007)."Tortilla"
moisture coincides with that reported by Sierra-Macías et al. (2016)
in maize of high protein quality and in ordinary maize. However, in
improved varieties the tryptophan values were higher than 0.098 %.
Regarding tryptophan in the "tortilla", a reduction in the percentage
determined with respect to the grain was observed. "Tortilla" is the
basis of the Mexican people’s diet, representing about 70 % of the
caloric intake in the lower income classes (Del Moral et al., 2015),
hence the importance of considering its nutritional contribution.
Conclusions
The physical-chemical variables of the local maize studied were
combined into six linear groupings or components. The rst four
were the ones that contributed the most to the characterization of
groups and were labeled as follows: Component I, grain consistency
and protein yield; Component II, "nixtamal" moisture and dough
with more elastic tortillas and lower density grains; Component
III, pericarp dissolution; and Component IV, breaking strength and
its persistence. From the point of view of the physical-chemical
characteristics combined in components, four typologies and two
varieties (H-WP8063 and Pollito) that did not t into any of these
two groups could be dened.
Literature cited
American Association of Cereal Chemists, AACC. (2000). Approved Methods
of the AACC. 10th. edit. St. Paul MN. 425 p. ISBN 978-1-891127-68-2.
http://methods.aaccnet.org/about.aspx
Arámbula-Villa, G., Méndez-Albores, A., González-Hernández, J., Gutiérrez-
Arias, E. y Moreno-Martínez, E. (2004). Evaluación de una metodología
para determinar características de textura de tortilla de maíz (Zea mays L).
Archivos Latinoamericanos de Nutrición, 54, 216-222.http://ve.scielo.
org/scielo.php?script=sci_arttext&pid=S0004-06222004000200012
Arellano-Vázquez, J. L., Gámez, A., Vázquez, J. y Ávila-Perches, M.
A. (2010). Potencial agronómico de variedades criollas de maíz
Cacahuacintle en el Valle de Toluca. Revista Fitotecnia Mexicana,
33, 37-41. http://www.scielo.org.mx/scielo.php?script=sci_
arttext&pid=S0187-73802010000500009
Cázares-Sánchez, E., Chávez-Servia, J. L., Salinas-Moreno, Y., Castillo-
González, F. y Ramírez-Vallejo, P.(2015). Variación en la composición
del grano entre poblaciones de maíz (Zea mays L.) nativas de Yucatán,
México. Agrociencia, 49, 15-30. http://www.scielo.org.mx/scielo.
php?script=sci_arttext&pid=S1405-31952015000100002
Coutiño-Estrada, B., Vázquez-Carrillo, G., Torres-Morales, B. y Salinas-
Moreno, Y. (2008). Calidad de grano, tortillas y botanas de dos
variedades de maíz de la raza Comiteco. Revista Fitotecnia Mexicana,
31(3), 9-14.https://www.redalyc.org/pdf/610/61009703.pdf
Del Moral, S., Ramírez-Coutiño, L. P. y García-Gómez, M. (2015). Aspectos
relevantes del uso de enzimas en la industria de los alimentos. Revista
Iberoamericana de Ciencias ReIbCi, 2(3), 87-102.http://www.reibci.
org/publicados/2015/mayo/1000102.pdf
Galicia-Flores, L. A., Islas-Caballero, C., Rosales-Nolasco, A., & Palacios-
Rojas, N. (2011). Método económico y eciente para la cuanticación
colorimétrica de lisina en grano de maíz. Revista totecnia mexicana,
34(4), 285-289. http://www.scielo.org.mx/pdf/rfm/v34n4/v34n4a10.
pdf
Gómez, N. O., Sierra, M., Cantú, M. A., Rodríguez, F. A., Manjarrez, M.,
González, M., Espinosa, A., Betanzos, E., Córdova, H., Caballero, F.,
Turrent, A., García, A., Ramírez, G., Sandoval, A. y Coutiño, B.(2003).
V-537C y V-538C, nuevas variedades de maíz con alta calidad de
proteína para el trópico mexicano. Revista Fitotecnia Mexicana, 26,
213-214.https://www.redalyc.org/articulo.oa?id=61026312
Guevara, F., Hernández, M. A., Basterrechea, J. L., Fonseca, M. D. L. A.,
Delgado, F., Ocaña, M. D. J. y Acosta, R. (2020). Riqueza de maíces
locales (Zea mays L.) en la región Frailesca, Chiapas, México: un
estudio etnobotánico. Revista de la Facultad de Agronomía (LUZ),
37(3), 223-243. https://www.produccioncienticaluz.org/index.php/
agronomia/article/view/32660/34136
Hernández-Ramos, M. A., Guevara-Hernández, F., Basterrechea-Bermejo, J.
L., Coutiño-Estrada, B., La O-Arias, M. A. y Pinto-Ruiz, R. (2020).
Diversidad y conservación de maíces locales de La Frailesca, Chiapas,
México. Revista Fitotecnia Mexicana, 43(4), 471-471.https://doi.
org/10.35196/rfm.2020.4.471
Norma Mexicana, NMX-FF-034/1-SCFI-2002. (2002). Productos alimenticios
no industrializados para uso humano-cereales-Maíz blanco
para proceso alcalino para tortillas de maíz y productos de maíz
nixtamalizado. Especicaciones y métodos de prueba. Secretaría de
Comercio y Fomento industrial (SCFI). 22p. http://sitios1.dif.gob.mx/
alimentacion/docs/NMX-FF-034-1-SCFI-2002_MAIZ_blanco.pdf
Paredes-López, O., Guevara-Lara, F. y Bello-Pérez, L. A. (2009). La
nixtamalización y el valor nutritivo del maíz. Ciencias, 92, 60-70.
https://www.revistacienciasunam.com/es/41-revistas/revista-ciencias-
92-93/205-la-nixtamalizacion-y-el-valor-nutritivo-del-maiz-05.html
Salazar-Martínez, J., Rivera-Figueroa, C. H., Arévalo-Gallegos, S., Guevara-
Escobar, A., Malda-Barrera, G. y Rascón-Cruz, Q. (2015). Calidad del
nixtamal y su relación con el ambiente de cultivo del maíz. Revista
Fitotecnia Mexicana, 38, 67-73.http://www.scielo.org.mx/scielo.
php?script=sci_arttext&pid=S0187-73802015000100009
Salinas-Moreno, Y., Gómez-Montiel, N. O., Cervantes-Martínez, J. E., Sierra-
Macías, M., Palafox-Caballero, A., Betanzos-Mendoza, E. y Coutiño-
Estrada, B. (2010). Calidad nixtamalera y tortillera en maíces del trópico
húmedo y sub-húmedo de México. Revista Mexicana de Ciencias
Agrícolas,1, 509-523.http://www.scielo.org.mx/scielo.php?script=sci_
arttext&pid=S2007-09342010000400005
Salinas-Moreno, Y., Aragón-Cuevas, F., Ybarra-Moncada, C., Aguilar-Villarreal,
J., Altunar-López, B. y Sosa-Montes, E. (2013). Caracterización física
y composición química de razas de maíz de grano azul/morado de
las regiones tropicales y subtropicales de Oaxaca. Revista Fitotecnia
Mexicana, 36, 23-31.http://www.scielo.org.mx/scielo.php?script=sci_
arttext&pid=S0187-73802013000100003
Salinas, M. Y. y Vázquez, G. (2006). Metodologías de análisis de la calidad
nixtamalera-tortillera en maíz. Folleto técnico 24. Instituto Nacional de
Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental
Valle de México. Texcoco, México. 98p.
Salinas, M., Martínez, B. y Gómez, H. (1992). Comparación de métodos para
medir la dureza del maíz (Zea mays L.). Archivos Latinoamericanos
de Nutrición, 42, 59-63. https://www.alanrevista.org/ediciones/1992/1/
art-10/
Sánchez, C., Salinas, Y., Vázquez, G., Velázquez, A. y Aguilar, N. (2007). Efecto
de las prolaminas del grano de maíz (Zea mays L.) sobre la textura de la
tortilla. Archivos Latinoamericanos de Nutrición, 57, 295-301. https://
www.alanrevista.org/ediciones/2007/3/art-13/
Sierra-Macías, M., Andrés-Meza, P. y Rodríguez-Montalvo, F. (2016).
Introgresión genética de genotipos mejorados en maíces nativos de las
razas Tuxpeño y Olotillo con calidad de hoja del totomoxtle. Revista de
Aplicación Cientíca y Técnica, 2-4, 45-52. https://www.ecorfan.org/
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Guevara-Hernández et al. Rev. Fac. Agron. (LUZ). 2022, 39(2): e2239247-7 |
spain/researchjournals/Aplicacion_Cientica_y_Tecnica/vol2num4/
Revista_de_Aplicacion_Cientica_y_Tecnica_V2_N4_7.pdf
StatSoft I. (2012). STATISTICA (Data Analysis Software System), version
7.2004. Tulsa, USA, 150 p. https://statistica.software.informer.com/7.0/
Tovar, G. T. y García, J. O. G. (2017). Análisis factorial y componentes
principales: su uso para modelos macroeconométricos de la economía
mexicana. Economía y Sociedad, 6, 181-212. http://www.economia.
umich.mx/eco_old/publicaciones/EconYSoc/ES10_14.html
Vázquez-Carrillo, M. G., Martínez-Gutiérrez, A., Zamudio-González, B.,
Espinosa-Calderón, A., Tadeo-Robledo, M. y Turrent-Fernández, A.
(2020). Estabilidad de rendimiento y características sicoquímicas de
grano de híbridos de maíz en Valles Altos de México. Revista mexicana
de ciencias agrícolas, 11(8), 1803-1814. https://doi.org/10.29312/
remexca.v11i8.1990
Vázquez-Carrillo, M. G., Santiago-Ramos, D., Salinas-Moreno, Y., López-Cruz,
J., Ybarra-Moncada, M. C. y Ortega-Corona, A. (2014). Genotipos de
maíz (Zea mays L.) con diferente contenido de aceite y su relación con la
calidad y textura de la tortilla. Agrociencia, 48, 159-172. www.scielo.org.
mx/scielo.php?script=sci_arttext&pid=S1405-31952014000200003
Vidal-Martínez, V. A., Vázquez-Carrillo, G., Coutiño-Estrada, B., Ortega-
Corona, A., Ramírez-Díaz, J. L., Valdivia-Bernal, R. y Cota-Agramont,
O. (2008). Calidad proteínica en colectas de maíces criollos de la sierra
de Nayarit, México. Revista Fitotecnia Mexicana, 31 (3), 15-21. https://
www.researchgate.net/publication/26604284_Calidad_proteinica_en_
colectas_de_maices_criollos_de_la_sierra_de_Nayarit_Mexico
Wellhausen, E., Roberts, J., Roberts, L. M. &Hernandez, E. (1952). Races of
Maize in Mexico, their Origin, Characteristics, and Distribution. The
Bussey Institution, Harvard University, Cambridge, MA. 222p. https://
www.ars.usda.gov/ARSUserFiles/50301000/ Races_of_Maize/RoM_
Mexico_0_Book.pdf
Winer, B. J., Brown, D. R. & Michels, K. M. (1991). Statistical principals in
experimental design. (3rd ed.). McGraw-Hill. New York, U. S. A. 145p.
https://doi.org/10.1037/11774-000