© The Authors, 2021, Published by the Universidad del Zulia*Corresponding author: jleon@espoch.edu.ec
Juan Eduardo León Ruíz
1*
Vicente Javier Parra León
1
Robinson Fabricio Peña Murillo
1
Juan Sebastián Silva Orozco
1
Daniel Arturo Román Robalino
1
Francisco Gabriel Salazar Badillo
2
Rev. Fac. Agron. (LUZ). 2022, 39(2): e223926
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v39.n2.04
Crop Production
Associate editor: Dra. Ana F. González-Pedraza
Universidad de Pamplona. Pamplona, Norte de Santander,
Colombia
Keywords:
Kc coefcient
Evapotranspiration
Lysimetry
Soil
Irrigation
Design
Technical note
Design, installation and calibration of a block of lysimeters to adjust the crop coefcient
Diseño, instalación y calibración de un bloque de lisímetros para ajustar el coeciente de cultivo
Delineamento, instalação e calibragem de um bloco de lisímetros para ajustar o coeciente de cultivo
1
Centro Experimental del Riego. Escuela Superior Politécnica
de Chimborazo, Riobamba, Chimborazo, Ecuador. CP
060150.
2
Productor independiente, Ecuador.
Received: 24-08-2021
Accepted: 06-03-2022
Published: 18-04-2022
Abstract
The efcient management of water resources using techniques that
improve it uses, based on knowledge of evapotranspiration are key elements
for crop production. Amongst main techniques for water management, the
use of drainage lysimeter installed in the eld below vegetable elds may
be used to quantify the amount of water needed. The aim of this work is to
design, install and calibrate a set of lysimeters for adjusting crop coefcient
(Kc). In the calibration of the lysimeters, it was obtained that to induce
drainage in lysimeters from one to ve, an over-irrigation of 25% of the eld
capacity was needed, while the rest needed 50%. With lysimeters built the
physical characteristic of soil could be simulated in this study.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(2): e223926. April - June. ISSN 2477-9407.
2-4 |
Resumen
El manejo eciente del recurso hídrico a través de técnicas que
mejoren su uso, basado en el conocimiento de la evapotranspiración,
son elementos de gran importancia en el manejo de los cultivos. Entre
las principales técnicas para la gestión del agua se destaca el uso de
lisímetros de drenaje. El objetivo de este trabajo fue diseñar, instalar y
calibrar un bloque de lisímetros para ajustar el coeciente de cultivo.
Se desarrolló un protocolo para el diseño, construcción y calibración
de lisímetros de drenaje para la determinación del coeciente de
cultivos (Kc). En la calibración de los lisímetros se obtuvo que para
inducir el drenaje en los lisímetros del uno al cinco se necesitó un
sobre riego del 25 % de la capacidad de campo, mientras que el resto
necesitó un 50 %. Con los lisímetros construidos se pudo simular las
características físicas del suelo que se empleó en el estudio.
Palabras claves: Coeciente Kc, evapotranspiración, lisimetría,
suelo, riego, diseño.
Resumo
O manejo eciente do recurso hídrico por meio de técnicas que
aprimorem seu uso, baseadas no conhecimento da evapotranspiração,
são elementos de grande importância no manejo das lavouras.
Dentre as principais técnicas para a gestão da água destaca-se o
uso de lisímetros de drenagem. O objetivo deste trabalho é projetar,
instalar e calibrar um bloco de lisímetros para ajustar o coeciente
de cultivo. Desenvolveu-se um protocolo para o desenho, construção
e calibragem de lisímetros de drenagem para a determinação do
coeciente de cultivo (Kc). Na calibragem dos lisímetros obteve-se
como resultado que para inducir a drenagem nos lisímetros de um a
cinco foi necessária uma rega de 25% a mais da capacidade do campo
e nos restantes foi necessário uma rega de 50%. Com os lisímetros
construídos foi possível simular as características físicas do solo
utilizado no estudo.
Paravras-chave: Coeciente de cultivo (Kc), evapotranspiração,
lisímetros, solo.
Introduction
In underdeveloped countries, part of the population depends
largely on agriculture, which is conditioned by climate change.
Alterations that are manifested in rainfall are detrimental to
agricultural production, this situation that occurs threatens people’s
access to food (Nelson et al., 2009).
Rain regimes are altered and the need to irrigate crops increases.
In agriculture, the largest volume of water is consumed and at the
same time it is affected the most, which causes decrease of existing
water resources (Villa, 2014). In developing countries, consumption
reaches 95%, so it is necessary to study demand and consumption
(Paguay, 2017).
The proper use of water will mitigate the scarce availability of this
resource in many parts of the world. Knowing about evapotranspiration
has become an indicator of vital importance for the maintenance of
crops (FAO, 2008). For León (2016), knowing the evapotranspiration
of crops allows knowing their water requirements.
“Knowing the necessary amount of water for the application of
irrigation implies determining the demand or water requirement of
the crop considering the phenological phase in which it is found.
The water demand of crops is the water consumption or crop
evapotranspiration (ETc) with the soil without water deciency…”
(García et al., 2017:2). Evapotranspiration when it occurs under
optimal conditions is determined as the crop coefcient (Kc); can be
specied by different methods. One of the most used and effective
direct methods are lysimeters.
Lysimeters are classied into two types, one of weighing where
weight of the water used is determined and the drainage lysimeter
where the water expenditure is specied by the difference between
the water that is applied and that which is drained (Chávez and
Mesías, 2018). According to García (2017), drainage lysimeters can
be rectangular or round and Bochetti (2010) classies them with or
without suction.
Due to the importance of lysimeters in determining the crop
coefcient (Kc), it is proposed to design, install and calibrate a
lysimeter block that allows determining the crop coefcient.
Materials and methods
The study was developed at the Centro Experimental del Riego
(CER) of the Escuela Superior Politécnica de Chimborazo, Ecuador.
Design phase
With the two types of lysimeters designed (Figure 1) (A: 2, 5,
7 and B: 1, 3, 4, 6), a block of seven lysimeters was built, with an
external wall thickness of 0.15 m and the internal ones of 0.17 m. On
the front part of lysimeters 1, 2, 4, 5 and 7, a viewing window was
placed, made up of a metal frame (1.1 m X 0.5 m) and 0.1 m tempered
glass and on the external part a geomembrane of 1000 microns
thickness (1.1 m X 0.5 m) was placed. To collect the drainage, glass
tanks (0.5 m X 0.5 m X 0.40 m) were placed, equipped with a metal
ruler to measure the level of water (gure 2).
Drainage Drainage
Figure 1. Type A pentagonal prism and type B trapezoidal prism
lysimeters.
Figure 2. Planimetry of the lysimeter block.
A B
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
León et al. Rev. Fac. Agron. (LUZ). 2022, 39(2): e2239263-4 |
Field phase
a. Block construction
The excavation was carried out with a backhoe sectioned into four
layers of soil at 0.20, 0.40, 0.60 and 0.80 m, respectively. The walls
were formed with an electro-welded mesh and simple concrete and
were later waterproofed.
b. Block installation
To install the lysimeters, two meters from their location, the
inltration speed, eld capacity, permanent wilting point, useful
water, apparent density were evaluated. In addition, physical and
chemical parameters, texture, hardness, pH, macro, microelements,
organic matter and electrical conductivity were evaluated.
Figure 3. Metallic mesh.
Figure 4. Completed lysimeter.
A metallic mesh was placed at the deepest end of the lysimeters
to prevent the obstruction of the drainage pipes and valves (Figure
3). The soil layer between 0.6 m and 0.8 m was replaced by stone
material, on which a plastic mesh was placed to lter the water. The
lling of the lysimeter was completed with the soil removed in the
excavation and placed in the reverse order as it was extracted, it was
compacted until reaching the same level of the sampled soil. Figure 4
shows that three ridges of 0.30 m separated by 0.60 m were built. An
irrigation system made up of 32 mm PVC pipes, a stop valve, a ow
meter, and a tape with drippers (1.6 L.h
-1
) every 0.30 m was designed
and installed. Three tensiometers were also placed at 0.10 m, 0.30 m
and 0.50 m depth.
Lysimeter Block Calibration
Soil moisture was determined with tensiometers, gypsum blocks
at depths of 0.15, 0.30 and 0.45 m and by the gravimetric method
using the equation proposed by Ekanayake (1994).
Where CAS is the water content in the soil (%), Pf is the fresh
weight of the sample (g) and Ps is the dry weight of the sample (g).
The volume of water used up to the eld capacity (VCC) in the
rst irrigation was calculated by the equation of León (2012).
The value of eld capacity (CC) (%), the water content in the soil
(CAS) (%), the depth of the layer (Z) (m), the apparent density of the
layer of soil (Dap) (g/cm
3
), the density of water (ρw) (g/cm
3
) and the
lysimeter area (Al) (m
2
).
In the rst irrigation, water is supplied in the lysimeters until
reaching the eld capacity and to promote drainage, an extra volume
is applied, equivalent to 25 % of the VCC. If drainage does not occur,
additional water is supplied until it occurs. The volume of water
to apply (Va) for the second time was calculated by the following
equation (León, 2016):
Where, Etp is the evapotranspiration of the reference crop (mm),
Nd is the irrigation interval, at the time the lysimeter stops draining
(days between one irrigation and another), Al is the area of the
lysimeter (m
2
) and Cd is the drainage coefcient.
Results and discussion
Construction of the lysimeter block
Seven drainage lysimeters, with an area of 4.9 m2 each (2.49
m X 1.97 m) made up the block. Lysimeter seven was taken as a
reference to determine evapotranspiration, one species will be planted
in numbers one, two and three and another species will be planted
in four, ve and six. In this way, there will be three repetitions for
each species at the time of the study to determine the crop coefcient.
Rhizotrons or viewing windows of the root system are located on the
inner wall of each lysimeter (Figure 5).
 =
 

× 100
1
 =
 
100



1
 =  ×  ×  × 
1
Figure 5. Cross-sectional views of the block design.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(2): e223926. April - June. ISSN 2477-9407.
4-4 |
Block Installation
The physical characteristics of the soil, determined in the
lysimeters, indicate that it has a silty-loam texture, which coincide
with those of the soil evaluated around the lysimeters (Table 1).
The average inltration rate in the block ranged from 1000
mm.h
-1
in the rst 10 minutes to 7 mm.h
-1
at 280 minutes, with a
correlation coefcient of 0.9. The speed decreases with depth and
the level of compaction present, which coincides with Villazón et
al. (2015), who obtained high levels of compaction at 0.30 m and
therefore decreased water inltration. On the other hand, Denioa
et al. (2011) observed for a silty loam soil, such as the type of the
present work, that inltration decreases in compacted soils.
A chemical analysis of the soil was carried out in each lysimeter,
the results coincide with those determined by Rioja (2002). The
organic matter (OM) content is scarce, the electrical conductivity
(EC) is inestimable, the potential hydrogen pH) is moderately basic,
the phosphorus (P) low, the potassium (K) and calcium very low,
and the magnesium (mg) very high.
Lysimeter Block Calibration
Once the irrigation corresponding to each lysimeter was carried
out until reaching the eld capacity and the additional irrigation, to
induce drainage, it was obtained that the lysimeters from one to ve
needed 25 % of the CC, of over-irrigation, while the rest needed 50
%. The (soil moisture content in the 3 layers was: layer 1 (21.74 %),
layer 2 (6.25 %) and layer 3 (8.33 %). The volume required to reach
eld capacity in each of them was 0.07 m
3
, 0.32 m
3
and 0.32 m
3
,
respectively, for a total volume in the entire lysimeter of 0.71 m
3
.
Conclusions
A protocol is available for the design, construction and
calibration of drainage lysimeters for the determination of the crop
coefcient (Kc).
The lysimeters from one to ve needed 25 % of the CC, of over
irrigation, the rest needed 50b%, a total volume of water of 0.71 m3
was required to reach eld capacity.
Table 1. Physical parameters of the soil determined in the lysimeters.
Lysimeter
Compactcion
(kgf/cm
2
)
Inltration
rate
(mm.h
-1
)
Apparent
density
(kg.L
-1
)
Field
capacity
(%)*
Permanent
wilting point (%)*
Texture*
1
4.90 104.17 1.48
28.34
10.11 Silty loam
2
5.64 108.33 1.40
28.34
10.11 Silty loam
3
5.12 102.11 1.50
28.34
10.11 Silty loam
4
5.16 115.61 1.43
28.45
9.68 Silty loam
5
5.17 144.40 1.38
28.45
9.68 Silty loam
6
5.08 79.96 1.45
28.45
9.68 Silty loam
7
5.23 104.83 1.42
28.77
10.00 Silty loam
5.19 108.49 1.44
28.02
9.91
Literature cited
Bochetti V., M. J. 2010. Análisis comparativo de la evapotranspiración obtenida
mediante distintas ecuaciones empíricas aplicadas a la zona agrícola
de Chillan. Tesis de grado. Universidad Católica de la Santísima
Concepción. Concepción, Chile. Disponible en: http://web2.ucsc.
cl/~civil/investigacion/memorias/mbochetti.pdf
Chávez, S. y Mesías, D. 2018. Evaluación de tres métodos para determinar el
requerimiento hídrico, del cultivo de maíz (Zea mays. L.) var INIAP 102,
cantón Riobamba, provincia de Chimborazo. (Tesis de grado. Ingeniero
Agrónomo). Escuela Superior Politécnica de Chimborazo. Riobamba.
Disponible en: http://dspace.espoch.edu.ec/handle/123456789/10351
Denioa, J., Sosa, O., Zerpa, G. y Martín, B. 2011. Efecto del pisoteo animal
sobre la velocidad de inltración y sobre otras propiedades físicas del
suelo. Pastos, 30(1): 129-141. Disponible en: http://polired.upm.es/
index.php/pastos/article/view/1278
Ekanayake, I. 1994. CIP Research 30, studying drought stress and irrigation
requirements of potatoes. Lima -Perú. Disponible en: https://pdf.usaid.
gov/pdf_docs/pnabs379.pdf
FAO 2008. El cambio climático y la producción de alimentos. Disponible en:
ftp://ftp.fao.org/docrep/fao/010/i0112s/i0112S03.pdf.
García V., J., Huahuachampi, J. y Soto, L. 2017. Determinación de la demanda
hídrica del cultivo de quinua QML01 (Chenopodium quinoa Willd) en
la Molina. Anal. Cient. 78(2): 200-209. Disponible en: http://dx.doi.
org/10.21704/ac.v78i2.1057
García, M. 2017. Lisímetros. In Agencia Catalana del Agua. Barcelona,
España. p. 4.
León Ruíz, J. E. 2016. Modelación matemática para estimar los requerimientos
hídricos del cultivo de papa (Solanum spp.) en Riobamba-Ecuador.
(Tesis de posgrado. Doctoris Philosophie en Recursos Hídricos).
Universidad Nacional Agraria La Molina. Perú. Disponible en: http://
repositorio.lamolina.edu.pe/handle/UNALM/2833
León Ruíz, J. E. 2012. Riegos y Drenajae.1
ª
ed. Centro Experimental de Riego,
ESPOCH, Riobamba, Ecuador
Nelson, G., M. Rosegran, J. Koo, R. Robertson, T. Sulser, T. Zhu, C. Ringler, S.
Msangi, A. Palazzo, M. Batka, M. Magalhane, R. Valmonte-Santos, M.
Ewing y D. Lee. 2009. Cambio climático: El impacto en la agricultura y
los costos de adaptación. Instituto Internacional de Investigación sobre
Políticas Alimentarias IFPRI, Washington, D.C. 20 pp. Disponible
en: http://www.fao.org/leadmin/user_upload/AGRO_Noticias/docs/
costo%20adaptacion.pdf
Paguay C., S. C. 2017. Determinación de los requerimientos hídricos para el
cultivo de la cebolla colorada (Allium cepa L.) Var. Burguesa en base al
contenido de agua en el suelo, en Macají, cantón Riobamba, provincia
de Chimborazo (Tesis de grado. Ingeniero Agrónomo). Escuela
Superior Politécnica de Chimborazo. Riobamba, Ecuador. Disponible
en: http://dspace.espoch.edu.ec/handle/123456789/7643
Rioja, A. 2002. Apuntes de Fitotecnia General. Escuela de Ingenieros
Agrónomos de Ciudad Real E.U.I.T.A. Ciudad Real. Universidad de
Castilla-La Mancha, España.
Villa F., G. 2014. A propósito de la gestión del agua en el mundo contemporáneo.
Un enfoque biopolítico. Anal. Polit. 74, 109 - 133. https://revistas.unal.
edu.co/index.php/anpol/article/view/43721
Villazón, J. A., Martín, G., Rodríguez, Y. y Cobo, Y. 2015. Resistencia a la
penetración en un Vertisol Crómico con diferentes usos, manejos y sitios
de muestreo. Pastos y Forrajes. 38(2), 162-169. ISSN: 0864-0394.
Disponible en: https://www.redalyc.org/articulo.oa?id=269139251002}