This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Conde et al. Rev. Fac. Agron. (LUZ). 2023 40(3): e234024
5-5 |
surface drip and subsurface drip at 20 cm. Likewise, the treatments
irrigated by surface drip and subsurface drip at 20 cm also presented
statistical dierences (p˂0.001), with a dierence of 15 % less water
applied for the treatment irrigated by subsurface drip at 20 cm.
Research conducted in China by Yan et al. (2016), applied water
sheets in subsurface drip irrigation at 30 cm depth of 162 mm (1,620
m
3
.ha
-1
).
Referring to water productivity, they presented statistical
dierences (p˂0.003) between the furrow irrigated treatment and
those irrigated by surface drip and subsurface drip at 20 cm, for
furrow irrigation a water productivity of 2.63 kg.m
-3
was obtained,
for surface drip irrigation water productivity was 7.02 kg.m
-3
, and
for subsurface drip irrigation at 20 cm of 8.23 kg.m
-3
. Research by
Stanghellini (2010), found that the average water productivity in the
65-country drip-irrigated maize crop was 7.0 kg.m
-3
.
Similarly, water productivity, the treatments irrigated by surface
drip and subsurface drip at 20 cm, presented statistical dierences
(p˂0.003) (table 3). Water productivity in the treatment irrigated by
subsurface drip at 20 cm, in relation to water productivity in furrow
irrigation was 3.1 times higher, and 1.2 times higher than water
productivity in surface drip irrigation.
Conclusions
The management plan for furrow, surface drip and subsurface drip
irrigation generates dierent strategies for its use and management,
by having dierent frequencies and number of irrigations. Furrow
irrigation required less frequency and fewer irrigations, in contrast to
surface and subsurface drip irrigation at 20 cm, which were applied
with a higher frequency and greater number of irrigations. The volume
of water supplied by furrow irrigation was greater than the volume
of water supplied by surface and subsurface drip irrigation systems.
Water productivity was higher with subsurface drip irrigation at 20
cm.
Literature cited
Alarcón, J., (2020). El agua como fuerza motriz de las plantas. Academia de
Ciencias de la Región de Murcia. Instituto de España. https://www.um.es/
acc/wp-content/uploads/Alarcon-Academico-DiscursoyContestacion.pdf
Al-Ghobari, H. and Dewidar, A. (2018). Integrating decit irrigation into surface
and subsurface drip irrigation as a strategy to save water in arid regions.
Agricultural Water Management, 209, 55-61. https://DOI:10.1016/j.
agwat.2018.07.010.
Droogers, P. and Kite, G. (1999). Water productivity from integrated basin
modeling. Irrigation and drainage systems, 13, 275-290. https://doi.
org/10.1023/A:1006345724659
Fuentes, J., (2002). Curso de riego para regantes, Ministerio de Agricultura Pesca
y alimentación, Ediciones Mundi Prensa, España.
Gobierno Autónomo Descentralizado Provincial de El Oro. (2021). Plan de
Desarrollo y Ordenamiento Territorial de La Provincia de El Oro 2020 -
2030. Gobierno Autónomo Descentralizado Provincial de El Oro. https://
datos.eloro.gob.ec/PDF%20PDYOT/PDYOT%20PROVINCIAL%20
EL%20ORO.pdf
Guevara, A., Bárcenas, G., Salazar, F., González, E. & Suzán, H. (2005). Alta
densidad de siembra en la producción de maíz con irrigación por goteo
subsupercial. Agrociencia, 39(4), 431-439. https://www.redalyc.org/
pdf/302/30239407.pdf
Gurovich, L., (1985). Fundamentos y diseño de sistemas de riego. Instituto
Interamericano de Cooperación para la Agricultura (IICA). San José
Costa Rica. http://repositorio.iica.int/bitstream/handle/11324/7213/
BVE18040268e.PDF?sequence=1&isAllowed=y.
Irmak, S., Djaman, K. & Rudnick, D.R. Eect of full and limited irrigation amount
and frequency on subsurface drip-irrigated maize evapotranspiration,
yield, water use eciency and yield response factors. Irrigation
Science 34, 271–286 (2016). https://doi.org/10.1007/s00271-016-0502-z.
Jeswani, H.K., Azapagic, A., (2011). Water footprint: methodologies and a
case study for assessing the impacts of water use. Journal of Cleaner
Production. 19, 1288-1299. DOI:10.1016/j.jclepro.2011.04.003.
Kafka, U. and Tarchitzky J. (2012). Fertirrigación: Una herramienta para una
eciente fertilización y manejo de agua. Suiza.
Lucero-Vega, G., Troyo-Diéguez, E., Murillo-Amador, B., Nieto-Garibay, A.,
Ruíz-Espinoza, F.H., Beltrán-Morañes, F.A. & Zamora-Salgado, S (2017).
Diseño de un sistema de riego subterráneo para abatir la evaporación en
suelo desnudo comparado con dos métodos convencionales. Agrociencia.
51, 487-505. https://www.scielo.org.mx/scielo.php?script=sci_
arttext&pid=S1405-31952017000500487
Martínez, J. and Reca, J. (2014). Water use eciency of surface drip irrigation
versus an alternative subsurface drip irrigation method. Journal of
Irrigation and Drainage Engineering. 140(10). https://doi.org/10.1061/
(asce)ir.1943-4774.0000745
Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO,
2019). El estado mundial de la agricultura y la alimentación. https://www.
fao.org/3/ca6030es/ca6030es.pdf.
Shen, D., Shang, G., Xie, R., Ming, B., Hou, P., Xue, J., Li, S., & Wang, K. (2020).
Improvement in Photosynthetic Rate and Grain Yield in Super-High-
Yield Maize (Zea mays L.) by Optimizing Irrigation Interval under Mulch
Drip Irrigation. Agronomy (Basel, Switzerland), 10(11), 1778. https://doi.
org/10.3390/agronomy10111778
Siebert, and S., Döll, P. (2010). Quantifying blue and green virtual water
contents in global crop production as well as potential production
losses without irrigation, Journal. Hydrology, 384,198207.
https://saiplatform.org/uploads/Library/SiebertandDoell2010_
quantifyingblueandgreenvirtualwatercontentofcrops.pdf.
Stanghellini, C. (2010). Water use eciency in tomato. Practical Hidroponics y
Greenhouses. p. 52-59.
Subsecretaría del Agua (SENAGUA) (2019). Plan Nacional de Riego y Drenaje
2019-2027. Quito-Ecuador. https://prefecturadeesmeraldas.gob.ec/
docs/8_plan_nacional_de_riego_y_drenaje.pdf.
Subsecretaría de Riego y Drenaje (SENAGUA). (2016). Propuesta de
Modelo de Gestión Integral del Riego en el Ecuador. Subsecretaría
de Riego y Drenaje. http://www2.competencias.gob.ec/wp-content/
uploads/2021/03/01-06IGC2016-MGRIEGO-SENAGUA-MODELO-
DE-GESTIO%CC%81N-INTEGRAL-DEL-RIEGO.pdf
Villaseñor, D., Chabla, J. and Luna, E. (2015). Caracterización física y clasicación
taxonómica de algunos suelos dedicados a la actividad agrícola de la
provincia de El Oro. CUMBRES, Revista Cientíca, 1(2), 28 – 34 https://
doi.org/10.48190/cumbres.v1n2a5
Zhang, G., Shen, D., Ming, B., Xie, R., Jin, X., Liu, C., Hou, P., Xue, J., Chen,
J., Zhang, W., Liu, W., Wang, K., Li, S. (2019). Using irrigation intervals
to optimize water-use eciency and maize yield in Xinjiang, northwest
China. The Crop Journal, 7(3), 322-334. https://www.sciencedirect.com/
science/article/pii/S2214514119300042.
Yan Mo, Guangyong Li, Dan Wang (2016). A sowing method for subsurface drip
irrigation that increases the emergence rate, yield, and water use eciency
in spring corn. Agricultural Water Management, 179(1), 288-295. https://
doi.org/10.1016/j.agwat.2016.06.005