© The Authors, 2024, Published by the Universidad del Zulia*Corresponding author:jenaro.reyes@correo.buap.mx
Keywords:
Cereals
Nitrogen use eciency
Root architecture
Native varieties
Morphological response of native maize (Zea mays L.) seedlings to contrasting nitrogen
environments
Respuesta morfológica de plántulas de maíz nativo (Zea mays L.) a ambientes contrastantes de
nitrógeno
Resposta morfológica de plântulas de milho nativo (Zea mays L.) a ambientes contrastantes de
nitrogênio
Jenaro Reyes-Matamoros
1*
Marco Antonio Mora-Ramírez
2
Ivan Ilich Morales-Manzo
1
Antonio Salomón Valderrama-Romero
3
Rev. Fac. Agron. (LUZ). 2024, 41(4): e244134
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v41.n4.03
Crop production
Associate editor: Dr. Jorge Vilchez-Perozo
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
1
Centro de Investigación en Ciencias Agrícolas. Benemérita
Universidad Autónoma de Puebla (BUAP). Av. 14 Sur 6301,
CU, Col. San Manuel, C.P. 72570, Puebla, Pue., México.
2
Facultad de Ciencias Químicas, BUAP. Edicio FCQ 5,
CU, Col. San Manuel, C.P. 72570, Puebla, Pue., México.
3
Estación Experimental Agraria Chincha. Instituto Nacional
de Innovación Agraria (INIA). Carretera Panamericana Sur
km 200.5, Chincha, Departamento de Ica, Perú.
Received: 06-06-2024
Accepted: 11-09-2024
Published: 17-09-2024
Abstract
Nitrogen plays a vital role in plant metabolism, inuencing
growth and development, particularly in crops like maize (Zea
mays L.). This study aimed to evaluate the morphological response
of maize seedlings to dierent nitrogen levels. The design was a
completely randomized factorial arrangement of 4 x 2, involving
four maize cultivars and two nitrogen levels.The variety Sb 302
Berentsen and three native varieties originating from Tecamachalco,
Puebla, Mexico were studied. For a period of 14, 21, 28 and 35
days, seedlings were grown in nutrient solution with 10 % and
100 % nitrogen levels under hydroponic conditions. The results
revealed signicant variability in seedling morphology, particularly
in root architecture and dry weight, between the 10 % and 100 %
nitrogen treatments. High coecients of variation were observed
in the lengths of crown and seminal roots, alongside signicant
correlations between root and seedling dry weights at both nitrogen
levels. Additionally, a strong correlation was found between root
length and number under the 10 % nitrogen treatment. The results
highlight the critical role of nitrogen in maize seedling development
and the interaction between nitrogen concentration and maize
variety, particularly in primary root length. The study improves
understanding of nitrogen’s role in optimizing maize growth
and suggests strategies to enhance nitrogen use eciency across
dierent maize varieties.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(4): e244134 October-December. ISSN 2477-9407.
2-8 |
Resumen
El nitrógeno desempeña un papel vital en el metabolismo de las
plantas, inuyendo en su crecimiento y desarrollo, especialmente en
cultivos como el maíz (Zea mays L.). El estudio tuvo como objetivo
evaluar la respuesta morfológica de las plántulas de maíz a diferentes
niveles de nitrógeno. El diseño fue un arreglo factorial completamente
aleatorizado de 4 x 2, que incluía cuatro cultivares de maíz y dos
niveles de nitrógeno.Se estudió la variedad Sb 302 Berentsen y tres
variedades nativas originarias de Tecamachalco, Puebla, México.
Por un periodo de 14, 21, 28 y 35 días, las plántulas se cultivaron
en solución nutritiva con niveles de 10 % y 100 % de nitrógeno en
condiciones hidropónicas.Los resultados revelaron una variabilidad
signicativa en la morfología de las plántulas, particularmente en
la arquitectura de las raíces y el peso seco, entre los tratamientos
con 10 % y 100 % de nitrógeno. Se observaron altos coecientes
de variación en las longitudes de las raíces adventicias y seminales,
junto con correlaciones signicativas entre los pesos secos de las
raíces y las plántulas en ambos niveles de nitrógeno. También se
encontró una correlación fuerte entre la longitud y el número de raíces
en el tratamiento con 10 % de nitrógeno. Los resultados destacan el
papel crítico del nitrógeno en el desarrollo de las plántulas de maíz
y la interacción entre la concentración de nitrógeno y la variedad de
maíz, particularmente en la longitud de la raíz primaria. El estudio
mejora la comprensión del papel del nitrógeno en la optimización del
crecimiento del maíz y sugiere estrategias para mejorar la eciencia
en el uso del nitrógeno en diferentes variedades de maíz.
Palabras clave: cereales, uso eciente de nitrógeno, arquitectura
radicular, variedades nativas.
Resumo
O nitrogênio desempenha um papel vital no metabolismo
das plantas, inuenciando o crescimento e o desenvolvimento,
especialmente em culturas como o milho (Zea mays L.). O estudo
teve como objetivo avaliar a resposta morfológica de plântulas de
milho a diferentes níveis de nitrogênio. O delineamento foi um arranjo
fatorial completamente casualizado de 4 x 2, envolvendo quatro
cultivares de milho e dois níveis de nitrogênio. Foram estudadas a
variedade Sb 302 Berentsen e três variedades nativas originárias de
Tecamachalco, Puebla, México. Durante um período de 14, 21, 28
e 35 dias, as plântulas foram cultivadas em solução nutritiva com
níveis de nitrogênio de 10 % e 100 % em condições hidropônicas. Os
resultados revelaram uma variabilidade signicativa na morfologia
das plântulas, especialmente na arquitetura das raízes e no peso
seco, entre os tratamentos com 10 % e 100 % de nitrogênio. Foram
observados altos coecientes de variação nas longitudes das raízes
adventícias e seminal, juntamente com correlações signicativas
entre os pesos secos das raízes e das plântulas em ambos os níveis de
nitrogênio. Além disso, foi detectada uma correlação mais forte entre
o comprimento e o número de raízes seminal sob o tratamento com
10 % de nitrogênio. Também foi encontrada uma forte correlação
entre o comprimento e o número de raízes no tratamento com 10 %
de nitrogênio. Os resultados destacam o papel crucial do nitrogênio
no desenvolvimento das plântulas de milho e a interação entre a
concentração de nitrogênio e a variedade de milho, particularmente
no comprimento da raiz primária. O estudo melhora a compreensão
do papel do nitrogênio na otimização do crescimento do milho e
sugere estratégias para melhorar a eciência do uso do nitrogênio em
diferentes variedades de milho.
Palabras-chave:cereais, eciência do uso de nitrogênio, arquitetura
radicular, variedades nativas.
Introduction
Nitrogen (N) is a crucial element for achieving satisfactory yields,
as it is essential in plant metabolism and related to the production
of stems and leaves, which absorb light to carry out photosynthesis,
therefore nitrogen fertilizers have a signicant impact on the growth
and development of crops (Asibi et al., 2019); however, information
on their ecient use in maize varieties is still limited (Zuo et al.,
2021). Additionally, excessive nitrogen use contributes to signicant
environmental issues such as atmospheric pollution, aquifer
contamination, and aquatic ecosystem degradation through processes
like volatilization, leaching, runo, and denitrication (Martínez-
Dalmau et al., 2021).
Maize is among the plants that strongly respond to nitrogen
fertilization and is characterized by a specic nitrogen absorption
dynamic (Barrios et al., 2012). Nitrogen deciency in plants
generally results in stunted growth and chlorotic leaves caused by
poor assimilation leading to premature owering and shortened
growth cycles (Mu & Chen, 2021). Nitrogen excess promotes
aboveground biomass development with abundant dark green tissues
(high chlorophyll) of soft consistency and relatively poor root growth
(Hokam et al., 2011). Maize plants form a complex root system that
appears and modies at dierent stages of their development; while
the purpose is to extract water and mineral nutrients from the soil,
each root type is structurally and functionally dierent from the
others (Hochholdinger et al., 2018). Excessive nitrogen supply causes
many environmental problems, such as greenhouse gas emissions
and surface and groundwater contamination. Then, the ecient use
of nitrogen is one of the factors for maintaining the productivity and
sustainability of agroecosystems (Noor, 2017). In this context, the
objective of the study was to evaluate the morphological response
of native maize seedlings (Zea mays L.) seedlings under contrasting
nitrogen conditions.
Materials and methods
The experiment was carried out at the facilities of the Agricultural
Science Research Center (BUAP), located in the municipality
of Puebla, Mexico, at an altitude of 2150 meters above sea level
(19º13′48′′ N, 98º19′42′′ W). Four maize varieties were evaluated,
involving one improved variety (Sb 302 Berentsen) and three native
landraces (white, blue, and red) originating from the municipality of
Tecamachalco in the state of Puebla, Mexico.
Seedlings were grown under hydroponic conditions using
modied Hoagland and Arnon (1950) nutrient solution at 10 % and
100 % nitrogen levels. The seedling trials spanned periods of 14, 21,
28 and 35 days after sowing. A completely randomized design with
a 4 x 2 factorial arrangement (four maize varieties and two nitrogen
levels). Each trial was replicated three times.
Plant characterization was conducted using the paper roll method
described by Woll et al. (2005). For seed preparation, they were
disinfected with 6 % sodium hypochlorite for 5 min, followed by
rinsing with water three times. Subsequently, four seeds were placed
between wet lter paper sheets, which were rolled to form four rolls
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Reyes-Matamoros et al. Rev. Fac. Agron. (LUZ). 2024 41(4): e244134
3-8 |
per variety and per nitrogen dose. The rolls were vertically arranged
in cylindrical containers measuring 21.5 cm in height and 8 cm in
diameter for the 14, 21, and 28-day trials, and 32 cm in height and 24
cm in diameter for the 35-day trial.
At each time point, for data analysis, six healthy seedlings were
randomly selected for each variety and nitrogen level, totaling 18
observations per combination of factors each day. Each seedling was
considered as an experimental unit. The evaluated parameters were
as follows: primary root length (cm) (PRL), mesocotyl length (cm)
(ML), seminal root number (SRN), total length of seminal roots (cm)
(SRL), crown root number (CRN), total length of crown roots (cm)
(CRL), plant length (cm) (PL), plant dry weight (g) (PDW) and root
dry weight (g) (RDW).
The PL was measured from the node marked by the crown roots to
the longest leaf of the seedling. The RDW and PDW were measured
using a precision scale after drying the samples for 48 hours at 70 ºC.
Statistical model associated with the experimental design
For each variable, a descriptive statistical analysis was performed,
calculating the minimum, maximum, mean, and standard deviation
(SD) for each treatment (10 % and 100 % N) and for each trial (14,
21, 28, and 35 days). The coecient of variation (CV) was estimated
for the same database, dened as follows:
this coecient multiplied by 100 expresses CV as a percentage.
Additionally, the reduction in the response from one dose of N to
another was estimated by the percentage of reduction of mean (%
RM), according to:
Where HN and LN correspond to the higher and lower nitrogen
levels, respectively. The percentage reduction in the response of one
method compared to another, in this study based on the N dose.
After calculating the mean and standard deviation, the seedlings
were classied into three yield categories: the rst category includes
varieties with low yield and undesirable root characteristics [≤ mean-
SD], the second category includes varieties with medium yield with
values between [≥ mean-SD] and [≤ mean+SD], and the third category
includes varieties with high yield [≥ mean+SD]. This was based on the
frequency percentage of seedlings in each interval for each variable
or trait. Subsequently, these frequency data were used to calculate the
Shannon-Weaver diversity index (H’), which is a value quantifying
species biodiversity, given as follows:
where Pi is the proportion of individuals in the i-th category and
n is the number of phenotypic classes, in this case. In this study, the
number of classes is three, as there are three categories in which the
frequencies are found (low, medium, and high).
For each pair of variables in the treatments and trial days,
correlation coecients (r) were calculated between them, which help
to determine the degree of relationship between each pair of variables.
Finally, in this study, an analysis of variance (two-way ANOVA)
of the two factors studied was carried out with an interaction for each
trial day, using the following model:
where Y
ij
is the response of the variable at the i-th level of factor
α (variety) and at the j-th level of factor β factor (nitrogen level),
µ is the mean value of Y
ij
, α
i
represents the eect of the i-th level
of factor α on the global mean µ, β
j
represents the eect of the j-th
level of factor β on the global mean µ, αβ
ij
represents the eect of the
interaction (variety × nitrogen level) between the i-th level of factor α
and the j-th level of factorβ, and ε is the random error of Y
ij
. Through
this model, it can be observed if there are dierences between the N
treatments or if there are signicant dierences in maize varieties, as
well as in their interactions (variety x N level) (Zar, 2010).
Results and discussion
A descriptive statistical analysis was performed for each variable
in both nitrogen treatments, analyzing data from the trials on days
14, 21, 28, and 35, the results in table 1 show the ranges of the
measurements. For instance, the PRL variable exhibits consistent
ranges for both the 100 % N treatment (5.7 to 28.2 cm) and the 10
% N treatment (9 to 25.4 cm). A similar pattern was observed for the
ML variable, with values ranging from 0.6 to 2.5 cm for 10 % N and
from 0.7 to 2.7 cm for 100 % N. The CRN and SRN variables showed
a broader range, with the number of roots varying from 0 to 14 in
both treatments and across all trials. Additionally, the SRL and CRL
variables showed wide ranges, with SRL extending from 1.5 to 187.6
cm and CRL from 0 to 54.9 cm. The maximum and minimum values
of dry weights of the seedlings and roots (PDW, and RDW) increased
over time, although dierences between nitrogen treatments were
minimal. These results agree with those of Liu et al. (2017) and
Schneider et al. (2021), who found that nitrogen supply signicantly
inuences plant growth and root system roles in nitrogen acquisition.
The coecient of variation showed that variability between
measurement days for each parameter was relatively constant. PRL
with 10 % N had the least dispersion, with a CV ranging from 14.3 %
to 20.8 %. The PL registered a CV of 29.5 % on day 14 with 10 % N,
decreasing to an average of 19 % on subsequent days. The CRN and
SRN variables exhibited considerable data dispersion, with CVs for
the SRN variable ranging from 30.9 % to 40.7 % for 10 % N and from
36.5 % to 52.4 % for 100 % N. For CRN, the CV ranged from 55.6 %
to 63.5 % for the 10 % N treatment, except on day 21. Both SRL and
CRL showed very high CV, most above 50 %, with CRL on day 14
having values of 111 % and 108.7 % for the 10 % and 100 % N doses,
respectively. The dry weight variables (PDW, and RDW) also showed
high variability, with CVs ranging from 30.6 % to 48.7 % for 10 % N
and from 27.3 % to 43.8 % for 100 % N.
The last column of table 1 shows the percentage of mean reduction,
calculated from the averages of both nitrogen treatments. The PRL
variable had more favorable development at 14 and 21 days with 10
% N, with improvement percentages of 15 % and 27 %, respectively.
For 28 and 35 days, the development was better with 100 % N,
showing increases of 27 % and 14 %, respectively. A similar behavior
was recorded for the ML variable, although with lower percentages.
The SRN and SRL variables exhibited optimal development with the
10 % N dose, especially for SRN on day 35, where an increase of 113
% was observed. For crown roots, the 100 % N treatment showed
a higher mean reduction percentage in the CRN variable, possibly
because all seedlings developed at least one crown root, while with the
lower dose some did not. However, the CRL had a higher percentage
with 10 % N, indicating that those seedlings that developed crown
roots had longer roots than in the 100 % N treatment. Maqbool et al.
(2022) highlighted that a well-distributed root morphology is crucial
for the ecient absorption of mobile nutrients.
% RM =
(


)

100,
1
=

=1
1

= +
+
+ 

+ ,
1
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(4): e244134 October-December. ISSN 2477-9407.
4-8 |
Table 1. Mean, maximum value, minimum value, coecient of variation, and percentage of reduction of mean.
Trait Day
10 % nitrogen 100 % nitrogen
% reduction
of mean
Min. Max. Mean CV % Min. Max. Mean CV %
PRL
14 9 19.30 15.82 14.33 9.50 19.30 13.71 18.67 -15.37
21 12.50 25 18.48 18.65 5.70 21.80 14.54 32.89 -27.07
28 10.20 20.20 14.65 17.12 11.40 28.20 20.32 22.33 27.90
35 10.40 25.40 15.64 20.82 5.70 27 18.34 30.18 14.71
ML
14 0.60 2 1.20 30.86 0.70 2 1.12 29.45 -7.40
21 0.70 2.50 1.16 32.76 0.80 2.20 1.13 28.57 -2.44
28 0.60 2.50 1.27 40.34 0.80 2.70 1.37 36.73 7.00
35 0.70 2.20 1.24 32.80 0.60 2 1.33 32.70 6.56
SRN
14 1 7 4.04 36.83 2 6 3.41 36.53 -18.29
21 1 6 3.66 40.74 0 7 3.39 52.40 -8.13
28 3 10 6.95 30.99 1 8 3.62 48.68 -91.94
35 3 14 7.29 32.97 2 6
3.41 39.47 -113.40
SRL
14 4.60 70.40 37.65 51.90 6.60 51.30 25.81 50.41 -45.87
21 6.20 114.90 57.95 47.76 0 94.60 39.97 63.80 -44.98
28 16.70 137.80 80.52 39.17 1.50 110.10 47.81 49.29 -68.41
35 0.70 187.60 83.04 46.89 9 120.40 46.80 58.41 -77.43
CRN
14 0 7 3.12 56.86 1 7 3.62 41.33 13.79
21 2 6 4.37 22.16 3 7 4.43 22.37 1.35
28 0 7 3 55.60 2 10 4.87 47.75 38.46
35 0 10 3.12 63.52 3 8 5.41 27.17 42.31
CRL
14 0 17 3.34 111.04 0.10 18.30 3.87 108.74 13.65
21 1.30 54.90 26.79 54.30 0.90 39 14.42 69.90 -85.78
28 0 48.30 14.57 87.15 0.50 18.60 6.41 82.49 -127.30
35 0 38 10.60 89.80 1 34.20 7.85 98.70 -35.03
PL
14 0.80 19.30 11.78 29.57 9.60 19.30
14.04 21.30 16.08
21 13.40 28.60 21.47 18.08 12.60 33.60 21.57 19.18 0.45
28 19.10 40.90 27.26 19.59 19.50 45.10 27.09 23.12 -0.62
35 19.70 45.40 32.60 18.22 15.50 41.40 26.97 23.28 -20.87
PDW
14 0.02 0.10 0.06 32.31 0.03 0.13 0.05 40.34 -5.72
21 0.06 0.22 0.11 34.78 0.03 0.14 0.09 29.65 -21.33
28 0.06 0.20 0.10 30.60 0.03 0.15 0.07 41.87 -41.21
35 0.05 0.22 0.13 32.22 0.04 0.20 0.09 37.65 -37.71
RDW
14 0.01 0.09 0.05 39.88 0.03 0.08 0.04 38.02 -15.24
21 0.03 0.16 0.08 41.68 0.02 0.12 0.06 36.10 51.40
28 0.03 0.15 0.07 41.87 0.33 1 0.70 27.39 89.30
35 0.03 0.24 0.11 48.77 0.03 0.15 0.07 43.89 -49.16
Legend: PRL: primary root length (cm), ML: mesocotyl length (cm), SRN: seminal root number, SRL: total length of seminal roots (cm), CRN: crown root number, CRL:
total length of crown roots (cm), PL: plant length (cm), PDW: plant dry weight (g) and RDW: root dry weight (g).
Table 2 shows the frequency distributions of the seedlings. Most
seedlings were classied at the medium level, with percentages
ranging from 58 % to 87 % for 10 % N and from 41 % to 87 % for
100 % Ntreatments. The percentages of seedlings at the high level
ranged from 4 % to 20 % for 10 % N and from 4 % to 29 % for 100
% N. Most biodiversity indices were high, ranging from 0.56 to 0.96
for 10 % N and from 0.61 to 0.99 for 100 % N, with a lower CRL
index of 0.37 on day 14. Exceptions include CRL indices of 0.37 and
0.45 on days 14 and 35, and the RDW index of 0.37 on day 14. The
SRN variable showed particularly high indices of 1 and 1.07 on days
14 and 35.
Table 3 shows the correlations between dierent pairs of
variables for each day of the 10 % and 100 % N treatments. Medium
correlations were observed between various combinations of
variables. For example, PRL showed a medium positive correlation
with ML (r=0.46 on day 35), SRN (r=0.64) and SRL (r=0.70 on
day 21), and with PL, PDW, and RDW (r coecients of 0.61, 0.52,
0.43, 0.54, and 0.50 on day 35) under the 10 % N treatment. For the
100 % N treatment, PRL correlated negatively with ML (r=-0.53 on
day 35), and positively with SRL (r=0.55 on day 21 and r=0.57 on
day 35), and PDW (r=-0.41, 0.45, and 0.42 on days 14, 21, and 35).
Previous studies like those by Pace et al. (2014) have found that PRL
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Reyes-Matamoros et al. Rev. Fac. Agron. (LUZ). 2024 41(4): e244134
5-8 |
Table 2. Frequencies of the varieties divided into three categories and Shannon-Weaver index.
Trait Day
Frequency 10 % nitrogen
H’
Frequency 100 % nitrogen
H’
Low Medium High Low Medium High
PRL
14 0.08 0.75 0.16 0.72 0.16 0.62 0.20 0.91
21 0.29 0.58 0.12 0.93 0.12 0.70 0.16 0.80
28 0.16 0.70 0.12 0.80 0.25 0.66 0.08 0.82
35 0.12 0.79 0.08 0.65 0.16 0.62 0.20 0.91
ML
14 0.08 0.70 0.20 0.77 0.04 0.70 0.25 0.72
21 0.08 0.79 0.12 0.65 0.12 0.75 0.12 0.73
28 0.08 0.70 0.20 0.77 0.08 0.70 0.20 0.77
35 0.08 0.75 0.16 0.72 0.16 0.54 0.29 0.99
SRN
14 0.12 0.75 0.12 0.73 0.20 0.54 0.25 1.00
21 0.20 0.66 0.12 0.85 0.16 0.70 0.12 0.80
28 0.16 0.79 0.04 0.61 0.12 0.70 0.16 0.80
35 0.08 0.75 0.16 0.72 0.33 0.41 0.25 1.07
SRL
14 0.20 0.58 0.20 0.96 0.29 0.58 0.12 0.93
21
0.08 0.75 0.16 0.72 0.12 0.75 0.12 0.73
28 0.16 0.66 0.16 0.86 0.12 0.75 0.12 0.73
35 0.08 0.83 0.08 0.56 0.08 0.79 0.12 0.65
CRN
14 0.25 0.62 0.12 0.90 0.20 0.75 0.04 0.67
21 0.12 0.75 0.12 0.73 0.20 0.70 0.08 0.77
28 0.20 0.66 0.12 0.85 0.08 0.70 0.20 0.77
35 0.16 0.75 0.08 0.72 0.08 0.66 0.25 0.82
CRL
14 0.00 0.87 0.12 0.37 0.00 0.87 0.12 0.37
21 0.20 0.62 0.16 0.91 0.20 0.62 0.16 0.91
28 0.20 0.62 0.16 0.91 0.16 0.70 0.12 0.80
35 0.12 0.70 0.16 0.80 0.00 0.83 0.16 0.45
PL
14 0.04 0.79 0.16 0.61 0.12 0.66 0.20 0.85
21 0.20 0.66 0.12 0.85 0.12 0.79 0.08 0.65
28 0.20 0.66 0.12 0.85 0.08 0.75 0.16 0.72
35 0.16 0.70 0.12 0.80 0.08
0.79 0.12 0.65
PDW
14 0.16 0.66 0.16 0.86 0.04 0.79 0.16 0.61
21 0.16 0.70 0.12 0.80 0.12 0.75 0.12 0.73
28 0.12 0.70 0.16 0.80 0.16 0.66 0.16 0.86
35 0.16 0.62 0.20 0.91 0.16 0.70 0.12 0.80
RDW
14 0.29 0.62 0.08 0.86 0.00 0.87 0.12 0.37
21 0.16 0.66 0.16 0.86 0.12 0.79 0.08 0.65
28 0.16 0.66 0.16 0.86 0.12 0.66 0.20 0.85
35 0.08 0.75 0.16 0.72 0.20 0.62 0.16 0.91
Legend: PRL: primary root length (cm), ML: mesocotyl length (cm), SRN: seminal root number, SRL: total length of seminal roots (cm), CRN: crown root number, CRL:
total length of crown roots (cm), PL: plant length (cm), PDW: plant dry weight (g) and RDW: root dry weight (g).
is closely related to RDW. Similarly, Kumar et al. (2012) and Abdel-
Ghani et al. (2013) suggest that positive correlations between PRL,
SRL, CRL, and RDW, and other root characteristics indicate cultivars
with well-developed roots at the seedling stage. Also, ML showed a
medium correlation with CRL (r=0.53 on day 14), PL (r=0.57 on day
21 and r=0.41 on day 35), and with weights PDW, and RDW, with r
coecients of 0.54, 0.58, 0.56; 0.70, 0.62, 0.65; and 0.46, 0.60, 0.56;
and 0.57, 0.60, 0.66 respectively for days 14, 21, and 35 under the 10
% N treatment.
In the 100 % N treatment, ML shows various correlations: it is
negatively correlated with SRL (r=-0.74 on day 14) and positively
with CRN (r=0.55 on day 28) and CRL (r=-0.44 and r=0.42 on days
21 and 28). It also correlates with PL (r=0.53 on day 28 and r=0.45
on day 35), and PDW (r=0.68 on the same day). The correlation with
RDW is notable (r=0.48 and r=0.54 on days 14 and 28). Overall, SRN,
SRL, CRN, CRL, PL, PDW, and RDW show moderate correlations on
various measurement days with both nitrogen treatments. This pattern
supports Wang et al. (2005), who reported the absence of consistent
correlations between dierent levels of nitrogen supply.
In the 10 % N treatment, there is a high correlation between SRL
and SRN, with coecients of 0.72, 0.93, 0.83, and 0.79 for days 14,
21, 28, and 35, signicant at p<0.01. For 100 % N, these correlations
are lower, with values of 0.52, 0.66, and 0.64 for the same days and
signicantly lower on day 35.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Reyes-Matamoros et al. Rev. Fac. Agron. (LUZ). 2024 41(4): e244134
6-8 |
Table 3. Data correlations. The upper triangular matrix shows the correlations between variables for each assay with 10 % nitrogen
treatment. The lower triangular matrix shows the correlations between variables for each assay with 100 % nitrogen treatment.
Trait Day PRL ML SRN SRL CRN CRL PL PDW RDW
PRL
14 -0.28 -0.02 0.22 0.18 -0.17 -0.09 -0.05 0.00.
21 -0.07 0.64
**
0.70
**
0.36 0.19 0.22 0.17 0.27
28 0.30 0.01 0.05 0.01 -0.07 0.35 -0.23 -0.22
35 0.46
*
0.07 0.09 -0.27 -0.19 0.61
**
0.54
**
0.50
*
ML
14 -0.53
**
0.06 0.17 0.35 0.53
**
0.35 0.46
*
0.57
**
21 -0.40 0.06 0.16 0.27 0.24 0.57
**
0.60
**
0.60
**
28 0.20 -0.31 -0.11 0.15 0.15 0.26 0.25 0.34
35 -0.09 0.18 0.37 0.18 0.13 0.41
*
0.56
**
0.66
**
SRN
14 -0.04 -0.25 0.72
**
0.27 0.26 0.13 0.05 0.21
21 -0.16 0.03 0.93
**
0.21 0.29 0.39 0.41
*
0.48
*
28 0.26 0.25 0.83
**
-0.26 -0.12 0.46
*
-0.53
**
-0.41
*
35 0.00 -0.09 0.79
**
-0.33 -0.07 0.31 0.11 0.43
*
SRL
14 0.55
**
-0.74
**
0.52
**
0.44
*
0.33 0.10 0.12 0.47
*
21 0.31 -0.18 0.66
**
0.35 0.31 0.40 0.48
*
0.59
**
28 0.37 0.18 0.64
**
-0.18 -0.19 0.50
*
-0.28 -0.19
35 0.57
**
0.13 0.24 -0.13 -0.03 0.30 0.18 0.43
*
CRN
14 -0.35 0.16 0.15 -0.10 0.71
**
0.21 0.54
**
0.66
**
21 0.02 -0.38 0.49
*
0.64
**
0.37 0.18 0.37 0.50
*
28 -0.02 0.55
**
0.31 0.16 0.51
*
0.02 0.10 0.34
35 0.17 0.24 0.06 0.41
*
0.73
**
-0.06 0.16 0.07
CRL
14 0.01 -0.35 0.13 0.27 0.53
**
0.45
*
0.55
**
0.57
**
21 0.26 -0.44
*
0.31 0.42
*
0.52 0.53
**
0.64
**
0.74
**
28 0.16 0.42
*
0.26 0.50
*
0.56
**
-0.12 0.14 0.26
35 0.28 -0.12 0.19 0.46
*
0.58
**
0.20 0.45
*
0.37
PL
14 -0.32 0.28 0.16 0.01 0.37 0.18 0.44
*
0.34
21 0.14 0.24 0.22 0.33 0.32 0.43
*
0.76
**
0.73
**
28 0.13 0.53
**
0.23 0.36 0.59
**
0.52
**
-0.25 -0.12
35 0.26 0.45
*
0.02 0.18 0.43
*
0.11 0.77
**
0.63
**
PDW
14 -0.41
*
0.37 0.11 -0.17 0.42
*
0.19 0.64
**
0.79
**
21 0.45
*
-0.03 0.12 0.33 0.28 0.21 0.56
**
0.91
**
28 0.26 0.68
**
0.44
*
0.46
*
0.63
**
0.51
*
0.67
**
0.74
**
35 0.42
*
0.39 0.20 0.45
*
0.58
**
0.52
**
0.69
**
0.82
**
RDW
14 -0.22 0.48
*
0.15 -0.21 0.47
*
-0.00 0.56
**
0.77
**
21 0.34 -0.00 0.33 0.57
**
0.45
*
0.44
*
0.58
**
0.87
**
28 0.13 0.54
**
0.21 0.26 0.25 0.11 0.17 0.62
**
35 0.36 0.37 0.39 0.52
**
0.50
*
0.59
**
0.54
**
0.74
**
*
Signicant at p<0.05.
**
Signicant at p<0.01. Legend: PRL: primary root length (cm), ML: mesocotyl length (cm), SRN: seminal root number, SRL: total length of seminal
roots (cm), CRN: crown root number, CRL: total length of crown roots (cm), PL: plant length (cm), PDW: plant dry weight (g) and RDW: root dry weight (g).
The analysis of variance in Table 4 reveals signicant dierences.
The average ML value varies signicantly between maize varieties
over the four trial days (p<0.001). Similarly, PRL shows signicant
dierences on days 14 and 21, but not on days 28 and 35. Meanwhile,
the SRN and CRL variables do not exhibit signicant dierences
between varieties on any measurement day. In nitrogen treatments,
the PRL variable diers on all days (p<0.01), but no consistent
dierences are observed in ML on the trial days. Other parameters
vary with nitrogen levels.
Blanco et al. (2004) found that dry matter production does not
increase with higher nitrogen doses, consistent with the lack of
dierences in PDW in this study. The interaction between maize
varieties and nitrogen levels is not signicant, except on specic
days for PRL, ML, and SRL(p<0.05), and for CRL (p<0.01). Li et al.
(2017) emphasize the importance of an ecient root system in maize
hybrids, reducing the need for nitrogen fertilizers.
Conclusions
Native maize seedlings show distinct morphological responses to
dierent nitrogen levels. Under the 10 % nitrogen treatment, some
seedlings did not develop crown roots, while all seedlings in the 100
% nitrogen treatment formed at least one.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Reyes-Matamoros et al. Rev. Fac. Agron. (LUZ). 2024 41(4): e244134
7-8 |
Table 4. P-values of the model’s analysis of variance.
Trait Day
ANOVA
Variety Nitrogen level
Variety ×
Nitrogen level
PRL
14 0.000739
***
0.000962
***
0.354250
21 8.59e-05
***
0.00162
**
0.03070
*
28 0.9600 2.29e-06
***
0.0522
35 0.270 0.038
*
0.135
ML
14 1.22e-12
***
0.118 0.175
21 6.2e-07
***
0.610 0.594
28 6.89e-09
***
0.315 0.579
35 1.06e-08
***
0.2611 0.0487
*
SRN
14 0.214 0.117 0.439
21 0.231 1 0.323
28 0.814 8.92e-07
***
0.260
35 0.880 6.11e-08
***
0.576
SRL
14 0.06113 0.00821
**
0.02575
*
21 0.00796
**
0.11386 0.35454
28 0.424991 0.000285
***
0.786802
35 0.956508 0.000761
***
0.322807
CRN
14 0.0202
*
0.2427 0.0800
21 0.260 1 0.124
28 0.002682
**
0.000556
***
0.120126
35 0.659 7.54e-05
***
0.625
CRL
14 0.3794 0.6124 0.0092
**
21 0.63787 0.00127
**
0.38105
28 0.67955 0.00808
**
0.85496
35 0.789 0.292
0.521
PL
14 0.00444
**
0.00991
**
0.42681
21 0.132 0.647 0.704
28 0.00533
**
0.91130 0.27702
35 0.000111
***
0.000387
***
0.849149
PDW
14 0.0954 0.5906 0.6994
21 0.0218
*
0.1601 0.0954
28 0.006686
**
0.000713
***
0.832823
35 0.000431
***
0.000497
***
0.386704
RDW
14 0.00144
**
0.14523 0.12282
21 0.0190
*
0.0176
*
0.1280
28 0.0695 <2e-16
***
0.3129
35 0.000643
***
0.001620
**
0.249387
*
Signicant at p<0.05.
**
Signicant at p<0.01.
***
Signicant at p<0.001. Legend:
PRL: primary root length (cm), ML: mesocotyl length (cm), SRN: seminal root
number, SRL: total length of seminal roots (cm), CRN: crown root number, CRL:
total length of crown roots (cm), PL: plant length (cm), PDW: plant dry weight (g)
and RDW: root dry weight (g).
The analysis revealed signicant variation in seedling lengths, root
development, and dry weights under both nitrogen levels, with the
10 % nitrogen treatment resulting in greater variability, particularly
in crown and seminal root traits. Despite this variability, signicant
dierences were detected among maize varieties, particularly in PRL
and ML, on specic days. The nitrogen trials signicantly aected
PRL across all days, highlighting the inuence of nitrogen availability
on root development. Additionally, a signicant interaction between
maize varieties and nitrogen levels was observed, particularly for
PRL, ML, and SRL on certain days.
The biodiversity index was generally high across the nitrogen
treatments, with the highest correlations observed among the dry
weight variables (PDW and RDW). However, the correlation between
SRL and SRN was stronger in the 10% nitrogen treatment compared
to the 100 % nitrogen treatment.
The importance of nitrogen in shaping the morphological traits of
native maize seedlings and highlight the signicant role of variety-
specic responses and their interaction with nitrogen levels. The
native maize varieties adapt to dierent nitrogen conditions, with
implications for optimizing nitrogen use in maize cultivation.
Literature cited
Abdel-Ghani, A.H., Bharath, K., Reyes-Matamoros, J., Gonzalez-Portilla, P.J.,
Jansen, C., San Martin, J.P., Lee, M., & Lübberstedt, T. (2013). Genotypic
variation and relationships between seedling and adult plant traits in
maize (Zea mays L.) inbred lines grown under contrasting nitrogen levels.
Euphytica, 189, 123-133. DOI 10.1007/s10681-012-0759-0
Asibi, A.E., Chai, Q., & Coulter, J.A. (2019). Mechanisms of nitrogen use in maize.
Agronomy, 9, 775. DOI: https://doi.org/10.3390/agronomy9120775
Barrios, M., García, J., & Basso, C. (2012). Efecto de la fertilización nitrogenada
sobre el contenido de nitrato y amonio en el suelo y la planta de maíz.
Bioagro, 24(3), 213-220.
Blanco L, Uhart, S., Andrade, F., Echeverría, H., & Sainz, H. (2004). Componentes
del rendimiento en el cultivo del maíz (Zea mays) ante diferentes dosis de
nitrógeno. Centro Agrícola, 31(1-2), 36-40. http://cagricola.uclv.edu.cu/
descargas/pdf/V31-Numero_1y2/cag091041352.pdf
Hoagland, D.R., & Arnon, D.I. (1950). The water-culture method for growing
plants without soil. California, Agricultural Experiment Station. Circular.
347, 32 p. https://www.nutricaodeplantas.agr.br/site/downloads/
hoagland_arnon.pdf
Hochholdinger, F., Marcon, C., Baldauf, J.A., Yu, P., & Frey, F.P. (2018).
Proteomics of maize root development. Frontiers in Plant Science, 9, 143.
DOI: https://doi.org/10.3389/fpls.2018.00143
Hokam, E.M., El-Hendawy, S.E., and Schmidhalter, U. (2011). Drip irrigation
frequency: the eects and their interaction with nitrogen fertilization on
maize growth and nitrogen use eciency under arid conditions. Agronomy
and Crop Science, 197, 186–201. DOI: http://dx.doi.org/10.1111/j.1439-
037X.2010.00460.x
Kumar, B., Abdel-Ghani, A.H., Reyes-Matamoros, J., Hochholdinger, F., &
Lübberstedt, T. (2012). Genotypic variation for root architecture traits
in seedlings of maize (Zea mays L.) inbred lines. Plant Breeding, 131(4),
465-478. DOI: 10.1111/j.1439-0523.2012.01980.x
Li, Q., Wu, Y., Chen, W., Jin, R., Kong, F., Ke, Y., Shi, H., & Yuan, J. (2017).
Cultivar dierences in root nitrogen uptake ability of maize hybrids.
Frontiers in Plant Science, 8, 1060. DOI: https://doi.org/10.3389/
fpls.2017.01060
Liu, Z., Gao, K., Shan, S., Gu, R., Wang, Z., Craft, E.J., & Chen, F. (2017).
Comparative analysis of root traits and the associated QTLs for maize
seedlings grown in paper roll, hydroponics and vermiculite culture
system. Frontiers in Plant Science, 8, 436. DOI: https://doi.org/10.3389/
fpls.2017.00436
Maqbool, S., Hassan, M.A., Xia, X., York, L.M., Rasheed, A., & He, Z. (2022).
Root system architecture in cereals: progress, challenges and perspective.
The Plant Journal, 110(1), 23-42. DOI: https://doi.org/10.1111/tpj.15669
Martínez-Dalmau, J., Berbel, J., & Ordóñez-Fernández, R. (2021). Nitrogen
fertilization. A review of the risks associated with the ineciency of
its use and policy responses. Sustainability, 13(10), 5625. https://doi.
org/10.3390/ su13105625
Mu, X., & Chen, Y. (2021). The physiological response of photosynthesis to
nitrogen deciency. Plant Physiology and Biochemistry, 158, 76-82. DOI:
https://doi.org/10.1016/j.plaphy.2020.11.019
Noor, M.A. (2017). Nitrogen management and regulation for optimum NUE in
maize–A mini review. Cogent Food & Agriculture, 3(1), 1348214. DOI:
https://doi.org/10.1080/23311932.2017.1348214
Pace, J., Lee, N., Naik, H.S., Ganapathysubramanian, B., & Lubberstedt, T. (2014).
Analysis of maize (Zea mays L.) seedling roots with the high throughput
image analysis tool ARIA (automatic root image analysis). PLoS ONE, 9,
e108255. DOI: https://doi.org/10.1371/journal.pone.0108255
Schneider, H.M., Yang, J.T., Brown, K.M., & Lynch, J.P. (2021). Nodal root
diameter and node number in maize (Zea mays L.) interact to inuence
plant growth under nitrogen stress. Plant Direct, 5(3), e00310. DOI:
https://doi.org/10.1002/pld3.310
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Reyes-Matamoros et al. Rev. Fac. Agron. (LUZ). 2024 41(4): e244134
8-8 |
Wang, Y., Mi, G., Chen, F., Zhang, J., & Zhang, F. (2005). Response of root
morphology to nitrate supply and its contribution to nitrogen accumulation
in maize. Journal of Plant Nutrition, 27(12), 2189–2202. DOI: https://doi.
org/10.1081/PLN-200034683
Woll, K., Borsuk, L., Stransky, H., Nettleton, D., Schnable, P.S., & Hochholdinger,
F. (2005). Isolation characterization and pericycle specic transcriptome
analyses of the novel maize (Zea mays L.) lateral and seminal root
initiation mutant rum1. Plant Physiology, 139, 1255-1267. DOI: https://
doi.org/10.1104/pp.105.067330
Zar, J.H. (2010). 12. Two-factor analysis of variance. Biostatistical Analysis. 5th
Edition, Pearson Education. Inc., Upper Saddle River, New Jersey, USA,
249-284.
Zuo, L.T., Luz, L.S., Destro, V., Silva, M.E.J., Rodrigues, M.C., Lara, L.M., de
Faria, S.V., & DeLima, R.O. (2021). Assessing genotypic variation for
nitrogen use eciency and associated traits in Brazilian maize hybrids
grown under low and high nitrogen inputs. Euphytica, 217, 71. DOI:
https://doi.org/10.1007/s10681-021-02806-y