This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(4): e244141 October-December. ISSN 2477-9407.
6-7 |
the associated biotic and abiotic environment can aect the activities
of Trichoderma (Cano, 2015). It is dicult to predict the outcome
of interactions between plants and benecial soil microorganisms,
since the response of plants to inoculation varies depending on
the functional and biochemical compatibilities of the interaction.
Therefore, further research is required in Mexico to corroborate the
eectiveness of strains with phosphorus solubilizing potential to
develop technological packages for successful application in coee
cultivation. Trichoderma strains may be one of the most important
alternatives to chemical fertilizers that can have negative eects
on human health and the environment. It is recommended that
future studies explore the possibility of promoting these isolates as
biofertilizers to improve phosphorus nutrition in multiple crops.
Conclusions
Two strains of T. harzianum (Th53 y Th48) from coee
plantations are potentially important for plant development, as well
as for the solubilization of insoluble phosphorus. These strains
favored the availability of phosphorus in vitro in the presence of
calcium phosphate (Ca
2
PO
4
) as well as a higher phosphorus content
in the substrate of the three coee varieties (Anacafe, Costa Rica and
Marsellesa). For its part, T. harzianum (Th48) promoted the height
of the Anacafé and Marsellesa varieties. The T. asperellum strains
(Th40, Th49, and Th57) were the best at solubilizing aluminum
phosphate (AlPO
4
); this was only evaluated under in vitro conditions,
so it is recommended to continue with the tests in coee seedlings.
It would be interesting to evaluate other coee variables, as well as
more phosphorus-solubilizing strains and evaluate other agronomic
variables. It is also recommended to evaluate plant phosphorus
acquisition through whole-plant phosphorus analysis. Field survival
tests are also necessary to evaluate the activity of these fungi in
dierent environmental conditions. It also deserves further research
to evaluate the eect of the application of Trichoderma consortia and
with consortia of other microorganisms such as mycorrhizae on the
mechanisms of phosphor mobilization. The results presented here are
a basis for the development of future study aimed at the use of native
and properly identied Trichoderma strains in coee farming and
inuencing the use of biofertilizers as an environmentally friendly
strategy that also favors the production of organic coee since it has
a better position in the market and thus favors the economy of coee
producers in the region. It is suggested to continue the exploration of
the selection of strains with high potential to solubilize both calcium,
aluminum and iron phosphate, continue testing on application
methods and promote integration with other sustainable practices.
Funding
This study was funded by COVEICYDET Project 131627.
Acknowledgments
The authors thank Alondra Guadalupe Martínez Santos and María
del Rosario Gregorio Cipriano for their support in the molecular
identication of the strains.
Literature cited
Arias, R. M., & Heredia, G. (2014). Fungal diversity in coee plantation systems
and in a tropical montane cloud forest in Veracruz, Mexico. Agroforestry
systems, 88, 921-933. https://doi.org/10.1007/s10457-014-9736-z
Arias, R. M., Heredia, G., Perea-Rojas, Y. del C., de la Cruz, E.Y., & García G. K.
Y. (2023). Selection and characterization of phosphate-solubilizing fungi
and their eects on coee plantations. Plants, 12(19), 3395. https://doi.
org/10.3390/plants12193395
Arias, R. M., Juárez, G.A., Heredia, G., & de la Cruz, E. Y. (2022). Capacidad
fosfato solubilizadora de hongos rizosféricos provenientes de cafetales de
Jilotepec, Veracruz. Alianzas y Tendencias BUAP, 7(27), 6986. http://doi.
org/10.5281/zenodo.7094878
Bader, A. N., Salerno, G. L., Covacevich, F., & Consolo, V. F. (2020). Native
Trichoderma harzianum strains from Argentina produce indole-3
acetic acid and phosphorus solubilization, promote growth and control
wilt disease on tomato (Solanum lycopersicum L.). Journal of King
Saud University Science, 32(1), 867–873. https://doi.org/10.1016/j.
jksus.2019.04.002
Bononi, L., Chiaramonte, J. B., Pansa, C. C., Moitinho, M. A., & Melo, I. S.
(2020). Phosphorus-solubilizing Trichoderma spp. from Amazon soils
improve soybean plant growth. Scientic Reports, 10(1), 2858. https://
doi.org/10.1038/s41598-020-59793-8
Bray, R. H., & Kurtz. L. T. (1945). Determination of total, organic and
available forms of phosphorus in soil. Soil Science, 59, 39-45.
DOI:10.1097/00010694-194501000-00006
Cano, M. 2015. Interacción de microorganismos benécos en plantas: Micorrizas,
Trichoderma spp. y Pseudomonas spp. una revisión. Revista U.D.C.A
Actualidad & Divulgación Cientíca, 14(2), 15-31.
Chagas, L. F. B., De Castro, H. G., Colonia, B. S. O., De Carvalho Filho, M. R.,
Miller, L. D. O., & Chagas, A. F. J. (2016). Eciency of Trichoderma
spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis
of phosphate solubilization and indole acetic acid synthesis. Brazilian
Journal of Botany, 39(2), 437-445. https://doi.org/10.1007/s40415-015-
0247-6
Clesceri, S., Greenberg, A., & Trusell, R. (1992). Métodos normalizados para el
análisis de aguas potables y residuales. 17th ed. Madrid: Ediciones Díaz
de Santos.
Galeano, R. M. S., Ribeiro, J. V. S., Silva, S. M., de Oliveira-Simas, A. L., de
Alencar-Guimarães, N. C., Masui, D. C., Corrêa, B. O., Giannesi, G. C.,
Ferreira de Lima, S., da Silva-Brasil, M., & Zanoelo, F. F. (2024). New
strains of Trichoderma with potential for biocontrol and plant growth
promotion improve early soybean growth and development. Journal
Plant Growth Regulation, 43, 4099–4119. https://doi.org/10.1007/
s00344-024-11374-z
Gams, W., & Bissett, J. (2002). Morphology and identication of Trichoderma
Vol 1. Basic biology, taxonomy and genetics. In P. C. Kubicek & G. E.
Harman (Eds.), Trichoderma and Gliocladium (pp. 3-31). Taylor and
Francis.
Geissert, D., & Ibañez, A. (2008). Calidad y ambiente físico-químico de los
suelos. In R. Manson, V. Hernández-Ortiz, S. Gallina & K. Mehltreter
(Eds.), Agrosistemas cafetaleros de Veracruz: Biodiversidad, Manejo y
Conservación (pp. 213-221). Instituto de Ecología, A.C. (INECOL) e
Instituto Nacional de Ecología (INE-SEMARNAT).
Hernández-Leal, T. I., Carrión, G., & Heredia, G. (2011). In vitro phosphate
solubilization by a strain of Paecilomyces lilacinus (Thom) Samson.
Agrociencia, 45(8), 881-892. https://www.scielo.org.mx/scielo.
php?pid=S1405-31952011000800003&script=sci_abstract&tlng=en
Huerta, P. G., & Holguín, M. (2019). La microbiota del cafetal, modulador del
daño producido por insectos y enfermedades. In B. E. Bello, L. Soto
Pinto, P. G. Huerta, R. J. Gómez (Eds.), Caminar el cafetal: perspectivas
socioambientales del café y su gente (pp. 49-64). El Colegio de la
Frontera Sur. https://biblioteca.ecosur.mx/cgi-bin/koha/opac-retrieve-le.
pl?id=29766d1b642f4ea743b565b20e9216
Kaissoumi, H. E. L., Berbera, F., Mouden, N., OuazzaniChandi, A., Ouazzani, T.
A., Selmaoui, K., Benkirane, R., & Douira, A. (2024). Tomato growth
promotion by Trichoderma asperellum laboratory-made bioproduct. In
M. Azrour, J. Mabrouki & A. Guezzaz. (Eds.), Sustainable and Green
Technologies for Water and Environmental Management (pp. 161-171).
World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-
3-031-52419-6_13
Kribel, S., Qostal, S., Ouazzani-Touhami, A., Selmaoui, K., Chliyeh, M.,
Benkirane, R., Achbani, E. H., & Douira, A. (2019). Qualitative and
quantitative estimation of the ability of Trichoderma spp. Moroccan
isolates to solubilize tricalcium phosphate. Plant Cell Biotechnology and
Molecular Biology, 20 (7-8), 275-284. DOI: 10.1556/038.54.2019.016
Li, R. X., Cai, F., Pang, G., Shen, Q. S., Li, R., & Chen, W. (2015). Solubilisation
of phosphate and micronutrients by Trichoderma harzianum and its
relationship with the promotion of tomato plant growth. PLoS One, 10(6),
e0130081. https://doi.org/10.1371/journal.pone.0130081
Liebersbach, H., Steingrobe, B., & Claassen, N. (2004). Roots regulate ion transport
in the rhizosphere to counteract reduced mobility in dry soil. Plant and
Soil, 260, 79-88. https://doi.org/10.1023/B:PLSO.0000030191.92338.6a
Menezes-Blackburn, D., Paredes, C., Zhang, H., Giles, C. D., Darch, T., Stutter,
M., George, T. S., Shand, C., Lumsdon, D., Cooper, P., Wendler, R.,