This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(3): e244121 July-September. ISSN 2477-9407.
6-6 |
y lechuga (Lactuca sativa). Revista Ciencia y Tecnología Agropecuaria,
21(3), 1-16. https://doi.org/10.21930/rcta.vol21_num3_art:1465
Afzal, A., & Bano, A. (2008). Rhizobium and phosphate solubilizing bacteria
improve the yield and phosphorus uptake in wheat (Triticum aestivum).
International Journal of Agriculture and Biology. 10(1), 85 https://www.
fspublishers.org/Issue.php?y=2008&v_no=10&categoryID=39-88.
Aguado–Santacruz, G.A., Moreno–Gómez, B., Jiménez–Francisco, B., García-
Moya, E., & Preciado-Ortiz, R.E. (2012). Impacto de los sideróforos
microbianos y tosidéforos en la asimilación de hierro por las plantas:
una síntesis. Revista Fitotecnia Mexicana, 35(1), 9-21. https://
revistatotecniamexicana.org/documentos/35-1/2a.pdf.
Alexander, D. Z., & Zuberer, D. A. (1991). Use of chrome azurol S reagents to
evaluate siderophore production by rhizosphere bacteria. Biology and
Fertility of Soils, 12(1), 39-45. https://link.springer.com/article/10.1007/
bf00369386.
Bacon, C., & Hinton, D. (2011). In planta reduction of maize seedling stalk lesions
by the bacterial endophyte Bacillus mojavensis. Canadian Journal of
Microbiology, 57(6), 485-492. https://doi.org/10.1139/w11-031.
Bashan, Y., Kamnev, A.A., & de-Bashan, L.E. (2013). Tricalcium phosphate is
inappropriate as a universal selection factor for isolating and testing
phosphate-solubilizing bacteria that enhance plant growth: a proposal
for an alternative procedure. Biology and Fertility of Soils, 49, 465–479.
https://doi.org/10.1007/s00374-012-0737-7.
Batista, B.D., Bonatelli, M.L., & Quecine, M.C. (2021). Fast Screening of Bacteria
for Plant Growth Promoting Traits. In Carvalhais, L.C., Dennis, P.G. (eds)
The Plant Microbiome. Methods in Molecular Biology, 2232. Humana,
New York. https://doi.org/10.1007/978-1-0716-1040-4_7.
Calvo, P., & Zúñiga, D. (2010). Caracterización siológica de cepas de Bacillus
spp. aisladas de la rizósfera de papa (Solanum tuberosum). Ecología
aplicada, 9(1), 31-39. https://doi.org/10.21704/rea.v9i1-2.393.
Castro-Severyn, J., Pardo-Esté, C., Mendez, K. N., Fortt. J., Marquez, S, Molina,
F., Castro-Nallar, E., Remonsellez, F., & Saavedra, C. P. (2021). Living
to the high extreme: unraveling the composition, structure, and functional
insights of bacterial communities thriving in the arsenic-rich Salar de
Huasco altiplanic ecosystem. Microbiology Spectrum, 9(1), e0044421.
https://doi.org/10.1128/Spectrum.00444-21.
Chattopadhyay, M. K. (2006). Mechanism of bacterial adaptation to low
temperature. Journal of Biosciences, 31(1), 157–165. https://doi.
org/10.1007/BF02705244.
Davis, K.E., Joseph, S.J., & Janssen, P.H. (2005). Eects of growth medium,
inoculum size, and incubation time on culturability and isolation of soil
bacteria. Applied Environmental Microbiology, 71(2), 826-34. https://doi.
org/10.1128/AEM.71.2.826-834.2005.
Delgado-Baquerizo, M., Oliverio, A., Brewer, T., Benavent-González, A.,
Eldridge, D., Bardgett, R., Maestre, F., Singh, B., & Fierer, N. (2018). A
global atlas of the dominant bacteria found in soil. Science, 359(6373),
320-325. https://www.science.org/doi/10.1126/science.aap9516.
Di Rienzo, J., Balzarini, M., Gonzales, L., Casanoves, F., Tablada, M. y Robledo,
C. (2010). InfoStat versión 2018 [Programa]. Grupo InfoStat. https://
www.infostat.com.ar/index.php?mod=page&id=34.
Do Amaral, F. P., Tuleski, T. R., Pankievicz, V. C., Melnyk, R. A., Arkin, A. P.,
Gritts, J., Tadra-Sfeir, M. Z., Maltempi de Souza, E., Deutschbauer, A.,
Monteiro, R. A., & Stacey, G. (2020). Diverse bacterial genes modulate
plant root association by benecial bacteria. mBio, 11(6). https://doi.
org/10.1128/mbio.03078-20.
Fasusi, O. A., & Babalola, O. O. (2021). The multifaceted plant-benecial
rhizobacteria toward agricultural sustainability. Plant Protection Science,
57(2), 95-111. https://doi.org/10.17221/130/2020-PPS.
Forbes, B., Sahm, D., & Weissfeld, A. (2007). Bailey & Scott’s. Diagnostic
microbiology. Mosby, Elsevier.
Gu, Y., Xu, X., Wu, Y., Niu, T., Liu, Y., Li, J., Du, G., & Liu, L. (2018). Advances
and prospects of Bacillus subtilis cellular factories: From rational design
to industrial applications. Metabolic Engineering, 50, 109-121, https://
doi.org/10.1016/j.ymben.2018.05.006.
Guzmán, A., Zambrano, D., Rivera, R., Rondón, A., Laurencio, M., Pérez, M., &
León, R. (2015). Aislamiento y selección de bacterias autóctonas de Manabí-
Ecuador con actividad celulolítica. Cultivos Tropicales, 36(1), 7-16. https://
ediciones.inca.edu.cu/index.php/ediciones/article/view/934/pdf.
Gyaneshwar, P., Naresh, G., Kumar, L., Parekh, J., & Poole, P. (2002). Role of soil
microorganisms in improving P nutrition of plants. Plant and Soil, 245(1),
83-93. https://doi.org/10.1023/A:1020663916259.
Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and
applications. Scienti.ca, 1, 963401. https://doi.org/10.6064/2012/963401.
Hu, S., Li, Y., Wang, B., Yin, L., & Jia, X. (2022). Eects of NaCl Concentration
on the Behavior of
Vibrio brasiliensis and Transcriptome Analysis. Foods,
11(6), 840. https://doi.org/10.3390/foods11060840.
Ikenebomeh, M.J. (1989). The inuence of salt and temperature on the natural
fermentation of African locust bean. International Journal of Food
Microbiology, 8(2), 133-9. https://doi.org/10.1016/0168-1605(89)90067-6.
Joshi, S., Gangola, S., Bhandari, G., Bhandari, N. S., Nainwal, D., Rani, A., Malik,
S., & Slama, P. (2023). Rhizospheric bacteria: the key to sustainable
heavy metal detoxication strategies. Frontiers in Microbiology, 14,
1229828. https://doi.org/10.3389/fmicb.2023.1229828 .
Kudinova, A. G., Dolgih, A. V., Mergelov, N. S., Shorkunov, I. G., Maslova, O.
A., & Petrova, M. A. (2021). The abundance and taxonomic diversity of
lterable forms of bacteria during succession in the soils of Antarctica
(Bunger hills). Microorganisms, 9(8), 1728. https://doi.org/10.3390/
microorganisms9081728.
Lara, C., Esquivel, L., & Negrete, J. (2011). Bacterias nativas solubilizadores de
fosfatos para incrementar los cultivos en el departamento de Córdoba-
Colombia. Biotecnología en el sector agropecuario y agroindustrial,
9(2), 114-120. https://revistas.unicauca.edu.co/index.php/biotecnologia/
article/view/789/413.
Liu, F. P., Liu, H. Q., Zhou, H. L., Dong, Z. G., Bai, X. H., Bai, P., & Qiao, J. J.
(2016). Isolation and characterization of phosphate-solubilizing bacteria
from betel nut (Areca catechu) and their eects on plant growth and
phosphorus mobilization in tropical soils. Biology and Fertility of Soils,
50(6), 927–937. https://doi.org/10.1007/s00374-014-0913-z.
López-Valenzuela, B. E., Armenta-Bojórquez, A. D., Hernández-Verdugo, S.,
Apodaca-Sánchez M. A., Samaniego-Gaxiola, J. A., & Valdez-Ortiz, A.
(2019). Trichoderma spp. y Bacillus spp. como promotores del crecimiento
en maíz (Zea mays L.). Phyton, 88(1), 37-46. https://doi.org/10.32604/
phyton.2019.04621.
Olanrewaju, O. S., Glick, B. R., & Babalola, O. O. (2017). Mechanisms of Action
of Plant Growth Promoting Bacteria. World Journal of Microbiology and
Biotechnology, 33, 197. https://doi.org/10.1007/s11274-017-2364-9.
Ojuederie, O. B., Olanrewaju, O. S., & Babalola, O. O. (2019). Plant growth
promoting rhizobacterial mitigation of drought stress in crop plants: im-
plications for sustainable agriculture. Agronomy, 9(11), 712. https://doi.
org/10.3389/fpls.2022.875774.
Orozco-Mozqueda, M., Flores, A., Rojas-Sánchez, B., Urtis-Flores, C., Morales-
Cedeño, L., Valencia-Marín, M., Chávez-Ávila, S., Rojas-Solís, D., &
Santoyo, G. (2021). Plant Growth-Promoting Bacteria as Bioinoculants:
Attributes and Challenges for Sustainable Crop Improvement. Agronomy.
11(6), 1167. https://doi.org/10.3390/agronomy11061167.
Pincay, M. (2022). Diversidad microbiana presente en agua residual proveniente
de industria atunera. Revista Espamciencia, 13(1), 70-76. https://doi.
org/10.51260/revista_espamciencia.v13i1.312.
Qurashi, A.W., & Sabri, A.N. (2012). Bacterial exopolysaccharide and biolm
formation stimulate chickpea growth and soil aggregation under salt
stress. Brazilian Journal of Microbiology, 43(3), 1183-91. https://doi.
org/10.1590/S1517-838220120003000046.
Ramírez, M., Roveda, G., Bonilla, R., Cabra, L., Peñaranda, A., López, M., &
Díaz, C. A. (2008). Uso y manejo de biofertilizantes en el cultivo de la
uchuva. Corporación Colombiana de Investigación Agropecuaria. http://
hdl.handle.net/20.500.12324/12852.
Ratón, T., Portuondo, I., Salas, D., Ramos, N., & Giro, Z. (2005). Aislamiento de
cepas del género Bacillus sp. con potencialidades para la bioprotección
y la estimulación del crecimiento vegetal. Revista Cubana de Química,
17(1), 189-195. https://cubanaquimica.uo.edu.cu/index.php/cq.
Rizvi, A., Ahmed, B., Khan, M. S., Umar, S., & Lee, J. (2021). Psychrophilic
Bacterial Phosphate-Biofertilizers: A Novel Extremophile for Sustainable
Crop Production under Cold Environment. Microorganisms, 9(12), 2451.
https://doi.org/10.3390/microorganisms9122451.
Santi, C., Bogusz, D., & Franche, C. (2013). Biological nitrogen xation in non-
legume plants. Annals of Botany, 111(5), 743-767. https://doi.org/10.1093/
aob/mct048.
Tassadaq, H., Aneela, R., Shehzad, M., Iftikhar, A., Jafar, K., Veronique, E. H.,
Kim, K. Y., & Muhammad, A. (2013). Biochemical characterization and
identication of bacterial strains isolated from drinking water sources of
Kohat, Pakistan. African Journal of Microbiology Research, 7(16), 1579–
1590. https://doi.org/10.5897/AJMR12.2204.
Teng, Z., Chen, Z., Zhang, Q., Yao, Y., Song, M., & Li, M. (2018). Isolation and
characterization of phosphate solubilizing bacteria from rhizosphere
soils of the Yeyahu Wetland in Beijing, China. Environmental Science
and Pollution Research, 26(33), 33976-33987. https://doi.org/10.1007/
s11356-018-2955-5.
Ulrich, D.E., Sevanto, S., & Ryan, M. (2019). Las interacciones planta-microbio
antes de la sequía inuyen en las respuestas siológicas de la planta a la
sequía severa posterior. Informe cientíco, 9(1), 249. https://www.nature.
com/articles/s41598-018-36971-3.
Valdivieso, S., Cedeño, G., & Guanoluisa, A. (2021). Análisis Estadístico de los
datos climáticos históricos de la ESPAM MFL. https://www.manabi.gob.
ec/wp-content/uploads/2021/11/1VF_Analisis-Estadistico-de-los-datos-
climaticos-historicos-de-la-ESPAM-MFL.pdf.
Villarreal, M., Villa, E., Cira, L., Estrada, M., Parra, F., & Santos, S. (2018). El
género Bacillus como agente de control biológico y sus implicaciones en
la bioseguridad agrícola. Revista Mexicana de Fitopatología, 36(1), 95-
130. https://www.rmf.smf.org.mx/ojs/index.php/RMF/article/view/100.
Xiao, F., Li, Y., Zhang, Y., Wang, H., Zhang, L., Ding, Z., Gu, Z., Xu, S., & Shi, G.
(2020). Construction of a novel sugar alcohol-inducible expression system
in Bacillus licheniformis. Applied Microbiology and Biotechnology,
104(12), 5409–5425. https://doi.org/10.1007/s00253-020-10618-8.
Yu, H., Wu, X., Zhang, G., Zhou, F., Harvey, P., Wang, L., Fan, S., Xie, X., Li, F.,
Zhou, H., Zhao, X., & Zhang, X. (2022). Identication of the phosphorus-
solubilizing bacteria strain JP233 and its eects on soil phosphorus
leaching loss and crop growth. Frontiers in Microbiology, 13, 892533.
https://doi.org/10.3389/fmicb.2022.892533.
Zalma, S. A., & El-Sharoud, W. M. (2021). Diverse thermophilic Bacillus
species with multiple biotechnological activities are associated within
the Egyptian soil and compost samples. Science Progress, 104(4),
368504211055277. https://doi.org/10.1177/00368504211055277.