© The Authors, 2024, Published by the Universidad del Zulia*Corresponding author:sergio.ores.c@pucv.cl
Keywords:
Sugar cane sugar
Controllable factors
Reducing sugars
ºBrix
Purity (%)
Processing

(Saccharum ocinarum L.)
Determinación de los factores que afectan el color y el contenido de azúcar de la panela de caña de
azúcar (Saccharum ocinarum L.)
Determinação dos factores que afectam a cor e a redução do teor de açúcar da panela de cana-de-
açúcar (Saccharum ocinarum L.)
Román M. Montaña
1
Ángel Roco-Videla
2
Ana R. Nieves
3
Sergio V. Flores
4*
Rev. Fac. Agron. (LUZ). 2024, 41(3): e244111
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v41.n3.31

Associate editor: Dra. Gretty R. Ettiene Rojas
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela.
1
Universidad Arturo Prat, Chile.
2
Universidad Católica de la Santísima Concepción,
Concepción, Chile.
3
Universidad Central de Venezuela, Venezuela.
4
      
Valparaíso, Chile.
Received: 06-05-2024
Accepted: 14-08-2024
Published: 02-09-2024
Abstract
The objective of this study was to determine the factors
          
(Saccharum ocinarum L.), fundamental factors in the quality and
marketing of product that must be evaluated and that will allow the
improvement of the artisanal production of sugar cane panela. For
this purpose, the MY5514 variety harvested at optimum maturity
time was used and a 2
4
factorial design was applied to evaluate the
incidence of the factors: ºBrix, purity (%), lime concentration (g.L
-1
)
and baking temperature (ºC), on the response variables: “color”
and “reducing sugar content (%)”, under a completely randomized
         
factors for the response variable “color” for the three coordinates
evaluated were: lime concentration (g.L
-1
), cooking temperature
(ºC) and purity content (%) for the L* coordinate; ºBrix for the
a* coordinate and purity content (%) for the b* coordinate. With
respect to the response variable “reducing sugars (%)”, the factors

content (%). It is recommended to use any of the combinations of
these two factors, except the combination of 110 ºC and 95 % purity,

not desired by the consumer.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(3): e244100 July-September. ISSN 2477-9407.
2-6 |

El objetivo de este estudio fue determinar los factores que
afectan el color y el contenido de azúcar reductor de la panela de
caña de azúcar (Saccharum ocinarum L.), factores fundamentales
en la calidad y comercialización del producto que deben evaluarse
y que permitirán el mejoramiento de la producción artesanal de
panela de caña. Para ello se utilizó la variedad MY5514 cosechada
en el momento óptimo de madurez y se aplicó un diseño factorial
2
4
para evaluar la incidencia de los factores: ºBrix, pureza (%),
concentración de cal (g.L
-1
) y temperatura de cocción (ºC), sobre las
variables respuesta: “color” y “contenido de azúcar reductor (%)”,
bajo un diseño completamente aleatorizado con tres repeticiones.

“color” para las tres coordenadas evaluadas fueron: concentración
de cal (g.L
-1
), temperatura de cocción (ºC) y contenido de pureza
(%) para la coordenada L*; ºBrix para la coordenada a* y contenido
de pureza (%) para la coordenada b*. Con respecto a la variable
de respuesta “azúcares reductores (%)”, los factores que afectaron
        
contenido de pureza (%). Se recomienda utilizar cualquiera de las
combinaciones de estos dos factores, excepto la combinación de

características comerciales no deseadas por el consumidor.
 : azúcar de caña,
factores controlables, azúcares
reductores, ºBrix, pureza (%), procesamiento.

O objetivo deste estudo foi determinar os fatores que afetam a cor
e o teor de açúcar redutor da cana-de-açúcar (Saccharum ocinarum
L.) processada de forma artesanal. Para isso, foi usada a variedade
MY5514 colhida no momento ideal de maturação e foi aplicado
um planejamento fatorial 2
4
fatores para avaliar a incidência dos
fatores: ºBrix, pureza (%), concentração de cal (g.L
-1
) e temperatura
de cozimento (ºC), sobre as variáveis de resposta: “cor” e “teor de
açúcar redutor (%)”, em um delineamento inteiramente casualizado

variável de resposta “cor” para as três coordenadas avaliadas foram:
concentração de cal (g.L
-1
), temperatura de cozimento (ºC) e teor
de pureza (%) para a coordenada L*; ºBrix para a coordenada a* e
teor de pureza (%) para a coordenada b*. Com relação à variável
de resposta “açúcares redutores (%)”, os fatores que afetaram
       
de pureza (%). Recomenda-se usar qualquer uma das combinações
desses dois fatores, exceto a combinação de 110 ºC e 95 % de pureza,
         
desejadas pelo consumidor.
: açúcar de cana-de-açúcar, fatores controláveis,
açúcares redutores, ºBrix, pureza (%), processamento.

Panela or “piloncillo”, as it is called in some countries, is a product
Saccharum ocinarum L.) with
a solid consistency molded into various shapes (García et al., 2017).
Unlike white sugar that contains mainly sucrose, panela is considered
a food product with high content of carbohydrates, sucrose, glucose,
fructose, minerals, vitamins, fats, and protein compounds; being

            
the development of diseases such as obesity and diabetes mellitus
(Vargas-Valencia et al., 2022).
       

industry, while panela processing has remained a rural industry under

Campo, 2018). However, several studies have been developed
focused on modernizing and standardizing the process of obtaining
panela, motivated by the current trend in the consumption of high
quality and healthy products (Vera-Gutiérrez et al., 2019).
Thus, some of these researches such as Prada Forero et al.
(2015), García et al. (2017) and Velásquez et al. (2019) directed

making reference that the quality of panela depends on certain
operating conditions such as pH, temperature, pressure and caloric
         

é (2015) and Espitia et
al
of panela are related to humidity, composition and environmental
conditions. They also suggest that as moisture absorption increases,
panela softens, changes color, reducing sugars increase and sucrose

In short, organoleptic traits are the best criteria used by consumers
           
consumed as a beverage, it is mostly marketed in blocks. This is why
consumers will normally look for a product with a slightly sweet
taste, with typical color and aroma.
Based on the above and in order to evaluate the quality of sugar
cane (Saccharum ocinarum) panela during the elaboration process,
a factorial design 2
4
was applied to evaluate the incidence of the
following factors: ºBrix, Purity (%), lime concentration (g. L
-1
)
and cooking temperature (ºC); on the response variables “color”
and “reducing sugar content (%)” in view of their relevance on the

product.

The research was carried out in an artisanal agroindustry
dedicated to the production of panela from sugar cane, located in
the “El Recreo” farm in the municipality of San Joaquín, Carabobo
State, Venezuela. The sugar cane material used corresponded to the
MY5514 variety, harvested at the optimum time of maturity for the
production of panela. The factors evaluated were obtained through
the application of the Pareto plot tool, with which it was possible to
identify 80 % of the possible causes of variation in the quality of the
panela. Table 1 shows the factors and levels used in this research.

Factors  
Temperature (A) 100 y 110 ºC
Purity (B) 93 y 95 %
 0.5 y 1 g.L
-1
ºBrix (D) 20 y 24 %
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Montaña et al. Rev. Fac. Agron. (LUZ). 2024 41(3): e244100
3-6 |
From the cane juice obtained from the selected material, the
artisanal process was carried out under controlled conditions and at
each stage measurements of temperature, pH and concentration of

of panela were obtained for the analysis of the variables color
responses and reducing sugars (%), as they were considered relevant
during the elaboration process. The determination of reducing sugars
(g.L
-1
) was carried out using the Lane and Eynon technique of the
manual “ICUMSA Methods of Sugar Analysis” (Whalley, 1971),
and color was determined with a tristimulus spectro colorimeter
(Hunterlab Miniscan XE 45/0), through readings based on the CIE-
Lab chromatic model, which is represented tridimensionally in the
positive coordinates L*, a* and b*; and which correspond to the
colors white, red and yellow, respectively.

A 2
4

each at two levels (Montgomery, 2004) on the variables color
and reducing sugars (%), under a completely randomized design
with three replications. The randomization of the combination of
each of the factors with its three replications was carried out in an
unrestricted manner, therefore, it was ensured that the run of each
of the combinations of the factors was totally randomized and
the experimental unit was composed of panela of approximately
15x10x10.5 cm in dimension. To analyze the data from the
   
verify compliance with the normality assumption using the Shapiro-

assumption was that of the homogeneity of the variances using the

was calculated for factorial experiment 24 and the Tukey post hoc test


Regarding the color variable, three readings (L*, a* and b*)
established by the method used for its measurement were analyzed,
showing that the second and third order interactions were not
         
to the experimental error. In relation to the variable L*, the table 2
shows that the interaction between the factors cooking temperature
       

the variable L*.

 df Ss Ms F P
 1 7.42 7.42 1.13 0.32 ns
 1 38.318 38.318 5.87

 1 6.092 6.092 0.93 0.367 ns
ºBrix (D) 1 14.46 14.46 2.217 0.168 ns
Cooking Temperature* Pureza (A*B) 1 7.166 7.166 1.09 0.328 ns
Cooking Temperature*Lime concentration (A*C) 1 29.142 25.142 3.85

Cooking Temperature *º Brix (A*D) 1 15.268 15.268 2.34 0.157 ns
Purity * Cooking Temperature (B*C) 1 0.041 0.041 0.06 0.94 ns
 1 1.977 1.977 0.3 0.606 ns
Cooking Temperature * ºBrix (C*D) 1 5.786 5.786 0.89 0.379 ns
 37 241.248 6.52
Total 47

     


concentration of lime (C) in the sample increases. It is important to
point out that, in spite of the above, it should be noted that in none of
the four combinations were the L* values outside the range considered
optimal in a panela.






when going from a purity level of 93 to 95 %, the average L* values

the average L* values, from the commercial point of view there is
         
reported coincides with that reported by Galicia-Romero et al. (2017).
Regarding the variable a*, the table 3 shows that, between the

      



range for the value of a* in a panela.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(3): e244100 July-September. ISSN 2477-9407.
4-6 |



 df Ss Ms F P
 1
3.371 3.371 0.43 0.514 ns
 1
75.359 75.359 9.7

 1
0.705 0.705 0.09 0.765 ns
ºBrix (D) 1
5.949 5.949 0.77 0.387 ns
Cooking Temperature * Purity (A*B) 1
18.792 18.792 2.42 0.128 ns
Cooking Temperature * Lime concentration (A*C) (A*C) 1
0.905 0.905 0.12 0.735 ns
Cooking Temperature *º Brix (A*D) 1
0.233 0.233 0.03 0.864 ns
Purity * Lime concentration (B*C) 1
1.2 1.2 0.15 0.697 ns
 1
1.582 1.582 0.2 0.654 ns
Lime concentration * ºBrix (C*D) 1
2.259 2.259 0.29 0.593 ns
 37
287.371 7.767
Total 47

 df Ss Ms F P
 1 0.594 0.594 0.35 0.555 ns
 1 0.068 0.068 0.04 0.841 ns
 1 1.749 1.749 1.749 0.314 ns
ºBrix (D) 1 11.205 11.205 11.205

Cooking Temperature * Purity (A*B) 1 0.153 0.153 0.153 0.764 ns
Cooking Temperature * Lime concentration (A*C) (A*C) 1 0.815 0.815 0.815 0.49 ns
Cooking Temperature *º Brix (A*D) 1 0.063 0.063 0.063 0.847 ns
Purity * Lime concentration (B*C) 1 1.693 1.693 1.693 0.321 ns
 1 1.413 1.413 1.413 0.364 ns
Lime concentration * ºBrix (C*D) 1 0.02 0.02 0.02 0.975 ns
 37 61.911 6.52 1.675
Total 47
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Montaña et al. Rev. Fac. Agron. (LUZ). 2024 41(3): e244100
5-6 |

In relation to the color attribute b*, the analysis shown in the table 4,





of the color attribute b*.
Based on what was observed for the color variable with respect
to the three coordinates (L, a* and b*) analyzed, it is found that the
          
interactions are considered within the expected range, establishing
         
obtained a deep yellow color, which from the sensory point of view
is convenient since it is possible to have a product with a commercial
and acceptable color.
The above agrees with the studies conducted by Quezada-Moreno
et al. (2016) and Galicia-Romero et al. (2017), who indicate that the
deep yellow color present in sugarcane panela is characteristic of

determining factor in the quality of the product, in turn generating
consumer acceptance. On the other hand, some authors point out that
the heat generated during the elaboration process has an impact on
          
(García et al., 2017). Likewise, Lee et al. (2018) and Prada Forero et
al. (2015) mention that at temperatures above 100°C the development
of color through sucrose caramelization, is not considered adequate
compared to the color obtained at lower temperatures. Therefore, the
thermal stage is the most relevant in the production process since it


        


in the table 5. Also, it is noted that only the interaction composed
of the factors baking temperature and lime concentration presented
    

sugars (%) of processed panela.
          
of the purity level of the raw material, a statistically similar average
value of reducing sugars (%) was obtained; however, when the



 df Ss Ms F P

1 13.033 13.033 2.46 0.125 ns

1 17.449 17.449 3.31 0.077 ns

1 0.276 0.276 0.05 0.821 ns
ºBrix (D)
1 3.444 3.444 0.65 0.425 ns
Cooking Temperature * Purity (A*B)
1 39.802 39.802 7.53

Cooking Temperature * Lime concentration (A*C)
1 3.901 3.901 0.74 0.396 ns
Cooking Temperature *º Brix (A*D)
1 1.799 1.799 0.34 0.563ns
Purity * Lime concentration (B*C)
1 5.66 5.66 1.07 0.308 ns

1 0.191 0.191 0.04 0.85 ns
Lime concentration * ºBrix (C*D)
1 0.126 0.126 0.02 0.878 ns

37 195.669 5.288
Total
47


This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Montaña et al. Rev. Fac. Agron. (LUZ). 2024 41(3): e244100
6-6 |
Similarly, it was found that the combination of 110 ºC cooking
temperature with a purity level of 95 % generated the highest average

combinations evaluated. It is important to highlight that this average
value obtained showed a fragile consistency of panela, coinciding
with the results obtained by Cerda-Mejía et al. (2020) and Vargas-
Valencia et al. (2022), who determined that as the content of reducing
         
requiring little force for its deformation.
Likewise, Cerda-Mejía et al. (2021) consider that sucrose
hydrolysis is greater when temperatures higher than 100 ºC are


It is important to highlight that in the artisanal manufacturing
process, knowing the exact doses of the factors that are involved
          

investigation. For the color variable, a lime concentration value of
1 g.L
-1
             
are needed. In relation to the reducing sugars variable, to achieve the
recommended value, a purity level of 95 % and a temperature of 110
ºC must be used.

The quality of panela is given by a set of factors that intervene
in the artisanal production process; however, for the purposes of this
          
variable “color” for the three coordinates evaluated were: lime
concentration (g.L
-1
), baking temperature (ºC) and purity content (%)
for the L* coordinate; ºBrix for the a* coordinate and purity content
(%) for the b* coordinate. With respect to the response variable

were cooking temperature (ºC) and purity content (%); where it is
recommended to use any of the combinations of these two factors,
except for the combination of 110 ºC and 95 % purity, since this

desired by the consumer.

Cerda-Mejía, V., Guijarro, O., Benítez, I., Cerda, G., Guardado, E., Ortega, D.,
González, E., & Pérez, A. (2021). Monitoreo remoto de los parámetros
operacionales para el proceso de producción de miel de caña. Lámpsakos,
(25), e–3991. https://doi.org/10.21501/21454086.3991
Cerda-Mejía, V., Pérez, A. & Gonzales, E. (2020). “Procedimiento para el diseño
óptimo de procesos considerando la calidad: aplicación en la elaboración
de miel de caña”, Revista Centro Azúcar, 47  
Users/getti/Downloads/articulopublicado-Centroazucar.pdf.
Espitia, J., Velásquez, F., López, R., Escobar, S. & Rodríguez, J. (2020).
An engineering approach to design a non-centrifugal cane sugar
production module: A heat transfer study to improve the energy use.
Journal of Food Engineering, 274, 109849. https://doi.org/10.1016/j.
jfoodeng.2019.109843
Galicia-Romero, M., Hernández-Cázarez, A.S., Debernardi de la Vequia, H.,
Velasco-Velasco, J. & Hidalgo-Contreras, J.V. (2017). Evaluación
de la calidad e inocuidad de la panela de Veracruz, México.
Agroproductividad,10 (11):35-40. https://revista-agroproductividad.org/
index.php/agroproductividad/article/view/68/64
García, M. J., Narváez, P.C., Heredia, F.J., Orjuela, Á., & Osorio, C. (2017).
Physicochemical and sensory (aroma and colour) characterisation of a
non-centrifugal cane sugar (“panela”) beverage. Food Chemistry, 228(1),
7- 13. https://doi.
org/10.1016/j.foodchem.2017.01.134
é, W. (2015). Nutritional and functional components of non-centrifugal cane
sugar: a compilation of the data from the analytical literature. Journal
Food Composition and Analysis, 43, 194–202. https://www.sciencedirect.
com/science/article/abs/pii/S0889157515001490
Lee, J., Ramalingam, S., Guk Jo, I., Kwon, Y., Bahuguna, A., Sook Oh, Y.,
Kwon, O., Kim, M. (2018). Comparative study of the physicochemical,
      
non-centrifugal sugars, Food Research International, 109, 614-625.
https://doi.org/10.1016/j.foodres.2018.04.047.
Montgomery, D. (2004). Desing and Analysis of Experiments. John Wiley &
Sons. Eighth Edition. 8. https://industri.fatek.unpatti.ac.id/wp-content/
uploads/2019/03/181-Design-and-Analysis-of-Experiments-Douglas-C.-
Montgomery-Edisi-8-2013.pdf
Prada Forero, E. (2004). La limpieza de los jugos: un requisito indispensable
para la calidad de la panela y de las mieles. Revista Innovaciόn y Cambio
Tecnolόgico. 4 (1), 12–19. http://hdl.handle.net/20.500.12324/15224
Prada Forero, L.E., Chaves Guerrero, A., & García Bernal, H. (2015).
Efectos de la presión de evaporación y la variedad de caña en la
calidad de la miel y la panela. Ciencia y Tecnología Agropecuaria
16(2), 153-165. http://www.scielo.org.co/scielo.php?script=sci_
arttext&pid=S0122-87062015000200002
Quezada-Moreno, W., Gallardo, I. & Torres, M. (2016) El color en la calidad de
los edulcorantes de la agroindustria panelera. Anidad LXXIII, 573, 26-
30. https://core.ac.uk/reader/39151842
Rodríguez-Campos, J., Osorio, a. & Morales, V. (2018). Innovaciones en el trapiche
panelero: la producción de panela granulada. Agro Productividad, 10
(11). https://revista-agroproductividad.org/index.php/agroproductividad/
article/view/67

Cortina, J. (2022). Functional and physicochemical properties of non-
centrifugal cane sugar obtained by three concentration technologies.
Food Science and Technology, 168, 113897. https://doi.org/10.1016/j.
lwt.2022.113897.
Velásquez, F., Espitia, J., Mendieta, O., Escobar, S., Rodríguez, J., (2019). Non-
centrifugal cane sugar processing: A review on recent advances and the
         
Journal of Food Engineering, 255, 32-40. https://doi.org/10.1016/j.
jfoodeng.2019.03.009.
Vera-Gutiérrez, T., García-Muñoz, M.C., Otálvaro-Álvarez, A.M, & Mendieta-
Menjura, O. (2019).      
        
Heliyon, 5, Issue 10, e02667, https://doi.org/10.1016/j.heliyon.2019.
e02667.
Whalley, H. (1971). Métodos ICUMSA de Análisis de Azúcar. Edición autorizada
por Elsevier Publishing Company, Ámsterdam. Editorial Continental,
S.A. México. 29-40. ISSN: 1665-5745
Zhu, Z., Xie, C., Li, W., Hang, F., Li, K., Shi, C., Doherty, W. O. (2020). Nutritional
and antioxidant properties of non-centrifugal cane sugar derived from
   Food Science and Technology, 131, 109717.
https://doi.org/10.1016/j.lwt.2020.109717.