This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rincón-Acosta et al. Rev. Fac. Agron. (LUZ). 2023 40(2): e2340135-6 |
higher than 75 °C, signicantly decrease their stability; reported ES
values are in the order of 85 % (López-Franco et al., 2015; Vasile et
al., 2016). This eect has also been evidenced in emulsions prepared
with commercial galactomannans (Wu et al., 2009) and obtained
from Prosopis spp. (López-Franco et al., 2013).
Stability of emulsions as a function of storage days.
Figure 5 shows a progressive decrease in absorbance values as
a function of days of storage. A signicant decrease in absorbance
(0.84) was observed on day 10, with respect to those obtained at 0
hours (1.10) and 48 hours (1.02), respectively; suggesting emulsion
destabilization causing emulsion rupture.
Figure 5. Emulsifying activity of Prosopis juliora gum exudate as
a function of storage time.
The behavior obtained in the present study (gure 5), is comparable
to those reported for emulsions prepared with Prosopis spp. gum and
formulated with gum arabic (0.5 % m/v) (López-Franco et al., 2015;
Vasile et al., 2016), which corroborates the potential emulsifying
capacity of the gum studied.
The protein content in the gums/hydrocolloids is determinant in the
potential emulsifying capacity of these natural polymers. The protein
present in the gum exudate of P. juliora (16.89 + 0.51 %) is higher
than that reported for the Prosopis spp. gum (6.98 + 0.13 %) (López-
Franco et al., 2012), Prosopis alba (13.81 + 0.33 %) (Vasile et al.,
2016), and signicantly higher than that presented by Acacia senegal
(1.37 + 0.04 %) (López-Franco et al., 2012). The protein fraction
associated with the polysaccharide acts as a hydrophobic group
(anchoring or binding point), responsible for the emulsifying activity
(Dickinson, 2011; Dickinson, 2012). On the other hand, preliminary
studies of the polysaccharide isolated from the exudate of P. juliora,
showed a large proportion of methyl groups (methylated glucuronic
acid residues) at the periphery of the structure of this polymer, as
has been reported for most Prosopis spp. gums (Vasile et al., 2016;
López-Franco et al., 2015; López-Franco et al., 2012; López-Franco
et al 2008), which would increase its emulsifying power.
Conclusions
The gum exudate of P. juliora studied at 0.5 % m/v, decreases the
surface and interfacial tension values, which evidences the potential
emulsifying activity (EA) of this polysaccharide. The obtained values
of EA and emulsion stability indicate that P. juliora gum contributes
to improve the capacity and speed of adsorption of molecules between
the dispersed phase and continues to form a stable emulsion. The
surfactant and emulsifying activity of the gum studied is associated
with the high protein content and the presence of methyl groups in its
structure. Therefore, the gum exudate of Prosopis juliora constitutes
a promising source of hydrocolloids as an emulsier that could be
evaluated in the manufacture of pharmaceuticals, food, and even
cosmetics. Additionally, it constitutes an unexploited natural resource
that would contribute to the development of the South American
regional economies where this species grows.
Literature cited
Al-Assaf S., Sakata M., McKenna C., Aoki H. & Phillips G. O. (2009). Molecular
associations in Acacia gums. Journal of Structural Chemistry. 20: 325–
336. DOI:10.1007/s11224-009-9430-3
Bhushan B. & Annapure S. (2018). Physicochemical, functional and rheological
investigation of Soymida febrifuga exudate gum. International Journal of
Biological Macromololecules 111: 1116-1123. https://doi.org/10.1016/j.
ijbiomac.2018.01.117
Bhushan B., Chaudhari U. & Annapure S. (2020). Physiochemical and rheological
characterization of Pithecellobium dulce (Roxb.) benth gum exudate
as a potential wall material for the encapsulation of rosemary oil.
Carbohydrate Polymer Technologies and Applications 1:100005. https://
doi.org/10.1016/j.carpta.2020.100005.
Chávez-Narváez G., Arenas G., Parra-Castillo I., Luzardo-Morillo M., Bravo
B., Ysambertt F. & Márquez N. (2009). Estudio de las variables
sicoquímicas en el proceso de micelización de mezclas de surfactantes
no-iónicos polietoxilados en la interfase agua/aire Parte I: efecto de
la salinidad. Ciencia 17(3): 235–244. https://www.researchgate.net/
publication/272507552_Estudio_de_las_variables_sicoquimicas_en_
el_proceso_de_micelizacion_de_mezclas_de_surfactantes_no-ionicos_
polietoxilados_en_la_interfase_aguaaire_Parte_I_efecto_de_la_salinidad
Clamens C., Rincón F., Sanabria L., Vera A. & León de Pinto G. (2000).
Species widely disseminated in Venezuela which produce gum exudate.
Food Hydrocolloids 14(3): 253-257. https://doi.org/10.1016/S0268-
005X(00)00004-7
Dickinson E. (2012). Emulsion gels: The structuring of soft solids with protein-
stabilized oil droplets. Food Hydrocolloids 28: 224-241. https://doi.
org/10.1016/j.foodhyd.2011.12.017
Dickinson E. (2011). Mixed biopolymers at interfaces: Competitive adsorption
and multilayer structures. Food Hydrocolloids 25: 1966–1983. https://
doi.org/10.1016/j.foodhyd.2010.12.001
Dickinson E. (2009). Hydrocolloids as emulsiers and emulsion stabilizers.
Food Hydrocolloids 23(6): 1473 -1482. https://doi.org/10.1016/j.
foodhyd.2008.08.005
Garti N., Slavin Y. & Aserin A. (1999). Surface and emulsication of new gum
extracted from Portulaca oleracea. Food Hydrocolloids 13: 145-155.
https://doi.org/10.1016/S0268-005X(98)00082-4.
Grein A., Silva B.C., Wendel C.F., Tischer C.A., Sierakowski M.R. & Moura
A.B. (2013). Structural characterization and emulsifying properties of
polysaccharides of Acacia mearnsii de Wild gum Carbohydrate Polymers
92: 312–320. https://doi.org/10.1016/j.carbpol.2012.09.041
Huang X., Kakuda Y. & Cui W. (2001). Hydrocolloids in emulsions: Particle size
distribution and interfacial activity. Food Hydrocolloids 15 (4-6): 533–
542. https://doi.org/10.1016/S0268-005X(01)00091-1
Lee S. J. & McClements D. J. (2010). Fabrication of protein-stabilized
nanoemulsions using a combined homogenization and amphiphilic
solvent dissolution/evaporation approach. Food Hydrocolloids 24: 560–
569. https://doi.org/10.1016/j.foodhyd.2010.02.002
Licá I. C. L., dos Santos Soares A. M., de Mesquita L. S. S. & Malik S. (2018).
Biological properties and pharmacological potential of plant exudates.
Food Research International 105: 1039–1053. https://doi.org/10.1016/j.
foodres.2017.11.051Get rights and content
López-Franco Y. L., Calderón de la Barca A. M., Valdez M. A., Peter M. G.,
Rinaudo M. & Chambat G. (2008). Structural characterization of mesquite
(Prosopis velutina) gum and its fractions. Macromolecular Bioscience 8:
749-757. https://doi.org/10.1002/mabi.200700285.
López-Franco Y. L., Cervantes-Montaño C. I., Martínez-Robinson K. G.,
Lizardi-Mendoza J. & Robles-Ozuna L.E. (2013). Physicochemical
characterization and functional properties of galactomannans from
mesquite seeds (Prosopis spp.). Food Hydrocolloids 30: 656-660. https://
doi.org/10.1016/j.foodhyd.2012.08.012.
López-Franco Y., Córdova-Moreno R. E., Goycoolea F. M., Valdez M., Juárez-
Onofre J. & Lizardi-Mendoza J. (2012). Classication and physicochemical
characterization of mesquite gum (Prosopis spp.). Food Hydrocolloids
26, 159-166. https://doi.org/10.1016/j.foodhyd.2011.05.006
López-Franco Y.L., Gooycolea F.M. & Lizardi-Mendoza J. (2015). Gum
of Prosopis/Acacia Species. In: Ramawat, K., Mérillon, JM. (eds)
Polysaccharides. Springer, Cham. 641–662. https://doi.org/10.1007/978-
3-319-16298-0_14.
Mudgil D. & Barak S, (2020). Mesquite gum (Prosopis gum): Structure,
properties & applications - A review. International Journal of Biological
Macromolecules (159):15 1094-1102. https://doi.org/10.1016/j.
ijbiomac.2020.05.153.