This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Montaña et al. Rev. Fac. Agron. (LUZ). 2024 41(3): e244100
6-6 |
Similarly, it was found that the combination of 110 ºC cooking
temperature with a purity level of 95 % generated the highest average
combinations evaluated. It is important to highlight that this average
value obtained showed a fragile consistency of panela, coinciding
with the results obtained by Cerda-Mejía et al. (2020) and Vargas-
Valencia et al. (2022), who determined that as the content of reducing
requiring little force for its deformation.
Likewise, Cerda-Mejía et al. (2021) consider that sucrose
hydrolysis is greater when temperatures higher than 100 ºC are
It is important to highlight that in the artisanal manufacturing
process, knowing the exact doses of the factors that are involved
investigation. For the color variable, a lime concentration value of
1 g.L
-1
are needed. In relation to the reducing sugars variable, to achieve the
recommended value, a purity level of 95 % and a temperature of 110
ºC must be used.
The quality of panela is given by a set of factors that intervene
in the artisanal production process; however, for the purposes of this
variable “color” for the three coordinates evaluated were: lime
concentration (g.L
-1
), baking temperature (ºC) and purity content (%)
for the L* coordinate; ºBrix for the a* coordinate and purity content
(%) for the b* coordinate. With respect to the response variable
were cooking temperature (ºC) and purity content (%); where it is
recommended to use any of the combinations of these two factors,
except for the combination of 110 ºC and 95 % purity, since this
desired by the consumer.
Cerda-Mejía, V., Guijarro, O., Benítez, I., Cerda, G., Guardado, E., Ortega, D.,
González, E., & Pérez, A. (2021). Monitoreo remoto de los parámetros
operacionales para el proceso de producción de miel de caña. Lámpsakos,
(25), e–3991. https://doi.org/10.21501/21454086.3991
Cerda-Mejía, V., Pérez, A. & Gonzales, E. (2020). “Procedimiento para el diseño
óptimo de procesos considerando la calidad: aplicación en la elaboración
de miel de caña”, Revista Centro Azúcar, 47
Users/getti/Downloads/articulopublicado-Centroazucar.pdf.
Espitia, J., Velásquez, F., López, R., Escobar, S. & Rodríguez, J. (2020).
An engineering approach to design a non-centrifugal cane sugar
production module: A heat transfer study to improve the energy use.
Journal of Food Engineering, 274, 109849. https://doi.org/10.1016/j.
jfoodeng.2019.109843
Galicia-Romero, M., Hernández-Cázarez, A.S., Debernardi de la Vequia, H.,
Velasco-Velasco, J. & Hidalgo-Contreras, J.V. (2017). Evaluación
de la calidad e inocuidad de la panela de Veracruz, México.
Agroproductividad,10 (11):35-40. https://revista-agroproductividad.org/
index.php/agroproductividad/article/view/68/64
García, M. J., Narváez, P.C., Heredia, F.J., Orjuela, Á., & Osorio, C. (2017).
Physicochemical and sensory (aroma and colour) characterisation of a
non-centrifugal cane sugar (“panela”) beverage. Food Chemistry, 228(1),
7- 13. https://doi.
org/10.1016/j.foodchem.2017.01.134
é, W. (2015). Nutritional and functional components of non-centrifugal cane
sugar: a compilation of the data from the analytical literature. Journal
Food Composition and Analysis, 43, 194–202. https://www.sciencedirect.
com/science/article/abs/pii/S0889157515001490
Lee, J., Ramalingam, S., Guk Jo, I., Kwon, Y., Bahuguna, A., Sook Oh, Y.,
Kwon, O., Kim, M. (2018). Comparative study of the physicochemical,
non-centrifugal sugars, Food Research International, 109, 614-625.
https://doi.org/10.1016/j.foodres.2018.04.047.
Montgomery, D. (2004). Desing and Analysis of Experiments. John Wiley &
Sons. Eighth Edition. 8. https://industri.fatek.unpatti.ac.id/wp-content/
uploads/2019/03/181-Design-and-Analysis-of-Experiments-Douglas-C.-
Montgomery-Edisi-8-2013.pdf
Prada Forero, E. (2004). La limpieza de los jugos: un requisito indispensable
para la calidad de la panela y de las mieles. Revista Innovaciόn y Cambio
Tecnolόgico. 4 (1), 12–19. http://hdl.handle.net/20.500.12324/15224
Prada Forero, L.E., Chaves Guerrero, A., & García Bernal, H. (2015).
Efectos de la presión de evaporación y la variedad de caña en la
calidad de la miel y la panela. Ciencia y Tecnología Agropecuaria
16(2), 153-165. http://www.scielo.org.co/scielo.php?script=sci_
arttext&pid=S0122-87062015000200002
Quezada-Moreno, W., Gallardo, I. & Torres, M. (2016) El color en la calidad de
los edulcorantes de la agroindustria panelera. Anidad LXXIII, 573, 26-
30. https://core.ac.uk/reader/39151842
Rodríguez-Campos, J., Osorio, a. & Morales, V. (2018). Innovaciones en el trapiche
panelero: la producción de panela granulada. Agro Productividad, 10
(11). https://revista-agroproductividad.org/index.php/agroproductividad/
article/view/67
Cortina, J. (2022). Functional and physicochemical properties of non-
centrifugal cane sugar obtained by three concentration technologies.
Food Science and Technology, 168, 113897. https://doi.org/10.1016/j.
lwt.2022.113897.
Velásquez, F., Espitia, J., Mendieta, O., Escobar, S., Rodríguez, J., (2019). Non-
centrifugal cane sugar processing: A review on recent advances and the
Journal of Food Engineering, 255, 32-40. https://doi.org/10.1016/j.
jfoodeng.2019.03.009.
Vera-Gutiérrez, T., García-Muñoz, M.C., Otálvaro-Álvarez, A.M, & Mendieta-
Menjura, O. (2019).
Heliyon, 5, Issue 10, e02667, https://doi.org/10.1016/j.heliyon.2019.
e02667.
Whalley, H. (1971). Métodos ICUMSA de Análisis de Azúcar. Edición autorizada
por Elsevier Publishing Company, Ámsterdam. Editorial Continental,
S.A. México. 29-40. ISSN: 1665-5745
Zhu, Z., Xie, C., Li, W., Hang, F., Li, K., Shi, C., Doherty, W. O. (2020). Nutritional
and antioxidant properties of non-centrifugal cane sugar derived from
Food Science and Technology, 131, 109717.
https://doi.org/10.1016/j.lwt.2020.109717.