© The Authors, 2021, Published by the Universidad del Zulia*Corresponding manuel.hernandez@unicach.mx
Jorge Javier Meza Aguilar
1*
Alexander Regulo Rodríguez Berrio
2
Edwin Amado Mendoza Hidalgo
3
Rev. Fac. Agron. (LUZ). 2022, 39(2): e223925
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v39.n2.03
Crop Production
Associate editor: Dr. Francisco Osorio-Acosta
Colegio de Postgraduados Campus Veracruz Mexico
Tepetates, Veracruz, MX
Keywords:
Fruit y
Mangifera indica
McPhail traps
Hydrolyzed protein
Population dynamics
Population fluctuation of Anastrepha spp. in Creole mango in four locations in Vinces,
Ecuador
Fluctuación poblacional de Anastrepha spp. en mango criollo en cuatro localidades de Vinces,
Ecuador
Flutuação populacional de Anastrepha spp. em manga crioula em quatro locais em Vinces, Equador
1
Universidad de Guayaquil, Facultad de Ingeniería
Agronómica, Cdla. Universitaria-Universidad de Guayaquil
entre Av. Delta s/n y Av. Kennedy. Guayaquil, Ecuador.
2
Universidad Nacional Agraria La Molina. Facultad de
Ingeniería Agronómica. Dpto: Lima; Provincia: Lima;
Distrito: La Molina. Dirección: Av: La Universidad s/n.
3
Universidad Técnica de Babahoyo. Facultad de Ciencias
Agropecuarias. Dirección. Av. Universitaria km 21/2 Av.
Montalvo. Babahoyo, Ecuador.
Received: 13-11-2021
Accepted: 22-02-2022
Published: 31-03-2022
Abstract
Within the genus Anastrepha, we nd species that are key pests in
fruit and vegetable crops and of quarantine importance for fruit importing
countries. The knowledge of population uctuation of these pests, in certain
areas is a starting point for designing control strategies. The population
uctuation of fruit ies was evaluated in four localities of the Vinces canton,
province of Los Ríos (La Americana, Santa Martha, Primavera and Pavana),
using McPhail traps with hydrolyzed protein as bait. Three traps per site
located on fruit y host plants were checked weekly, in order to determine
the y.trap
-1
.day
-1
(MTD) index and its correlation with climatic variables.
The results show that the population peak is concentrated in December, with
a MTD of 5.94, with a temperature of 27.40 °C and 78% relative humidity.
A moderate positive correlation was found between the number of captured
insects and the temperature expressed in °C, with a correlative value r
2
=
0.61 and a negative correlation with relative humidity (r
2
= -0.64). The
most abundant species was Anastrepha fraterculus (Wiedemann) with 3,111
specimens, of which 1,055 were found in La Americana, the location with
the highest infestation.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(2): e223925. April - June. ISSN 2477-9407.2-7 |
Resumen
Dentro del género Anastrepha, encontramos especies que
son plagas clave en cultivos frutihortícolas y de importancia
cuarentenaria para los países importadores de fruta. Conocer la
uctuación poblacional de estas especies plagas en determinadas
zonas, es un punto de partida para diseñar estrategias de control. Se
evaluó la uctuación poblacional de las moscas de la fruta en cuatro
localidades del cantón Vinces, provincia de Los Ríos (La Americana,
Santa Martha, Primavera y Pavana), para ello se utilizaron trampas
McPhail, con proteína hidrolizada como cebo. Tres trampas por sitio
ubicadas en plantas hospederas de moscas de la fruta, revisadas con
frecuencia semanal, a n de determinar el índice de mosca.trampa
-1
.día
-1
(MTD) y su correlación con las variables climáticas. Los resultados
muestran que el pico poblacional se concentra en diciembre con
un MTD de 5,94 con temperatura de 27,40 ºC y 78% de humedad
relativa, Se encontró una correlación positiva moderada entre el
número de insectos capturados y la temperatura expresada ºC, con un
valor correlativo de r
2
= 0,61 y en contraposición correlación negativa
con la humedad relativa (r
2
= -0,64). La especie más abundante fue
Anastrepha fraterculus (Wiedemann) con 3.111 especímenes de
los cuales 1.055 se encontraron en La Americana, sitio con mayor
infestación.
Palabras claves: Moscas de la fruta, Mangifera indica, Trampeo,
trampas McPhail, proteína hidrolizada, dinámica poblacional.
Resumo
Dentro do gênero Anastrepha, existem espécies que são pragas
chave nas culturas de frutas e vegetais e de importância quarentenária
para os países importadores de frutas. Conhecer a utuação
populacional dessas espécies de pragas em certas áreas é um ponto
de partida para o desenho de estratégias de controle. A utuação
populacional da mosca-das-frutas foi avaliada em quatro localidades
do cantão de Vinces, província de Los Ríos (La Americana, Santa
Martha, Primavera e Pavana), para isso foram utilizadas armadilhas
McPhail, com proteína hidrolisada como isca. Três armadilhas
por local em plantas hospedeiras de mosca-das-frutas, revisadas
semanalmente, a m de determinar o índice mosca
-1
.armadilha
-1
.dia
-1
(MTD) e sua correlação com as variáveis climáticas. Os resultados
mostram que o pico populacional se concentra em dezembro com
MTD de 5,94 com temperatura de 27,40 ºC e 78% de umidade
relativa do ar. Foi encontrada correlação positiva moderada entre o
número de insetos capturados e a temperatura expressa em ºC, com
um correlativo valor de r
2
= 0,61 e em contraste correlação negativa
com a umidade relativa (r
2
= -0,64).. A espécie mais abundante foi
Anastrepha fraterculus (Wiedemann) com 3,111 exemplares, dos
quais 1,055 foram encontrados em La Americana, o local com maior
infestação.
Palavras-chave: Fruit ies, Mangifera indica, Trapping, Armadilhas
McPhail, proteína hidrolisada, Dinâmica populacional.
Introduction
Anastrepha Schiner (Diptera: Tephritidae) is a genus endemic
to the Americas, distributed from the South of The United States
to the North of Argentina, where important pest species are
included (Hernandez-Ortiz et al., 2010). Within this genus, more
than 200 species have been described such as Anastrepha grandis
(Macquart), A. fraterculus (Wiedemann), A. ludens (Loew), A.
obliqua (Macquart), A. striata (Schiner), A. suspensa (Loew) and A.
serpentina (Wiedemann) pests of economic importance (Norrbom
and Korytkowski, 2011).
The ies of the genus Anastrepha in Ecuador are associated
with 56 host plant species, grouped into 23 botanical families. The
Rutaceae, Myrtaceae and Sapotaceae families record six species
of fruit ies each. Psidium guajava L. with seven fruit y species,
Annona cherimola Mill. and Pouteria lúcuma (Ruiz and Pay) with six
species, are the main hosts in Ecuador (Tigrero, 2019).
The diversity of thermal oors in Ecuador has allowed the
cultivation of several fruit species throughout the year, thus favoring
the increase in Anastrepha spp. populations, generating an economic
and social damage to the producer due to the deterioration in fruit
quality and decrease in yield (Son et al., 2019).
In the Vinces area, ies of the genus Anastrepha are important
pests in different fruit crops, being the ‘sucking’ Creole mango one
of their main hosts, especially in dry season (Gabriel-Ortega et al.,
2017) where the infestation levels are estimated at 29.5% (Morales-
Viteri, 2012).
The sucking mango is the most desired Creole variety in the
domestic market, with a smooth yellow skin, yellow pulp with a
pleasant avor, average weight of 120 g, 10 to 17 cm in length by 5 to
7 cm in diameter, high ber content and bulky size of the seed, these
characteristics make it unqualied for the world market (Lozada,
2013).
Currently, there are some methods to eliminate these phytophagous
diptera in postharvest such as exposing the fruit to hot air and/or
hydrothermal treatments (Gómez-Simuta et al., 2017), controlled
atmospheres, etc., in pre-harvest, the preventive method using traps
and food attractants is still the most effective.
Navarro (2012) states that the correct layout of the trapping system
for Anastrepha, is a precondition for making effective decisions in
control programs aimed at suppressing pests and establishing free or
low prevalence areas.
Therefore, the objective of this research was to evaluate the
population uctuation of Anastrepha spp., in the Creole mango
variety in four localities of the Vinces canton, in order to learn more
about the biology of these pest dipterans, and in turn to make future
decisions about their management and control in this area.
Materials and methods
Study location
It was carried out in four localities. Primavera (1°40’45.9 S,
79°47’28.8 W), Pavana (1°43’17.5 S, 79°46’12.3 W), Santa Martha
(1°35’42.7 S, 79°50’34.0 W) and La Americana (1°39’27.9 S,
79°49’36, 2 W) belonging to the Vinces canton, Los Ríos province, in
individual trees of sucking Creole mango cultivar that form a diverse
ecosystem, where cocoa, banana, rice and corn crops predominate.
The research was developed from October 2018 to September 2019.
Vinces has a tropical rainy climate, average temperature of 26.5 °C
and an average annual precipitation of 1,400 mm with 800 hours
of heliophany per year and 14 mamsl, belonging to the tropical dry
forest, characterized by presenting two seasons. The dry season
(summer) from July to December and the wet or rainy season (winter)
from January to June.
Population uctuation of species of the genus Anastrepha
To determine the population uctuation of ies of the genus
Anastrepha, a standardized sampling system was designed using
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Guevara-Hernández et al. Rev. Fac. Agron. (LUZ). 2022, 39(2): e2239253-7 |
McPhail traps baited with the food attractant, hydrolyzed protein
(12.5 mL of hydrolyzed protein, 7.5 g of Borax and 230 mL of
water). A total of 250 mL of the solution was used and three traps
were placed per location, always placed in “sucking” Creole mango
plants. The monitoring frequency was weekly, the distance between
traps was 100 m, placed between three and four meters high, where
there was some shade. The captured ies were conditioned in jars
with 70% alcohol and transferred to the entomophagous laboratory of
the Facultad de Ciencias para el Desarrollo de Vinces for subsequent
identication. In the identication a binocular stereoscope microscope
(Nikon R, model YS-100) with micrometer and graduated scale and
the taxonomic keys of Korytkowski (2001) and Tejada (2002) were
used. The identied ies were left in the laboratory of the Facultad de
Ciencias para el Desarrollo.
The number of adults captured weekly (Absolute abundance) per
trap was transformed to the y.trap
-1
.day
-1
(MTD) index, where the
number of captured ies was divided by multiplying the number of
traps and the exposure time of the trap in the eld.
Fruits damaged by Anastrepha spp and percentage of adult
emergence
The percentage of damaged fruits and percentage of adult
emergence were determined with the formulas proposed by Núñez et
al. (2004) and Schliserman and Ovruski (2004), where % of damage
= Number of damaged fruits/ total fruits analyzed x 100 and the
percentage of emergence = Number of emerged adults/ number of
puparia x 100.
For the percentage of damaged fruits, semi-ripe mango fruit
(Mangifera indica L.); was collected weekly from the tree in the four
locations; guava (Psidium guajava L.); plum (Spondias purpurea
L.); jobo (Spondias mombin L.) and cuaje (Pouteria caimito (Ruiz
& Pav.) Radlk), the collected fruits were taken to the entomophagous
laboratory of the Facultad de Ciencias para el Desarrollo, where
they were washed with running water and then placed in breeding
boxes for four days, on the fth day the fruits were dissected to check
whether or not there was the presence of Anastrepha larvae and thus
determine the percentage of damaged fruits.
To establish the percentage of adult emergence, new fruits were
collected from the aforementioned host plant species of Anastrepha
spp, the collected fruits were placed in recovery boxes of 2 kg
capacity and covered with a metal grid. Moistened ne sand was
placed at the base of the box where the larvae could pupate. The
pupae were collected by sifting the sand and placed in Petri dishes
until the emergence of the adults, which were placed in 70% alcohol
until identication.
Statistical analysis
The Pearson correlation coefcient was determined between
the MTD and the climatic variables (temperature, humidity and
precipitation) during the dry and wet seasons in the four sectors under
study, in addition, a completely randomized analysis was performed
with a signicance level of 5% (α=0.05) comparing the Anastrepha
species identied, using the statistical package: SAS (Statistical
Analysis System) (SAS 1998). Meteorological data were obtained
from the Babahoyo UTB meteorological station (1º 47’49 “S and 79º
32’ 0 “W).
Results and discussion
Anastrepha abundance by month and time of year
A total of 4,467 tephritid ies were captured, 2,647 females and
1,820 males, the peak population occurred in December 2018 with
2,138 specimens and an MTD index of 5.94 (table 1).
The high MTD index reached in December coincides with the
transition from the dry season to the wet season and above all with the
greater abundance of ripe plum and mango fruit, a species considered
among the main hosts of Anastrepha and the most abundant in the
Vinces area (table 2). While in July and August the MTD index was
low due to the low availability of food, for those months there are
ripe fruits of papaya (Carica papaya L.), a species poorly accepted
by Anastrepha spp, guava (Inga edulis C. Mart) and mamey (Pouteria
sapota (Jacquin), which are not very abundant hosts in the study area
(table 2). Climatic factors (temperature and relative humidity) would
have little inuence on the population uctuation of the pest, since
there were only minor uctuations in these environmental factors
during the study.
Table 1. Abundance of Anastrepha spp. by time of year (dry
and wet) in Vinces canton, Ecuador, between October
2018-September 2019.
Months Seasons
Abundance
of
Anastrepha
ºC
Temperature
Relative
humidity
%
Precipitation
(mm)
October Dry 25 27.36 81 9.1
November Dry 680 26.77 79 0
December Dry 2138 27.4 78 30.4
January Wet 970 27.13 85 278.9
February Wet 626 26.79 88 449.8
March Wet 15 26.84 87 420.8
April Wet 2 26.9 86 250.4
May Wet 2 26.87 90 69.3
June Wet 5 26.8 91 1
July Dry 1 26.68 89 0
August Dry 1 26.68 87 0
September Dry 2 26.77 85 0
Average 372.25 26.89 85.5 125.81
Standard deviation 0.193 4.01 167.27
Source: Own elaboration
Fruit y populations can vary from one year to another in
correspondence with climatic conditions and host availability
(Tucuch-Cauich et al., 2008). Similar results are reported by Ruiz-
Graus(2020), for Olmos, Lambayeque region, Peru, where the highest
MTD index (2.85) occurs in January with maximum temperatures of
34.2 °C and 65% relative humidity. In another study (Conde-Blanco
et al., 2018) for the municipality of Caranivi, Bolivia, report that
Anastrepha spp, reached its population peak in December with high
temperatures and ripening of mangoes and oranges. On the other hand,
Cañadas et al. (2014) for Santa Elena, Ecuador, indicate an explosion
of the A. fraterculus population at the beginning of the rainy season
and the second half of the year, where the dry weather prevails.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(2): e223925. April - June. ISSN 2477-9407.4-7 |
Table 2. Production season and fruits of the host fruit ies in Vinces, Ecuador.
Species Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep
Mango (Mangifera indica L.)
Pechiche (Vitex gigantea H.B. K)
Jobo (Spondias mombin L.)
Papaya (Carica papaya L.)
Guava (Inga edulis C. Mart)
Mamey (Pouteria sapota (Jacquin)
Cauje (Pouteria caimito)
Zapote (Matisia cordata Bonpl.)
Plum (Spondias purpurea L.)
Sweet orange (Citrus sinensis L.)
Guava (Psidium guajava L.)
Low fruit production High fruit production
Source: Own elaboration
MTD index by location – month
From November 2018 to February 2019 the MTD index for all
localities was higher than 0.5 ies per trap, a value that according
to the Colombian Agricultural Institute (ICA) is the reference
index from which chemical control measures can be applied for
Anastrepha spp. December presented the highest percentage (47.86
%) of ies trapped and the highest MTD in all localities. The highest
MTD (8.27) was found in the Primavera locality; followed by the
Pavana locality with 7.64; while in La Americana locality with 6.44
and Santa Martha with 1.40 (gure 1). The higher MTD recorded
in December (dry season) is explained by the greater abundance of
ripe fruits of Creole mango, the main host of Anastrepha in Vinces.
The low MTD recorded between March and September 2019 would
be due to the lower availability of host fruits, the host species (guava
and cauje) with ripe fruits in those months are not very abundant in
the study areas. Similar results were reported by Tucuch-Cauich et
al. (2008) and Vanoye-Eligio et al. (2015) who found the highest
MTD index in December, in the presence of ripe mango and sweet
orange fruits. While Araujo et al. (2005) in Rio Grande do Norte,
captured the largest number of ies in the last quarter of the year,
with C. capitata being the only species associated at that time
with mango fruits, while Ruiz-Graus (2020) obtained the highest
capture indexes between May and July on the coast of Ceará.
0
1
2
3
4
5
6
7
8
9
MTD
Primavera
Pavana
Santa Martha
La Americana
Figure 1. Capture index of Anastrepha spp. in four localities of
Vinces, Ecuador.
When correlating the climatic variables (temperature, relative
humidity and precipitation) with the MTD of the localities, no
signicant difference was found (P 0.05). A moderate positive
correlation was found between the number of captured insects
and temperature expressed in ºC, (r
2
= 0.61) and a low positive
correlation (r
2
= 0.05) between the number of captured insects and
precipitation; on the other hand, between the number of insects and
relative humidity, the variables were inversely related (r
2
= -0.64),
nding signicance (P≤ 0.05). As is known, the abundance of fruit
ies is determined by abiotic (temperature, humidity, precipitation)
and biotic factors (availability of host species, vegetation type and
food availability) (Montoya-Alvarez et al, 2014). Results differ
from those reported by Ramos-Peña et al. (2019) for the Abancay
valley, Apurimac, Peru, who found a negative correlation between
maximum temperature and the number of ies captured (r
2
=
-0.692). Meanwhile (Calore et al., 2013) in Pindorama-SP, Brazil
did not verify a correlation between the population of ies captured
with precipitation, but did nd signicance with temperatures
(minimum, average and maximum), indicating that the increase in
the population of fruit ies was favored by high temperatures.
MTD index of Anastrepha species recorded by locality
The richness of the most abundant Anastrepha species in the
four localities was similar, Anastrepha fraterculus, Anastrepha
obliqua, Anastrepha serpentina and Anastrepha striata were
identied. The most abundant species was A. fraterculus with 1,055
specimens in La Americana; 971 in Primavera; 856 in Pavana and
229 in Santa Martha. Statistical analysis reported highly signicant
differences (P=0.001) of A. fraterculus with an average of 778 per
locality compared to the other species, which obtained averages of
208 for A. oblicua, 68 for A. serpentina and 64 for A. striata. The
prevalence of A. fraterculus would be due to its high polyphagia;
in Ecuador it is associated with 33 plant species (Tigrero, 2019).
Similar results were obtained by Ramos-Peña et al. (2019) in
Abancay, Apurímac, Peru and Gonzáles et al. (2011) in Coroico,
Bolivia, in both investigations the predominant species was A.
fraterculus.
The population uctuation of the Anastrepha species by locality
and month presented variations. In Primavera (gure 2) the highest
MTD was recorded in December for the A. fraterculus and A.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Guevara-Hernández et al. Rev. Fac. Agron. (LUZ). 2022, 39(2): e2239255-7 |
oblicua species with values of 6.26 and 1.03. For Pavana (gure
2) the A. fraterculus and A. serpentina species reached the highest
MTD index in December with values of 6.40; 0.88 and 0.18. In
Santa Marta (gure 2) A. fraterculus and A. serpentina recorded
the highest populations in December with a MTD of 1.16 and
0.04. Finally, in La Americana sector (gure 2) A. fraterculus and
A. serpentina recorded the highest MTD in December with values
of 4.42 and 0.43. The higher MTD reached in December would
be related to the greater availability of hosts, which is conrmed
by Vilatuña et al. (2010) who state that fruit y populations are
associated with host availability. The results of the present study
are different from those reported by Emanoel da Costa Alves et al.
(2020) who in Seridó in eastern Paraíba found the highest MTD in
mango in July (0.51), August (4.31) and September (1.72). While
Bermúdez-Vera et al. (2020) in Chone, Manabi, recorded a MTD of
0.20 ies per day of trap exposure.
0
1
2
3
4
5
6
7
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
MTD
MONTHS
Pavana
0
1
2
3
4
5
6
7
OCT
NOV
JAN
FEB
MAR
APR
MAY
JUL
SEP
MTD
MONTHS
Santa Martha
0
1
2
3
4
5
6
7
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
MTD
MONTHS
La Americana
0
1
2
3
4
5
6
7
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
MTD
MONTHS
Primavera
Figure 2. MTD index of Anastrepha species in the different
localities.
Adult recovery and infestation level
A total of 511 ies grouped into four species were recovered. The
most abundant species was A. fraterculus with 48.92%; followed by
A. obliqua with 21.72%; A. striata with 20.55% and A. leptozona
with 8.81%. The largest number of ies was recovered from mango
(210), equivalent to 41.10%, A. fraterculus with 59.05% was the
dominant species. A total of 822 mango fruits were collected, i.e., it
had a targeted sampling during the present study, from 4 to 8 times
more compared to other host species. From guava, 124 ies were
rescued, which is equivalent to 24.27%, A. fraterculus with 65.32%
was the dominant species; 12.72% were rescued from jobo; 13.11%
from plum and 8.81% from cauje (table 3). The highest percentage
of ies rescued from mango and guava would be due to the fact
that mango is the most abundant fruit species and guava the most
susceptible in the study area. Similar results are reported by Ruiz-
Graus (2020) in Olmos, Lambayeque region, Peru, recovering 264
ies from Creole mango fruits in two successive seasons (2017-
2018), 144 in the rst and 120 in the second. In coincidence Púcker
and Marité (2015) in Chao and Viru, La Libertad, recovered the
highest number of ies in guava and mango fruits.
Of the ve plant species monitored, 1,465 fruits were collected,
on average 21.09% showed damage by Anastrepha. The highest
percentage of damaged fruits (34.63%) was found in guava,
conrming the high susceptibility of this species to the attack of
Anastrepha. The fruits of mango presented the lowest damage
percentage (18.13%) (table 3), due to the greater abundance of
fruits, the presence of an exocarp with numerous resinous ducts,
and less susceptibility to Anastrepha attack (Aluja et al. 2014),
fruit rmness (Díaz-Fleischer and Aluja, 2003). Different results
were found by Obregón (2017) in the Socco and Amoca - Apurímac
sectors, chirimoya presented 83.3% infestation by A. distincta, A.
schultzi and A. fraterculus species, followed by guava with 73.8%,
being A. schultzi, A. fraterculus and A. distincta the most frequent
species. While Miranda-Salcedo (2018) in Michoacán in marginal
orchards of creole mango found 39% of damaged fruits, being the
identied species A. ludens (85%), A. striata (12%) and A. obliqua
(3%).
Table 3. Hosts and recovery of Anastrepha adults in Vinces, Ecuador.
Plant species
Anastrepha
species
Nº of
recovered adults
Nº of
collected fruits
Percentage
of damage/fruit
Percentage
of emergence (adult/fruit)
Mango (Mangifera indica)
A. fraterculus
124
822 18.13 25.55
A. striata
52
A. oblicua
34
Plum (Spondias purpurea)
A. fraterculus
0
243 20.16 27.57
A. striata
0
A. oblicua
67
Jobo (Spondias mombin)
A. fraterculus
45
93 21.51 69.89
A. striata
20
A. oblicua
0
Guava (Psidium guajava) A. fraterculus
81 231 34.63 53.68
A. striata
33
A. oblicua
10
Cauje (Pouteria caimito) A. leptozona
45 76 14.47 59.21
Source: Authors elaboration
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(2): e223925. April - June. ISSN 2477-9407.6-7 |
Adults of Anastrepha emerged from 100% of the evaluated
plant species. The highest percentage, 87.5%, was found in April
for jobo, in March for cauje with 81.57%, and in mango 45% in
December (gure 3). The high indexes of adult emergence in most
of the plant species sampled are explained by the low abundance of
these species in the study area, the absence of management practices
and the polyphagia of the Anastrepha species identied.
Figure 3. Level of infestation by fruit species and time of year.
Conclusions
The population uctuation of fruit ies is associated with the
fruiting period of the host plant species. The maximum populations
were recorded in the transition from the dry season to the wet season
(December-January), coinciding with the greatest abundance of ripe
Creole mango fruits, temperatures higher than 27.40°C and lower
relative humidity (78%).
Of the Anastrepha species identied (A. fraterculus, A.
serpentina, A. striata and A. obliqua), A. fraterculus predominates
in all four locations. La Americana recorded the highest incidence
of the pest and percentage of damaged fruits.
Four species of Anastrepha (A. fraterculus, A. obliqua, A.striata
and A. leptozona) were also recovered from fruits, being A.
fraterculus with 48.92% the most recovered species, from mango,
the highest percentage of tephritid ies (41.10%) was rescued
in December, where A. fraterculus with 59.05% is the dominant
species.
The present research provides basic information useful
for designing management strategies for Anastrepha spp. in
the localities under study and in other localities with similar
agroclimatic conditions.
Literature cited
Aluja, M., Arredondo , J., Díaz-Fleischer ,, F., Birke, A., Rull , J., Niogret, J., &
Epsky, N. (2014). Susceptibilidad de 15 cultivares de mango (Sapindales:
Anacardiaceae) al ataque de Anastrepha ludens y Anastrepha obliqua
(Diptera: Tephritidae) y el papel de las frutas subdesarrolladas como
reservorios de plagas: implicaciones de manejo. J. Econ. Entomol., Vol:
107. 375-388. doi: https://doi.org/10.1603/EC13045
Alves, Emanoel da Costa, Jair Ferreira Dantas, José Lucínio de Oliveira Freire,
Elton Lucio de Araujo, & Luciano Pacelli Medeiros de Macedo. (2020).
Moscas de la fruta (Diptera: Tephritidae) asociadas a árboles de mango
en el Seridó al este de Paraíba. Revista Verde, 127-132. http://dx.doi.
org/10.18378/rvads.v15i2.7529
Araujo, E., Medeiros, M., Silva, V., & Zucchi, R. (2005). Moscas-das-frutas
(Diptera: Tephritidae) no semi-árido do Rio Grande do Norte: plantas
hospedeiras e índices de infestação. Neotrop. entomol, 34(6), 889-894.
doi: https://doi.org/10.1590/S1519-566X2005000600003
Bermúdez-Vera, M. A., Fosado-Tellez, O. A., & Cañarte-Bermúdez, E. G.
(2020). Moscade la fruta (Diptera: Tephritidae) y sus hospederos en
el area del Carrizal-Chone, Manabi. Revista ESPAMCIENCIA, 11(1):
1-11. doi: https://doi.org/10.51260/revista_espamciencia.v11i1.204
Calore, R. A., Galli, J. C., Pazini, W. C., Teixeira -Duarte, R., & Altan - Galli,
J. (2013). Factores climáticos en la dinámica poblacional de Anastrepha
spp. (Diptera: Tephritidae) y Scymnus spp. (Coleoptera: coccinellidae)
en un huerto experimental de guayaba (Psidium guajava L.). Rev.
Bras. Fruticultura., 67-74. Obtenido de: https://doaj.org/article/
b94aadf3c5ab4042aebee6aab4723f2d
Cañadas, A., Rade, D., & Zambrano, C. (2014). Diptera (Tephritidae) y su
relación con factores abióticos, en la región Santa Elena, Ecuador. Rev.
Colomb. Entomol, 40(1), 9-14. Obtenido de https://www.researchgate.
net/profile/Alvaro-Canadas-Lopez/publication/320730845_
Diptera_Tephritidae_y_su_relacion_con_factores_abioticos_en_la_
region_Santa_Elena_Ecuador/links/5bb6901f299bf1049b6f6f93/
Diptera-Tephritidae-y-su-relacion-con-factores-abioticos-en-la-region-
Santa-Elena-Ecuador.pdf
Conde-Blanco, E. A., Loza-Murguia, M. G., Asturizaga-Aruquipa, L. B., Ugarte-
Anaya, D., & Jimenez-Espinoza, R. (2018). Modelo de uctuación
poblacional de moscas de la fruta Ceratitis capitata (Wiedemann 1824)
y Anastrepha spp (Diptera: Tephritidae) en dos rutas en el municipio de
Caranavi, Bolivia. J. Selva Andina Res. Soc, 3-24. Obtenido de http://
ucbconocimiento.ucbcba.edu.bo/index.php/JSARS/article/view/334
Díaz-Fleischer, F., & Aluja, M. (2003). Tamaño de nidada en insectos frugívoros
en función de la rmeza del hospedador: el caso de la mosca tefrítida
Anastrepha ludens. Ecol. Entomol. 28: 268-277 Obtenido de https://doi.
org/10.1046/j.1365-2311.2003.00517.x
Gabriel-Ortega, J., Castro-Piguave, C., Manobanda, M., Ayon, F., & Lopez, P.
(2017). Descripción morfológica y organoléptica de frutos de mango
(Mangifera indica L.) cultivados en el cantón Jipijapa en Ecuador. J.
Selva Andina Res. Soc, 8(2):145-154. Obtenido en: http://www.scielo.
org.bo/scielo.php?pid=S2072-92942017000200007&script=sci_
abstract&tlng=en
Gómez-Simuta, Y, Hernández, E, Aceituno-Medina, M, Liedo, P., Escobar-
López, A, Montoya, P, & Toledo, J. (2017). Tolerance of mango cv.
ʻAtaulfoʼ to irradiation with Co-60 vs. hydrothermal phytosanitary
treatment. Radiat. Phys. Chem., 139, 27-32. doi: https://doi.
org/10.1016/j.radphyschem.2017.05.015
Gonzáles, M., Loza-Murguía, M., Smeltekop, H., Cuba, N., Almanza, J. C.,
& Ruiz, M. (2011). Dinámica poblacional de adultos de la mosca
boliviana de la fruta Anastrepha sp.(Diptera: Tephritidae) en el
Municipio de Coroico, Departamento de La Paz, Bolivia. J. Selva
Andina Res. Soc, 2(2), 2-12. Obtenido en: http://www.scielo.org.bo/
scielo.php?script=sci_arttext&pid=S2072-92942011000200002
Hernandez-Ortiz, V, Guillén-Aguilar, J, & López, L. (2010). Taxonomía
e identicación de moscas de la fruta de importancia económica
en América. México: S y G Editores. Obtenido en: https://
www.researchgate.net/publication/269576679_Taxonomia_e_
identicacion_de_moscas_de_la_fruta_de_importancia_economica_
en_America
Korytkowski, C. A. (2001). Situación actual del género Anastrepha Schiner,
1868 (Diptera: Tephiritidae) en el Perú. Rev. peru. entomol, 42(1), 97-
158. Obtenido en: https://www.revperuentomol.com.pe/index.php/rev-
peru-entomol/article/view/145
Lozada Pacheco, C. D. (14 de octubre de 2013). Investigacion del mango y su
aplicacion en la gastronomia. Quito, Pichincha, Ecuador. Obtenido en:
http://repositorio.ute.edu.ec/handle/123456789/11781
Miranda-Salcedo, M. A. (2018). Manejo biorracional de mosca de la fruta
(Diptera: Tephritidae) en Michoacan. Fol. entomol. mex, 5: 362-367.
Obtenido en: http://www.socmexent.org/entomologia/revista/2018/EA/
EA%20362-367.pdf
Montoya-Alvarez, G., Figueroa-De la Rosa, J. I., Hernández-Adame, L.,
Chavarrieta-Yañez, J. M., Méndez Gutiérrez, I. R., & Martínez-Castillo,
A. M. (2014). Especies de mosca de la fruta del genero Anastrepha
schiner capturadas en una zona marginal del estadode Michoacan.
Fol. entomol. mex, 273-277. Obtenido en: http://www.entomologia.
socmexent.org/revista/2013/EA/1093-1098.pdf
Morales Viteri, D. O. (2012). Ecología de Anastrepha fraterculus Wiedemann
(Dipteria: Tephritidae), y estudios cromosómicos en poblaciones
ecuatorianas. Obtenido de http://repositorio.puce.edu.ec/
handle/22000/10763
Navarro, S. (2012). The use of modied and controlled atmospheres for the
disinfestation of stored products. J Pest Sci, 85(3), 301-322. doi:
10.1007 / s10340-012-0424-3
Norrbom, A. L, & Korytkowski, C. A. (2011). New species of and taxonomic
notes on Anastrepha (Diptera: Tephritidae). Zootaxa, 2740(1), 1-23.
doi: https://doi.org/10.11646/zootaxa.2740.1.1
Núñez , B., Gómez , S., Guarín, G., & León, G. (2004). Moscas de las frutas
(Diptera: Tephritidae) y parasitoides asociados con Psidium guajava
L. y Coffea arabica L. en tres municipios de la Provinvia de Vélez
(Santander, Colombia). Parte 1: Índice de infestación y daño por
moscas de las frutas (Diptera: Tep.) Cienc. y Tecnol. Agropecu, 5(1),
5-12. Doi: https://doi.org/10.21930/rcta.vol5_num1_art:16
Obregón, M. (2017). Análisis situacional de la mosca de la fruta (Ceratitis
capitata) y el complejo Anastrepha spp. en Socco y Amoca - Aymaraes.
Obtenido de https://repositorio.utea.edu.pe/handle/utea/36
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Guevara-Hernández et al. Rev. Fac. Agron. (LUZ). 2022, 39(2): e2239257-7 |
Púcker, Z., & Marité, H. (2015). Preferencia de Ceratitis capitata Wiedemann,
Anastrepha fraterculus Wiedemann y A. distincta Greene, en plantas
hospederas en los valles de Chao y Virú, La Libertad, enero–agosto.
Obtenido de https://dspace.unitru.edu.pe/handle/UNITRU/8899
Ramos-Peña, A. M., Yábar-Landa, E., & Ramos-Peña, J.C. (2019). Diversidad,
uctuación poblacional y hospedantes de moscas de la fruta Anastrepha
spp. y Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) en el valle
de Abancay, Apurímac, Perú. Acta Zool. Mex. (nueva serie), 35, 1–21.
doi: https://doi.org/10.21829/azm.2019.3501208.
Ruiz Graus, M. (2020). Evaluación de la diversidad de moscas de la fruta
en los valles de motupe y olmos en el periodo 2017-2018 de la
región lambayeque. Obtenido en: http://repositorio.upao.edu.pe/
handle/20.500.12759/6073
SAS Institute, Inc. (1998). SAS user´s guide: Statistics. 5th edition. SAS. SAS
Inst., Inc., Cary, NC.
Schliserman, P, & Ovruski, S. M. (2004). Incidencia de moscas de la fruta
de importancia económica sobre Citrus aurantium (Rutaceae) en
Tucumán, Argentina. Rev Manejo Integrado Plagas Agroecol Costa
Rica, 72, 52-61. Obtenido en: http://hdl.handle.net/11554/6381
Son, A. R., Suh, S. J, & Choi, D. S. (2019). Non-target insects captured in
tephritid fruit y (Diptera: Tephritidae) surveillance traps in South
Korea: a survey-based study. J. Asia-Pac. biodivers, 12(1), 129-133.
Doi: https://doi.org/10.1016/j.japb.2018.11.003
Tejada, G. (2002). Manual de Identicación Taxonómica. Especies de
Anastrepha mas frecuentes en trampas McPhail. Programa Nacional
de Moscas de la Fruta. PRODESA. SENASA. MINAG. Lima-Perú
56. pp 100-200. Obtenido en: https://www.ica.gov.co/areas/agricola/
servicios/epidemiologia-agricola/documentos/m_moscas_trampeo-(1).
aspx
Tigrero, J. O. (2019). Lista anotada de hospederos de moscas de la fruta
presentes en Ecuador. Boletín Técnico, Serie Zoológica, 8(4-5).
Tucuch-Cauich, F. M, Chi-Que, G, & Orona-Castro, F. (2008). Dinámica
poblacional de adultos de la mosca mexicana de la fruta Anastrepha
sp.(Diptera: Tephritidae) en Campeche, México. Agricultura técnica en
México, 34(3), 341-347. Obtenido en: http://www.scielo.org.mx/scielo.
php?script=sci_arttext&pid=S0568-25172008000300009
Vanoye-Eligio, V, Pérez-Castañeda, R, Gaona-García, G, Lara-Villalón, M, &
Barrientos Lozano, L. (2015). Fluctuación poblacional de Anastrepha
ludens en la región de Santa Engracia, Tamaulipas, México. Rev. Mexicana
cienc. agric., 6(5), 1077-1091. Obtenido en: http://www.scielo.org.mx/
scielo.php?pid=S2007-09342015000500014&script=sci_arttext
Vilatuña R, J., Sandoval L, D., & Tigrero. S, J. (2010). Manejo y control
de moscas de la fruta. Agencia Ecuatoriana de Aseguramiento de
la Calidad del Agro(AGROCALIDAD) , 126. Obtenido en: http://
repositorio.espe.edu.ec/bitstream/21000/3522/1/L-ESPE-000802.pdf