This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Lemus et al. Rev. Fac. Agron. (LUZ). 2024 41(3): e244122
5-6 |
Figure 5. Mantel test results. A distribution pattern can
be observed according to genetic distances and
geographical distances between populations.
The pattern showed greater diversity and dierentiation as the
spatial distribution of the three HP breed populations analyzed were
further from the southeast of the country (Yucatán) and its southwest
and northwest coasts (Oaxaca and Nayarit) (gure 1), drawing a gene
ow presumably carried out by anthropogenic factors, the latter,
possibly due to the original and rst introduction points of European
pig breeds in the colonization events of America during the 15
th
and
16
th
centuries carried out by the Spanish Empire (Hancock, 2022)
and clearly distinguishing three distinct groups, as it is analyzed
in Cesconeto et al. (2017) and Pimentel et al. (2023), where it is
established a positive correlation between geographical and genetic
distances in animals involved in anthropogenic activities (pigs
and horses respectively) clearly dierentiating them into dierent
regional groups.
The clear genetic diversity of HP populations throughout their
geographical distribution and how in dierent locations their genetic
structure continues to be dierent, indicates that even belonging
to the same race, the populations present great diversity between
them indicating that despite their state of conservation they present
levels of introgression by commercial breeds demonstrating a poor
conservation state and the need to stablish a genetic conservation
program.
Conclusions
The results obtained indicate that the three HP breed populations
analyzed in the present research are dierent from each other and the
genetic diversity analysis results suggest that they are closely related
to the Iberian breed, genetically distant from the commercial breeds
and, at the same time, share ancestry in dierent degrees with them.
The above seems to indicate that the genetics of the HP breed are
dierent according to its distribution throughout the country and their
heterogeneous production systems.
The latter unveils their poor conservation state and the need to
stablish a genetic conservation program, meaning an eort to prevent
the loss of a signicant cultural, natural and genetic resource.
Have a more detailed description of the current state of these
populations, manage to present a clearer perspective of the future
necessary actions that must be taken for their adequate conservation as
local breeds and, as far as possible, establish a genetic reserve program.
Acknowledgments
This study was supported and funded by the Secretary for
Research, Innovation, and Higher Education, Mérida, Yucatán,
Mexico. William Orlando Burgos Paz thank to Corporación
Colombiana de Investigación Agropecuaria – AGROSAVIA for the
support in data analysis (project ID 1002471).
Literature cited
Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation
of ancestry in unrelated individuals. Genome Research, 19 (9), 1655-
1664. http://www.genome.org/cgi/doi/10.1101/gr.094052.109.
Bordonaro, S., Chessari, G., Mastrangelo, S., Senczuk, G., Chessa, S., Castiglioni,
B., Tumino, S., Marletta, D., & Criscione, A. (2023). Genome-wide
population structure, homozygosity, and heterozygosity patterns of
Nero Siciliano pig in the framework of Italian and cosmopolitan breeds.
Animal Genetics, 54, 591–605. https://doi.org/10.1111/age.13344.
Burgos-Paz, W., Souza, C. A., Megens, H. J., Ramayo-Caldas, Y., Melo, M.,
Lemus-Flores, C., Caal, E., Soto, H.W., Martínez, R., Álvarez, L. A.,
Aguirre, L., Iñaguez, V., Revidatti, M. A., Martínez-Lopéz, O.R., Llambi,
S., Esteve-Codina, A., Rodríguez, M.C., Crooijmans, R. P. M. A., Paiva,
S. R., Schook L.B.. Groenen M.A. & Pérez-Enciso, M. (2013). Porcine
colonization of the Americas: a 60k SNP story. Heredity, 110, 321–330.
https://doi.org/10.1038/hdy.2012.109.
Cesconeto, R. J., Joost, S., McManus, C. M., Paiva, S. R., Cobuci, J. A., & Braccini,
J. (2017). Landscape genomic approach to detect selection signatures in
locally adapted Brazilian swine genetic groups. Ecology and Evolution,
7(22), 9544-9556. https://doi.org/10.1002/ece3.3323.
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J.
(2015). Second-generation PLINK: Rising to the challenge of larger and
richer datasets. GigaScience, 4(1), 7. https://doi.org/10.1186/s13742-015-
0047-8.
DAD-IS. (2020). Sistema de Información sobre la Diversidad de los Animales
Domésticos (DAD-IS@fao.org). FAO. http://www.fao.org/dad-is/
browse-by-country-and-species/es/.
DeWoody, J. A., Harder, A. M., Mathur, S., & Willoughby, J. R. (2021). The long‐
standing signicance of genetic diversity in conservation. Molecular
Ecology, 30(17), 4147-4154. https://doi.org/10.1111/mec.16051.
Govindarajan, R., Duraiyan, J., Kaliyappan, K., & Palanisamy, M. (2012).
Microarray and its applications. Journal of Pharmacy and Bioallied
Sciences, 4(6), 310-312. https://doi.org/10.4103/0975-7406.100283.
Hancock, J.F. (2022). Spanish Conquest and Colonization of the Americas. In:
World Agriculture Before and After 1492. Springer, Cham. https://doi.
org/10.1007/978-3-031-15523-9_5.
Hernández, A., García Munguía, C. A., García Munguía, A. M., Ortíz Ortíz,
J. R., Sierra Vásquez, Á. C., & Morales Flores, S. (2020). Sistema de
producción del Cerdo Pelón Mexicano en la Península de Yucatán. Nova
Scientia, 12(24). https://doi.org/10.21640/ns.v12i24.2234.
Kawęcka, A., Gurgul, A., & Miksza-Cybulska, A. (2016). The Use of SNP
Microarrays for Biodiversity Studies of Sheep – A Review. Annals of
Animal Science, 16(4), 975-987. https://doi.org/10.1515/aoas-2016-0017.
Lemus-Flores, C., Alonso-Morales, R., Toledo-Alvarado, H., Sansor-Nah,
R., Burgos-Paz, W., & Dzib-Cauich, D. (2020). Diversidad genética
y estructura poblacional del cerdo negro lampiño de Yucatán usando
chip SNP50. Abanico veterinario, 10, 1-12. https://doi.org/10.21929/
abavet2020.10.
Lemus-Flores, C., Bugarín Prado, J. O., Valdivia Bernal, R., Segura Correa, J.
C., & Sansor-Nah, R. (2023). Genetic relationships of the Yucatan black
hairless pig with Iberian breeds using single nucleotide polymorsms.
Brazilian Journal of Veterinary Research and Animal Science, 60,
e195697. https://doi.org/10.11606/issn.1678-4456.bjvras.2023.195697.
Lemus-Flores, C., Ulloa-Arvizu, R., Ramos-Kuri, M., Estrada, F. J., &
Alonso, R. A. (2001). Genetic analysis of Mexican hairless pig
populations. Journal of Animal Science, 79(12), 3021-3026. https://doi.
org/10.2527/2001.79123021.
Li, S.-J., Yang S.-H., Zhao S.-H., Fan B., Yu M., Wang H.-S., Li M.-H., Liu B.,
Xiong T.-A. and Li K. (2004). Genetic diversity analyses of 10 indigenous
Chinese pig populations based on 20 microsatellites. Journal of Animal
Science, 82(2), 368–374. https://doi.org/10.2527/2004.822368.
Meuwissen, T. H. E., Sonesson, A. K., Gebregiwergis, G., & Woolliams, J. A.
(2020). Management of Genetic Diversity in the Era of Genomics.
Frontiers in Genetics, 11, 880. https://doi.org/10.3389/fgene.2020.00880.
Monteiro, A. N. T. R., Wilfart, A., Utzeri, V. J., Batorek Lukač, N., Tomažin, U.,
Costa, L. N., Čandek-Potokar, M., Fontanesi, L., & Garcia-Launay, F.
(2019). Environmental impacts of pig production systems using European
local breeds: The contribution of carbon sequestration and emissions
from grazing. Journal of Cleaner Production, 237, 117843. https://doi.
org/10.1016/j.jclepro.2019.117843.
Muñoz, M., Bozzi, R., García-Casco, J., Núñez, Y., Ribani, A., Franci, O., García,
F., Škrlep, M., Schiavo, G., Bovo, S., Utzeri, V. J., Charneca, R., Martins,
J. M., Quintanilla, R., Tibau, J., Margeta, V., Djurkin-Kušec, I., Mercat,
M. J., Riquet, Estellé, J., Zimmer, C., Razmaite, V., Araujo, J. P., Radović,
Č., Savić, R., Karolyi, D., Gallo, M., Čandek-Potokar, M., Fernández,
A. I., Fontanesi, L. & Óvilo C. (2019). Genomic diversity, linkage
disequilibrium and selection signatures in European local pig breeds