This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2023, 40(2): e234020. Abril-Junio. ISSN 2477-9407.
6-6 |
of salt treatment (T
6
) were 2.4, 4 y 3.2 cm for black, pinto, and
azufrado bean, respectively. Higher electric conductivities resulted in
germination reduction.
The smaller values of plant balance mean a better plant balance.
Plant balance consists of the relation of stem+leaves dry weight
over root dry weight. This relation was smaller for control plants
because the seedlings showed lower weights of stem+leaves dry
weight; however, with equal root weight as compared to the other
NaCl treatments and species. The plant balance is very important for
farmers because of has been observed that seedlings with a better
plant balance have better establishment and development when
transplanted to the eld.
Furthermore, by getting a better plant balance in the eld, better
radicular growth could be obtained, thus, achieving better crop
development. The NaCl salinity treatments reduced the plant balance
due to the increment of osmotic pressure in the substrate solution in
relation to the one in the root cells, aecting ion intake by the root hairs
and, consequently, aecting plant nutrition and development (Acosta-
Motos et al., 2017). On the other hand, Li et al. (2017) concluded that
a high concentration of Na is deleterious to the membrane selectivity
and favors the passive accumulation of Na in roots and stems.
Conclusions
This study showed a dierential response of four legumes to
NaCl concentrations. The species most tolerant to NaCl-stress were
Canavalia ensiformis L. DC. and Vigna unguiculata L. Walp. In
general, the emergence rate and emergence percentage, root length,
root dry weight and stem height decreased as NaCl concentrations
increased. Stem diameter, stem fresh and dry weight, and root
fresh weight increased from 0 mM to 25 and 50 mM but in other
case decreased from 50 to 75 mM, i.e., root fresh weight. Future
experiments are needed to obtain information about the enrichment
capacities of the legumes studied here; maybe, genotypes with lower
emergence under high salinity could x more atmospheric nitrogen
than the tolerant ones.
Literature cited
Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P.,
Sanchez-Blanco, M.J., & Hernandez, J.A. (2017). Plant responses to salt
stress: Adaptive mechanisms. Agronomy, 7, 18. https://doi.org/10.3390/
agronomy7010018
Al-huraby, A.I. & Bafeel, S.O. (2022). The eect of salinity stress on the Phaseolus
vulgaris L. plant. African Journal of Biological Sciences, 4,1, 94-107.
doi: 10.33472/ AFJBS.4.1.2021.94-107.
Can-Chulim, A.A., Ramírez-Guerrero, L.G., Ortega-Escobar H.M., Cruz-Crespo,
E., Flores-Román, D., Sánchez-Bernal E.I., & Madueño-Molina, A.
(2014). Germinación y crecimiento de plántulas de Phaseolus vulgaris
L. en condiciones de salinidad. Revista Mexicana de Ciencias Agrícolas,
5(5), 753-763. https://doi.org/10.29312/remexca.v5i5.898
Daniel, A.I., Fadaka, A.O., Gokul, A., Bakare, O.O., Aina, O., Fisher, S., Burt,
A.F., Mavumengwana, V., Keyster, M., & Klein, A. (2022). Biofertilizer:
The future of food security and food safety. Microorganisms, 10, 1220.
https://doi.org/10.3390/ microorganisms10061220
Dehnavi, A.R., Zahedi, M., Ludwiczak, A., Cardenas-Perez, S., & Piernik, A.
(2020). Eect of salinity on seed germination and seedling development
of Sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10,
859. https://doi.org/10.3390/agronomy10060859
Deng, X., Ji, L., Wang, R., Liu, X., Yang, S., Guan, P., Wang, J. (2019). Response
of seed germination and physiological mechanism of Vigna angularis and
Dolichos lablab to salt stress. Chinese Journal of Eco-Agriculture, 27(8),
1218-1225. doi:10.13930/j.cnki.cjea.190227
Fatokun, K., Beckett, R.P., & Varghese, B. (2022). A comparison of water
imbibition and controlled deterioration in ve orthodox species.
Agronomy, 12, 1486. https://doi.org/10.3390/ agronomy12071486
García, E. (2004). Modicaciones al sistema de clasicación climática de Köppen.
Instituto de Geografía de la Universidad Nacional Autónoma de México.
Ciudad de México. 97 p. http://www.publicaciones.igg.unam.mx/index.
php/ig/catalog/view/83/82/251-1
Grigore, M.N. & Vicente, O. (2023). Wild halophytes: Tools for understanding salt
tolerance mechanisms of plants and for adapting agriculture to climate
change. Plants, 12, 221. https://doi.org/10.3390/ plants12020221
Gul, Z., Tang, Z.H., Arif, M., & Ye, Z. (2022). An Insight into Abiotic Stress and
Inux Tolerance Mechanisms in Plants to Cope in Saline Environments.
Biology, 11, 597. https://doi.org/10.3390/ biology11040597
Hasanuzzaman, M., Zhou, M., & Shabala, S. (2023). How does stomatal density
and residual transpiration contribute to osmotic stress tolerance? Plants,
12, 494. https://doi.org/10.3390/ plants12030494
Ibrahim, E.A.A. (2019). Fundamental Processes Involved in Seed Priming. In:
Hasanuzzaman, M., Fotopoulos, V. (eds). Priming and pretreatment of
seeds and seedlings. Springer, Singapore. https://doi.org/10.1007/978-
981-13-8625-1_4
Khan, M., Ali, S., Al Azzawi, T.N.I., Saqib, S., Ullah, F., Ayaz, A., & Zaman,
W. (2023). The key roles of ROS and RNS as a signaling molecule in
plant-microbe interactions. Antioxidants, 12, 268. https://doi.org/10.3390/
antiox12020268
Li, Y., Liang, Y., Liu, M., Zhang, Q., Wang, Z., Fan, J., Ruan, Y., Zhang, A., Dong,
X., Yue, J., & Li. C. (2022). Genome-wide association studies provide
insights into the genetic architecture of seed germination traits in maize.
Frontiers in Plant Science, 13:930438. doi: 10.3389/fpls.2022.930438
Li, B., Tester, M., & Gilliham, M. (2017). Chloride on the move. Trends in Plant
Science, 22, 3, 236-248, https://doi.org/10.1016/j.tplants.2016.12.004.
Little, T.M. y Hills, F.J. (1989). Métodos estadísticos para la investigación en la
agricultura. México. Edit. Trillas. 270 p.
Maguire, J.D. (1962). Speed of germination-aid in selection and evaluation for
seedling emergences and vigor. Crop Science, 2, 176-177. https://doi.
org/10.2135/cropsci1962.0011183X000200020033x
Mathesius, U. (2022). Are legumes dierent? Origins and consequences of
evolving nitrogen xing symbioses. Journal of Plant Physiology, 276,
153765, https://doi.org/10.1016/j.jplph.2022.153765.
Mohanavelu, A., Naganna, S.R., & Al-Ansari, N. (2021). Irrigation induced
salinity and sodicity hazards on soil and groundwater: An overview of its
causes, impacts and mitigation strategies. Agriculture, 11, 983. https://doi.
org/10.3390/agriculture 11100983
Mubushar, M., El-Hendawy, S., Tahir, M.U., Alotaibi, M., Mohammed, N., Refay,
Y., & Tola, E. (2022). Assessing the suitability of multivariate analysis
for stress tolerance indices, biomass, and grain yield for detecting salt
tolerance in advanced spring wheat lines irrigated with saline water
under eld conditions. Agronomy, 12, 3084. https://doi.org/ 10.3390/
agronomy12123084
Muktadir, M.A., Adhikari, K.N., Merchant, A., Belachew, K.Y., Vandenberg, A.,
Stoddard, F.L., & Khazaei, H. (2020). Physiological and biochemical
basis of faba bean breeding for drought adaptation- A Review. Agronomy,
10, 1345. https://doi.org/10.3390/agronomy10091345
Murillo-Amador, B., Yamada, S., Yamaguchi, T., Rueda-Puente, E.O. Ávila-
Serrano, N.Y., García-Hernández, J.L., López-Aguilar, D.R., Troyo-
Diéguez, E., & Nieto-Garibay, A. (2007). Inuence of calcium silicate
on growth, physiological parameters and mineral nutrition in two legume
species under salt stress. Journal Agronomy Crop Science, 193:413-421.
doi.org/10.1111/j.1439-037X.2007.00273.x
Narejo, G.A., Mirbahar, A.A., Yasin, S., Sirohi, M.H., & Saeed R. (2023). Eect
of hydro and KNO
3
priming on seed germination of cotton (Gossypium
hirsutum L.) under gnotobiotic conditions. Journal of Plant Growth
Regulation, 42, 1592-1603. https://doi.org/10.1007/s00344-022-10644-y
Nachshon, U. (2018). Cropland soil salinization and associated hydrology:
Trends, processes and examples. Water, 8, 1030. https://doi.org/10.3390/
w10081030
Negacz, K., Malek, Ž., Vos, A.D., & Vellinga, P. (2022). Saline soils worldwide:
Identifying the most promising areas for saline agriculture. Journal
of Arid Environments, 203, 104775, https://doi.org/10.1016/j.
jaridenv.2022.104775.
Praxedes, S.S.C., da Silva Sá, F.V., Neto, M.F., Loiola, A.T., Reges, L.B.L., Jales,
G.D., & de Melo, A.S. (2020). Tolerance of seedlings traditional varieties
of cowpea (Vigna unguiculata (L.) Walp.) to salt stress. Semina: Ciências
Agrárias, Londrina, 41(5 suplemento 1), 1963-1974.
Ravelombola, W., Shi, A., Weng, Y., Mou, B., Motes, D., Clark, J., Chen, P.,
Srivastava, V., Quin, J., Dong, L., Yang, W., Bhattarai, G., & Sugihara, Y.
2018. Association analysis of salt tolerance in cowpea (Vigna unguiculata
(L.) Walp.) at germination and seedling stages. Theoretical and Applied
Genetics, 131, 79-91, https://doi.org/10.1007/s00122-017-2987-0
Ruiz-Ramírez, S., Valdés-Oyervides, A., Facio-Parra, F., y Arce-González,
L. (2012). Efecto de diferentes niveles de salinidad en la germinación
y vigor de semillas de cinco gramíneas forrajeras. Agraria, 9, 1, 7-13.
https://revista.uaaan.edu.mx/
Shelden, M.C. & Munns, R. (2023). Crop root system plasticity for improved
yields in saline soils. Frontiers in Plant Science, 14, 1120583. doi:
10.3389/fpls.2023.1120583Shel
TIBCO Software Inc. (2018). Statistica (data analysis software system), version
13. http://tibco.com.
Xu, J., Li, Y., Wang, S., Wang, Q., & Ding, J. (2020). Shear strength and mesoscopic
character of undisturbed loess with sodium sulfate after dry-wet cycling.
Bulletin Bulletin of Engineering Geology and the Environment, 79,1523-
1541. https://doi.org/10.1007/s10064-019-01646-4