This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Chillpa-Sencia et al. Rev. Fac. Agron. (LUZ). 2024 41(4): e244135
6-7 |
have anti-nutritional quality factors (Colombino et al., 2023), which
inuence the utilization of its nutrients mainly in growing guinea
pigs. The digestibility of non-starch polysaccharides is aected by a
multitude of factors, including animal species, age groups of animals,
solubility, chemical structure, and their quantity in the diet (Valentine
et al., 2017).
In this case, the age of the guinea pigs had a marked eect on
the digestibility of nutrients and energy in the diets and FSBM,
determining that the values of digestible energy were higher for adult
guinea pigs than in growing, attributable to the dierences in their
physiological development of the gastrointestinal tract. Therefore, the
digestive capacity, enzymatic production, and fermentation capacity
would not have been sucient to achieve the best use of nutrients and
energy (Fernández et al., 1986; Sciellour et al., 2018). Similar eects
were observed in pigs, where digestibility of NSP increases with the
age of animals since grower and nisher pigs can utilize dietary ber
better than young piglets (Sciellour et al., 2018).
Conclusions
The digestibility of dry matter and nutrients in full-fat soybean
meal are high, exhibiting greater values in adults than in growing.
The inclusion level of full-fat soybean meal in the diets aected the
digestibility of nutrients, being higher with high levels, associated
with the high crude protein, and fat content and lower ber. The
digestible energy of full-fat soybeans was dierent between the
ages, being 3,093 and 3,375 kcal.kg
-1
DM, with 46 % and 51 % of
digestibility for growing and adult guinea pigs respectively.
Literature cited
Arjona-Smith, M., Chino, V. L. B., Moscoso-Muñoz, J. E. (2022). Evaluación del
contenido de aminoácidos de la harina de soya para alimentación avícola
y porcina, de acuerdo con el país de origen. Revista Investigaciones
Agropecuarias 4(2), 109–120.https://revistas.up.ac.pa/index.php/
investigaciones_agropecuarias/article/view/2932
Baker, K. M., Liu, Y., & Stein, H. H. (2014). Nutritional value of soybean meal
produced from high protein, low oligosaccharide, or conventional
varieties of soybeans and fed to weanling pigs. Animal Feed Science and
Technology, 188, 64–73. https://doi.org/10.1016/j.anifeedsci.2013.10.018
Castro-Bedriñana, J., & Chirinos-Peinado, D. (2021). Nutritional value of some
raw materials for Guinea pigs (Cavia porcellus) feeding. Translational
Animal Science, 5(2), 1–11. https://doi.org/10.1093/tas/txab019
Cheeke Farías-kovac, C., Nicodemus, N., Delgado, R., Ocasio-vega, C., Noboa,
T., Abdelrasoul, R. A. S., Carabaño, R., & García, J. (2020). Eect of
dietary insoluble and soluble bre on growth performance, digestibility,
and nitrogen, energy, and mineral retention eciency in growing rabbits.
Animals, 10(8), 1–19. https://doi.org/10.3390/ani10081346
Chiou, P. W. S., Yu, B., & Kuo, C. Y. (2000). Comparison of digestive function
among rabbits, guinea pigs, rats, and hamsters. I. Performance,
digestibility, and rate of digesta passage. Asian-Australasian Journal
of Animal Sciences, 13(11), 1499–1507. https://doi.org/10.5713/
ajas.2000.1499
Classen, H. L. (2017). Diet energy and feed intake in chickens. Animal
Feed Science and Technology, 233, 13-21. https://doi.org/10.1016/j.
anifeedsci.2016.03.004
Colombino, E., Karimi, M., Nu, M. A. T., Tilatti, A. A., Sara Bellezza Oddon,
Calini, F., Bergamino, C., Fiorilla, E., Gariglio, M., Gai, F., Capucchio,
M. T. Schiavone, A., Gasco, L., Biasato, I. (2023). Eects of feeding a
thermomechanical, enzyme-facilitated, coprocessed yeast and soybean
meal on growth performance, organ weights, leg health, and gut
development of broiler chickens, Poultry Science, 102(5) 102578. https://
doi.org/10.1016/j.psj.2023.102578.
Crowley, E. J., King, J. M., Wilkinson, T., Worgan, H.J., Huson, K.M., Rose, M.
T., McEwan, N. R. (2017). Comparison of the microbial population in
rabbits and guinea pigs by next generation sequencing. PLoS ONE 12(2):
e0165779. https://doi.org/10.1371/journal.pone.0165779
Degola, L., Sterna, V., Jansons, I., & Zute, S. (2019). The nutrition value of
soybeans grown in Latvia for pig feeding. Agronomy Research, 17(5),
1874–1880. https://doi.org/10.15159/ar.19.158
Díaz Céspedes, M., Rojas Paredes, M. A., Hernández Guevara, J. E., Linares
Rivera, J. L., Durand Chávez, L. M., & Moscoso-Muñoz, J. E. M.
(2021). Digestibilidad, energía digestible y metabolizable del sacha inchi
(Plukenetia volubilis L.) peletizado y extruido en cuyes (Cavia porcellus).
Revista de Investigaciones Veterinarias del Perú. 32(5), 1–12. https://doi.
org/10.15381/rivep.v32i5.19654
Ebino, K. Y. (1993). Studies on coprophagy in experimental animals. Jikken
Dobutsu. Experimental Animals, 42(1), 1–9. https://doi.org/10.1538/
expanim1978.42.1_1
Franz, R., Kreuzer, M., Hummel, J., Hatt, J.-M., & Clauss, M. (2011). Intake,
selection, digesta retention, digestion gut ll of two coprophageous species,
rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus), on a
hay-only diet. Journal of Animal Physiology and Animal Nutrition, 95:
564 – 570. https://doi.org/10.1111/j.1439-0396.2010.01084.x
Grant, K. M. S. (2014). Rodent Nutrition: Digestive Comparisons of 4 Common
Rodent Species. Veterinary Clinics of North America: Exotic Animal
Practice, 17(3), 471-483. https://doi.org/10.1016/j.cvex.2014.05.007
Henry, Y. (1985). Dietary factors involved in feed intake regulation in growing
pigs: A review, Livestock Production Science. 12(4), 339-354. https://doi.
org/10.1016/0301-6226(85)90133-2
Ibáñez, M. A., de Blas, C., Cámara, L., and Mateos, G. G. (2020). Chemical
composition, protein quality and nutritive value of commercial soybean
meals produced from beans from dierent countries: A meta-analytical
study. Animal Feed Science and Technology, 267, 114531. https://doi.
org/10.1016/j.anifeedsci.2020.114531
Imam, J., Hambolu, J. O., Onyeanusi, B. I., Ayo, J. O. and Sulaiman, M. H. (2021).
Morphological and Morphometric Studies of the Gastro-intestinal Tract of
the Guinea Pig (Cavia porcellus – Linnaeus, 1758). Journal of Veterinary
Anatomy, 14(1), 1–12. https://doi.org/10.21608/jva.2021.163576
Janocha, A., Milczarek, A., Pietrusiak, D., Łaski, K., and Saleh, M. (2022).
Eciency of Soybean Products in Broiler Chicken Nutrition. Animals,
12(3), 1–16. https://doi.org/10.3390/ani12030294
Karasov, W. H., & Douglas, A. E. (2013). Comparative digestive physiology.
Comprehensive Physiology, 3(2), 741 – 783. https://doi.org/10.1002/cphy.
c110054
Keeble E. (2023). Guinea pig nutrition: what do we know?. In Practice. 45(4),
185-248. https://doi.org/10.1002/inpr.309
Lagos, L. V., & Stein, H. H. (2017). Chemical composition and amino acid
digestibility of soybean meal produced in the United States, China,
Argentina, Brazil, or India. Journal of Animal Science, 95(4), 1626. https://
dx.doi.org/10.2527/jas.2017.1440
Patiño, B. R. E., Cardona-Iglesias, J. L., Carlosama-Ojeda, L. D., Portillo-Lopez,
P. A., Moreno, D. C. (2019). Parámetros zootécnicos de Cavia porcellus
en sistemas productivos de Nariño y Putumayo (Colombia). CES
Medicina Veterinaria Y Zootecnia, 14(3): 29-41. https://doi.org/10.21615/
cesmvz.14.3.3
Patiño, B. R. E., Moreno, V. D. C., Carlosama, O. L. D., Portillo, L. P. A., &
Cardona-Iglesias, J. L. (2021). Nutritional management of Cavia porcellus
L. in the Andes of Colombia. Revista de Investigaciones Altoandinas,
23(2), 85–92. https://doi.org/10.18271/ria.2021.190
Riaz, M. Q., Südekum, K. H., Clauss, M., Jayanegara, A. (2014). Voluntary feed
intake and digestibility of four domestic ruminant species as inuenced
by dietary constituents: a meta-analysis, Livestock Science, 162, 76-85.
http://dx.doi.org/10.1016/j.livsci.2014.01.009
Sciellour, M. L, Labussi, E., Zemb, O., & Id, D. R. (2018). Eect of dietary ber
content on nutrient digestibility and fecal microbiota composition in
growing-nishing pigs. PLoS ONE 13(10), 1–20. https://doi.org/10.1371/
journal.pone.0206159
Shen, J. S., Song, L. J., Sun, H. Z., Wang, B., Chai, Z., Chacher, B., and Liu, J. X.
(2015). Eects of corn and soybean meal types on rumen fermentation,
nitrogen metabolism and productivity in dairy cows. Asian-Australasian
Journal of Animal Sciences, 28(3), 351–359. https://doi.org/10.5713/
ajas.14.0504
Shen, M. M., Bhuiyan, M. M., & Iji, P. A. (2016). Enhancing the nutritional value
of soybeans for poultry through supplementation with new-generation
feed enzymes. World’s Poultry Science Journal, 72(2), 307–322. https://
doi.org/10.1017/S0043933916000271
Slade, L. M., & Hintz, H. F. (1969). Comparison of digestion in horses, ponies,
rabbits, and guinea pigs. Journal of Animal Science, 28, 842-843. https://
doi.org/10.2527/jas1969.286842x
Stefanello, C., Vieira, S. L., Rios, H. V., Simões, C. T., and Sorbara, J. O. B. (2016).
Energy and nutrient utilization of broilers fed soybean meal from two
dierent Brazilian production areas with an exogenous protease. Animal
Feed Science and Technology, 221, 267–273. https://doi.org/10.1016/j.
anifeedsci.2016.06.005
Valentine, M. F., De Tar, J.R., Mookkan, M., Firman, J. D., & Zhang, Z. J. (2017).
Silencing of Soybean Ranose Synthase Gene Reduced Ranose Family