© The Authors, 2024, Published by the Universidad del Zulia*Corresponding author:lalvarez@unheval.edu.pe
Keywords:
Tillandsia recurvata L.
Control of epiphytes
Sodium bicarbonate in fruit trees
Agricultural use of vinegar
Ball moss
Control of ball moss (Tillandsia recurvata L.) in fruit trees in the central region of Peru
Control de los henos de motita (Tillandsia recurvata L.) en árboles frutales de la región centro del
Perú
Controle do feno de motita (Tillandsia recurvata L.) em árvores frutíferas na região central do Peru
Agustina Valverde-Rodríguez
Luisa Madolyn Alvarez-Benaute
*
Fleli Ricardo Jara-Claudio
Dalila Illatopa-Espinoza
Antonio Cornejo y Maldonado
Edinson Elmer Gabino-Benancio
Rev. Fac. Agron. (LUZ). 2024, 41(4): e244142
ISSN 2477-9407
DOI: https://doi.org/10.47280/ RevFacAgron(LUZ).v41.n4.11
Crop production
Associate editor: Dra. Rosa Razz
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
Facultad de Ciencias Agrarias, Universidad Nacional
Hermilio Valdizan, Perú.
Received: 15-07-2024
Accepted: 27-10-2024
Published: 30-11-2024
Abstract
In the current era, it is common to witness the massive
proliferation of epiphytes, particularly the species Tillandsia
recurvata L., commonly known as ball moss, which adhere in large
quantities to fruit trees of various species, aecting fruit growing
in the inter-Andean valleys of Peru. This species causes a gradual
but constant deterioration of the trunks and branches of the fruit
vegetation, causing its eventual death, therefore, the purpose
of the present study was to evaluate the combination of sodium
bicarbonate, copper sulfate, vinegar, and yeast in the control of
Tillandsia recurvata L. A completely randomized block design
was applied with 10 treatments and 5 repetitions. The following
variables were evaluated: weight, moisture loss, and grade of
epiphyte damage. The results determined that sodium bicarbonate
signicantly reduced the weight of T. recurvata, decreasing from
2.2 g to 0.26 g; regarding moisture loss, an increase was observed
from 25.62 % to 91.65 %, as well as damage and mortality increased
signicantly with the vinegar + sodium bicarbonate treatment.
In conclusion, treatments with sodium bicarbonate and vinegar +
sodium bicarbonate caused the greatest damage and mortality in
ball moss.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(4): e244142 October-December. ISSN 2477-9407.
2-6 |
Resumen
En la época actual, es común presenciar la proliferación
masiva de las plantas epítas, en particular de la especie Tillandsia
recurvata L., conocidos comúnmente como heno de mota, que
se adhieren en gran cantidad a los árboles frutales de diversas
especies, afectando la fruticultura en los valles interandinos del
Perú. Esta especie provoca un deterioro gradual pero constante de
los troncos y ramas de la vegetación frutal, ocasionando su eventual
muerte, por lo que, el propósito del presente estudio fue evaluar la
combinación del bicarbonato de sodio, sulfato de cobre, vinagre,
levadura en el control de Tillandsia recurvata L. Se aplicó un
diseño de bloques completamente al azar con 10 tratamientos y 5
repeticiones. Se evaluaron las variables: peso, pérdida de humedad
y grado de afectación de las epítas. Los resultados determinaron
que el bicarbonato de sodio redujo signicativamente el peso de T.
recurvata disminuyendo de 2,2 g a 0,26 g; en cuanto a la pérdida de
humedad, se observó el incremento desde un 25,62 % a 91,65 %, así
como los daño y la mortalidad se incrementaron signicativamente
con el tratamiento vinagre + bicarbonato de sodio. En conclusión,
los tratamientos con bicarbonato de sodio y vinagre + bicarbonato
de sodio causaron el mayor nivel de daño y mortalidad en los henos
de mota.
Palabras clave: Tillandsia recurvata L., control de epítas,
bicarbonato de sodio en frutales, uso agrícola del vinagre, heno de
mota.
Resumo
Na época atual, é comum assistirmos à proliferação massiva de
plantas epítas, nomeadamente da espécie Tillandsia recurvata L.,
vulgarmente conhecida como feno de mota, que aderem em grandes
quantidades a árvores de fruto de diversas espécies, afetando a
fruticultura no inter. -Vales andinos do Peru. Esta espécie provoca uma
deterioração gradual, mas constante, dos troncos e galhos da vegetação
frutífera, causando sua eventual morte, portanto, o objetivo do presente
estudo foi avaliar a combinação de bicarbonato de sódio, sulfato de cobre,
vinagre, levedura no controle de Tillandsia recurvata L. Foi aplicado
um projeto de blocos completamente aleatórios com 10 tratamentos
e 5 repetições. Foram avaliadas as variáveis: peso, perda de umidade
e grau de envolvimento das epítas. Os resultados determinaram
que o bicarbonato de sódio reduziu signicativamente o peso de
T. recurvata, diminuindo de 2,2 g para 0,26 g; em relação à perda
de umidade, foi observado um aumento de 25,62 % para 91,65 %,
bem como os danos e a mortalidade aumentaram signicativamente
com o tratamento vinagre + bicarbonato de sódio. Concluindo, os
tratamentos com bicarbonato de sódio e vinagre + bicarbonato
causaram os maiores níveis de danos e mortalidade nos fenos de mota.
Palavras-chave: Tillandsia recurvata L., controle de epítas,
bicarbonato de sódio em fruteiras, uso agrícola de vinagre, feno de
capim.
Introduction
The genus Tillandsia of the family Bromeliaceae are epiphytic
plants, invasive par excellence, and of worldwide distribution with
more than 500 species and multiple habitats, some of ornamental
importance, benets in the ecosystem, or invasive plants of trees. In
recent decades, the species T. recurvata L. (ball moss) has emerged
as a problem due to its invasive nature, causing the death of trees
(Bartoli et al., 1993; Beltrán et al., 2020). Tillandsia recurvata L.
and Tillandsia usneoides L. are grayish herbaceous plants that do not
depend on soil or substrate for their development, which allows them
to grow on almost any surface, even in electrical wiring networks
(Gámez-Vázquez et al., 2022; Ceballos, 2023). They do not possess a
conventional root system, instead, they develop specialized structures
called “rhizoids” that function as anchors to various structures where
they grow. It has been shown that ball moss secretes an allelopathic
substance called hydroperoxycycloartan through its rhizoids, this
substance causes bud death and leaf abscission (Reséndiz-Vega and
Sánchez-Trujillo, 2021).
These epiphytes absorb atmospheric moisture for their
development, allowing them to survive even in extreme drought
conditions and sporadic rainfall (Apodaca and Guerrero, 2019;
Montana et al., 1997; Flores-Flores et al., 2016). They obtain
water and nutrients through leaf trichomes (Flores-Palacios, 2017).
Among invasive epiphytes, T. recurvata shows morphophysiological
plasticity in response to radiation availability, as it is found in diverse
environments (Borges e Silva et al., 2023), and serves as a niche for
a variety of microenvironments and arthropod resources, becoming
important places for biodiversity (Castañeda et al., 2023).
There are few studies related to the eects of ball moss, there
is evidence that indicates that these plants are linked to the death of
several types of trees including conifers and broadleaf trees, as well
as in the vegetation of arid regions such as mesquite (Prosopis spp.)
and huisache (Acacia spp.) (Cortés-Anzures
et al., 2020; Aguilar-
Rodríguez et al., 2016; Rodríguez-Robles and Arredondo, 2022).
Researchers such as Cabrera et al. (1995) and Flores et al. (2012)
mention that the species T. recurvata produces compounds that cause
diseases in tree branches. Ball moss is an epiphytic plant that is
currently considered a pest (Gómez-Ramírez et al., 2023), although
it is not parasitic and does not extract nutrients from the host, it
competes for light and oxygen from the environment, which hinders
photosynthesis, respiration and transpiration of the host tree, weakens
the branches and causes the death of hay and various forest species
(Sánchez et al., 2022). Various investigations have been carried out
in relation to the species T. recurvata and T. usneoides, and some
of them indicate that these epiphytes or ball moss turn out to be the
appropriate biological indicators to monitor urban and industrial
pollution due to their ability to accumulate particles present in the air,
as well as their property to retain magnetic particles (Miranda et al.,
2016; Piazzetta et al., 2018; Buitrago et al., 2023; Parente et al., 2023;
Alvarado-Rosales and Saavedra-Romero, 2024). Several studies have
determined its use in detecting the presence of atmospheric mercury
(Hg), cadmium (Cd), copper (Cu), and lead (Pb) in urban forests
(Morera-Gómez et al., 2021; Klumpp et al., 2023; Lafortezza et al.,
2023; Wu et al., 2023).
The species T. recurvata shows remarkable re resistance due
to its high moisture content. Woody plants such as pines, oaks, ash
trees, mesquites, and huisaches, among others, are the preferred
hosts, as pointed out by Pérez-Noyola (2020). In Peru, it has been
observed in fruit trees such as avocado (Persea americana Mill),
mango (Mangifera indica L.), lucuma (Pouteria lúcuma L.), citrus
fruits (Citrus spp.), and molles (Schinus molle L.). Fruit trees in full
production and advanced stages of their cycle are aected by the
presence of ball moss, moss adhered between the branches of the
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Valverde-Rodríguez et al. Rev. Fac. Agron. (LUZ). 2024 41(4): e244142
3-6 |
trees, and in percentages of high infestation cause leaf abscission in
the hosts, thus observing a signicant reduction of leaves, which is
frequent in large trees of dierent ages, causing the death of branches
or the entire tree (Castellanos-Vargas et al., 2009). Given the wide
range of ecological conditions in which T. recurvata can thrive, it is
considered a eurioic species. This plant can grow both as an epiphytic
and epipetric plant, and it is possible to nd it in a variety of natural
environments, from the canopy of tall trees, through cacti or shrubs
less than a meter above the ground, to urban areas where it develops
in buildings and cables (Apodaca and Guerrero, 2019).
The Huánuco region, Peru is not immune to the problem of the
invasion of T. recurvata. Fruit vegetation, forest trees, and shrubs
within home gardens, commercial orchards, and agricultural research
centers are highly infested and severely aected by T. recurvata. In the
area of Canchan, which houses among its plots the germplasm bank
of citrus (Citrus sp.), mango (Mangifera indica L.), and forests, the
infestation has been severe; preliminary evaluations show conditions
in the category of 5 to 6 according to the classication of Hawksworth
(1977).
In this study, the objective was to evaluate the application
of sodium bicarbonate, copper sulfate, vinegar, yeast, and the
combination of these in order to determine their ecacy in the control
of T. recurvata.
Materials and methods
The research was carried out at the Canchan Research and
Experimentation Center, geographically located at coordinates 79°
11’ 20” W and 09° 58’ 50” S, at an altitude of 2020 meters above
sea level. With temperatures ranging from 18.8 to 25 °C, with
a minimum of 17 °C and an average temperature of 22 °C. With
an average annual rainfall of 281.80 mm, and an average annual
relative humidity of 64.32 % (National Meteorology and Hydrology
Service of Peru [SENAMHI], 2023). The study used plants of lucuma
(Pouteria Lucuma L.), citrus (Citrus limon L., Citrus sinensis L.,
Citrus reticulata L.), and mango (Mangifera indica L.) established
in the research area. The experimental design consisted of completely
randomized blocks with 10 treatments (table 1) and 5 repetitions with
two trees each, for a total of 10 plants per treatment and a complete
sample of 100 plants distributed in the experimental eld.
In each tree, ve branches were identied with the presence of
ball moss, classied with bands of dierent colors for identication
according to each treatment.
Table 1. Description of treatments.
Key
Treatments
Product (%) / L of
water
T1 Sodium bicarbonate 8.60 %
T2 Vinegar 8.20 %
T3 Copper sulfate 1.50 %
T4 Chemical yeast 1.20 %
T5 Vinegar + sodium bicarbonate 8.2 % + 6.4 %
T6 Vinegar + copper sulfate 0.3% + 1.2 %
T7 Copper sulfate + sodium bicarbonate 1% + 4.3 %
T8 Vinegar + chemical yeast 7.5% + 1.2 %
T9 Chemical yeast + copper sulfate 1.2 % + 1 %
T10 No application
Note. Technical specication: vinegar with an acidic pH (pH=3.0), sodium
bicarbonate (pH=8.0),
copper sulfate (pH=3.5-4.5, purity 98.8 %), chemical yeast
(pH=6.0-6.2).
For the application of the treatments, a high-pressure stationary
gasoline-powered sprayer (6.5 HP) was used, with a pressure range
of 300-500 psi, a capacity of 10-17 L.min
-1
, a 100-meter hose, 1 rod,
and a suction hose with lter. The doses were prepared individually
in plastic trays with a capacity of 20 L.
Variables evaluated
Grade of infestation
The Hawksworth procedure was applied (1977).
Grade of damage
A 5-point Likert scale (0-4), as described by Sampieri et al.
(1991), and adapted to this study (table 2), was applied. The evaluation
consisted of observing the texture and color of the epiphytes on each
tree and the level of damage they exhibited.
Table 2. Likert scale described by Sampieri et al. (1991), adapted
by the author.
Grade of
damage
Impact Nature of the epiphyte
0 Without damage
Live epiphytes, well hydrated, with
a white-ash hue.
1 Slight damage
Epiphytes with a white-ash hue
and brown burns at the tips.
2 Signicant damage
Dehydrated and brittle epiphytes,
but still attached to the host, with
a dark brown hue.
3
Death without
abscission
Dead, black, dehydrated, and
brittle epiphytes, without
abscission.
4 Death with abscission
Dead, black, dehydrated, brittle
epiphytes with abscission.
Source: Likert scale (Sampieri et al., 1991).
Weight of epiphytes
After collection, the epiphyte samples were transferred to the
laboratory, where they were classied according to the treatments
under study. Samples were cleaned of impurities that could interfere
with weighing, employing ne brushes and gentle compressed
air ow to remove residue without damaging structures. The dried
epiphytes were weighed on a high-precision analytical balance,
and pre-calibrated to ensure the accuracy of the measurements. The
weight of each sample was recorded in grams, with an accuracy of up
to 0.0001 g. Each sample was placed on the balance pan using ne-
tipped laboratory tweezers to minimize human contact and prevent
moisture or oil transfers.
Moisture loss
The calculation of this variable was carried out as follows: the
green weight was adapted to the average weight of the ball moss
of the control treatment, which is 100 % moisture of the ball moss,
and the anhydrous or dry weight was called the weight of the treated
ball moss (Butrón Hernández, 2014), the formula is PH (%)= (Pv-
Po)*100/Pv, where: PH (%) is the percentage of moisture loss, Pv is
the green weight and Po the dry weight.
For the variables studied, three evaluations were carried out every
fteen days.
The statistical methodology applied included the analysis of
variance (ANOVA) to test the hypotheses, using signicance levels
of 5 %. The averages that share letters in vertical arrangement
indicate that there are no statistically signicant dierences between
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(4): e244142 October-December. ISSN 2477-9407.
4-6 |
treatments, according to Duncan’s test (p-value > 0.05). The InfoStat
statistical software was used (Di Rienzo et al., 2020).
Results and discussion
Grade of infestation
Figure 1 shows that 99 % of the trees, regardless of species, were
infested with T. recurvata, placing them in grade 4 (high level of
infestation). The remaining 1 % was placed in grade 2 (with the rst
third infested and the second third with mild infestation), according
to the classication proposed by Hawksworth (1977). The high level
of infestation could be inuenced by the environmental conditions
favorable for T. recurvata in the area under study, as Apodaca and
Guerrero (2019) point out, the species could colonize numerous tree
plant species in arid zones and inter-Andean valleys.
establish the optimal dose of sodium bicarbonate and chemical yeast
for the management of T. recurvata.
Table 3. Average weight of T. recurvata in the rst, second, and
third evaluations subjected to various control treatments.
Treatments
1
st
2
nd
3
rd
Avg.
(g)
Sig.
(0.05)
Avg.
(g)
Sig.
(0.05)
Avg.
(g)
Sig.
(0.05)
T1 2.2 a 1.39 a 0.26 a
T5 2.31 b 1.78 b 1.03 b
T7 2.37 bc 2.12 c 1.19 c
T3 2.45 cd 2.37 d 2.24 d
T6 2.5 de 2.47 de 2.36 e
T8 2.52 de 2.51 e 2.44 e
T2 2.55 de 2.59 e 2.54 f
T9 2.58 ef 2.57 e 2.54 f
T4 2.68 f 2.84 f 2.94 g
T10 2.95 g 3.06 g 3.08 h
Note. Dierent letters indicate statistical dierences in the columns. Avg.: average
Sig.: signicance
Moisture
Treatment T1 (sodium bicarbonate) was the most ecient in
moisture loss, from 25.62 % in the rst evaluation to 91.65 % in
the third evaluation, followed by treatment T5 (vinegar + sodium
bicarbonate) which showed a gradual increase in moisture loss over
time from 21.81 % in the rst evaluation to 66.66 % in the third
evaluation, followed by treatments T7 and T3 (copper sulfate +
sodium bicarbonate and copper sulfate) which caused a moisture loss
of 19.83 % and 16.96 % in the rst evaluation, respectively, up to
61.35 % and 27.45 %, respectively in the third evaluation; with the
last position being treatment T10 (no application) with 0 % moisture
loss during the three evaluations (Table 4).
Table 4. Moisture loss of T. recurvata in the rst, second, and third
evaluations subjected to various control treatments.
Treat-
ments
1
st
2
nd
3
rd
Avg.
(%)
Sig.
(0.05)
Avg.
(%)
Sig.
(0.05)
Avg.
(%)
Sig.
(0.05)
T1 25.62 a 54.56 a 91.65 a
T5 21.81 b 41.74 b 66.66 b
T7 19.83 bc 30.76 c 61.35 c
T3 16.96 cd 22.8 d 27.45 d
T6 15.2 de 19.19 e 23.22 e
T8 14.47 de 18.16 ef 20.9 e
T2 13.82 de 15.9 f 17.57 f
T9 12.44 e 15.47 f 17.35 f
T4 9.24 f 7.26 g 4.67 g
T10 0 g 0 h 0 h
Note. Dierent letters indicate statistical dierences in the columns.
Figure 1. Graphical representation of the grade of infestation in
epiphytic plants.
Eect of treatments on epiphytes
Weight
The treatment with sodium bicarbonate showed superior
eectiveness compared to the other treatments, as evidenced by the
decrease in the weight of T. recurvata from 2.2 to 0.26 g in the rst
and third evaluations, respectively; followed by the vinegar + sodium
bicarbonate, copper sulfate + sodium bicarbonate and copper sulfate
treatments, with weights of 1.03, 1.19 and 2.24 g, respectively in the
third evaluation, the treatments T6 and T8 with statistically similar
responses to each other, as well as T2 and T9; in the last position
was the treatment T10 (no application) with 3.08 g of T. recurvata
on average (table 3). These values coincide with the ndings of
Rodríguez-Robles and Arredondo (2022) who demonstrated the
ecacy of non-polluting products such as 5 % acetic acid (vinegar)
and 80 g.L
-1
sodium bicarbonate, applied directly to the epiphyte,
achieving death within 10 days. Gómez-Ramírez et al. (2023) pointed
out the most eective methods to manage Tillandsia, highlighting that
the combination of sodium bicarbonate in amounts of 1290 g with 15
L of water (equivalent to 86 g.L
-1
of water) and sodium bicarbonate
with 967 g in 15 L of water (equivalent to 64 g.L
-1
of water) achieved
control rates in the tree of 98 % and 95 %, respectively. Velázquez-
Cárdenas et al. (2021) also obtained similar results when seeking to
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Valverde-Rodríguez et al. Rev. Fac. Agron. (LUZ). 2024 41(4): e244142
5-6 |
Grade of damage
It was evidenced that treatments T5 (vinegar + sodium carbonate)
and T1 (sodium bicarbonate) had the greatest eect on the grade of
damage of T. recurvata, with eects up to level 1 being evidenced in
the rst evaluation, representing slight damage in T. recurvata of ash-
white hue and brown burns. Subsequently, both treatments progressed
to level 3 in the third evaluation, with the death of the epiphytic plants
without abscission: the epiphytes were totally dehydrated, black,
fragile, and brittle. In the background, the treatment T7 (copper sulfate
+ sodium bicarbonate) stands out, which showed a level 2 (signicant
damage with dehydrated and fragile areas, but without abscission
from the host, and with a dark brown hue) during the second and third
evaluation. In contrast, the other treatments showed lower mortality
levels of T. recurvata, with treatment T2 (vinegar) resulting in level
0 (live, hydrated, ash-white colored ball moss plants) and treatment
T10 (control) showing live, hydrated, ash-white colored T. recurvata
without damage, being the least aected in order of importance
(gure 2).
These results are consistent with what was observed by Gómez-
Ramírez et al. (2023), who applied vinegar and carbonate treatments
for the control of T. recurvata. They recorded mortality and desiccation
of the ball moss in the rst two weeks after application, as well as
deterioration and decrease in survival during the rst two weeks after
application with sodium bicarbonate. Meanwhile, Alvarado-Rosales
and Saavedra-Romero (2024) when applying sodium bicarbonate to
T. recurvata showed that it caused dehydration, necrosis, and death
of the epiphyte, so they recommend implementing control activities
in the months of vegetative development of the epiphyte. In addition,
Morera-Gómez et al. (2021) demonstrated the ecacy of non-
polluting products, such as 5 % acetic acid (vinegar) and 80 g/L
-1
sodium bicarbonate, applied directly to the epiphyte, achieving death
in a short term. Figure 3 shows a photograph of T. recurvata with
damage grades of 0 and 3.
Conclusions
The study concludes that 99 % of the trees presented a high level
of infestation (level 4) of Tillandsia recurvata. The treatment with
sodium bicarbonate was the most eective in reducing the weight
Figure 2. Graphical representation of the grade of damage of
T. recurvata. T1: sodium bicarbonate; T2: vinegar; T3:
copper sulfate; T4: chemical yeast; T5: vinegar + sodium
bicarbonate; T6: vinegar + copper sulfate; T7: copper
sulfate + sodium bicarbonate; T8: vinegar + chemical yeast;
T9: chemical yeast + copper sulfate; T10: No application.
Figure 3. A) Grade of damage 0, B) Damage grade 3, with
treatment T5 (sodium bicarbonate + vinegar).
of Tillandsia, in addition to being the most ecient in dehydration,
achieving a moisture loss of 91.65 % in the third evaluation. Finally,
the treatments with sodium bicarbonate and its combination with
vinegar achieved the highest grade of damage, reaching grade 3 in
the third evaluation. This result indicates that these treatments are the
most eective in causing the death of T. recurvata, recommending
their use for the integrated management of this epiphyte in infested
trees.
Acknowledgments
The authors thank the Vice-Rectorate for Research and the
Valdizano Research Directorate, for their valuable leadership in
directing the projects funded by competitive funds.
Funding
The work was carried out with resources destined for the project
“Strengthening sustainable production in the Production Centers
of UNHEVAL”-AGRO01-Agrarian Sciences, by the Research
Directorate of the Hermilio Valdizan National University.
Literature cited
Aguilar-Rodríguez, S., Terrazas, T., Huidobro-Salas, M. E., & Aguirre-León, E.
(2016). Anatomical and histochemical bark changes due to growth of
Tillandsia recurvata
(ball moss). Botanical Sciences, 94(3), 551-562.
https://doi.org/10.17129/botsci.531
Alvarado-Rosales, D., & Saavedra-Romero, L. de L. (2024). Situación del
musgo bola (Tillandsia recurvata L.) en un área verde institucional:
Ball moss (Tillandsia recurvata L.) situation in an institutional green
area. E-CUCBA, (21), 25–35. https://doi.org/10.32870/e-cucba.vi21.320
Apodaca, M. J., & Guerrero, E. L. (2019). ¿Por qué se expande hacia el sur la
distribución geográca de Tillandsia recurvata (Bromeliaceae)?. Boletín
de la Sociedad Argentina de Botánica, 54(2),1-10.
https://doi.org/10.31055/1851.2372.v54.n2.24371
Bartoli, C. G., Beltrano, J., Fernandez, L. V., & Caldiz, D. O. (1993). Control of
the epiphytic weeds Tillandsia recurvata and Tillandsia aëranthos with
dierent herbicides. Forest Ecology and Management, 59(3-4), 289-294.
https://doi.org/10.1016/0378-1127(93)90008-B
Beltrán, L., A. Arredondo G., & R. Nieto C. (2020). Evaluación y control de T.
recurvata en ecosistemas forestales del semidesierto de San Luis Potosí.
San Luis Potosí, México. 14 pp.
Beltrán, S., Loredo, C., Rosales, C., & Gámez, H. (2020). Control de paxtle
(Tillandsia recurvata) en mezquiteras de zonas áridas y semiáridas.
CIRNE-INIFAP, In
Memoria del XLI Congreso nacional de la ciencia
de la maleza (p. 71). https://somecima.com/wp-content/uploads/2020/12/
Memoria-congreso-SOMECIMA-2020.pdf
Borges e Silva, B. A., Bandoni Chaves, M. P., Silvério, H. F., Ramos, F. N., de
Oliveira, J. P. V., de Castro, E. M., & Pereira, F. J. (2023). Survival,
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(4): e244142 October-December. ISSN 2477-9407.
6-6 |
and anatomical and ecophysiological changes in isolated individuals of
Tillandsia recurvata L. (Bromeliaceae) grown under dierent shading
conditions. Botany, 101(3), 65-74. https://doi.org/10.1139/cjb-2022-0093
Buitrago Posada, D., Chaparro, M. A., & Duque-Trujillo, J. F. (2023). Magnetic
Assessment of Transplanted Tillandsia spp.: Biomonitors of Air
Particulate Matter for High Rainfall Environments. Atmosphere, 14(2),
213. https://doi.org/10.3390/atmos14020213
Butron Hernández, M. (2014). Evaluación de esteron 47* my 2, 4 d amina, para
el control de Tillandsia recurvata L. en (Pinus cembroides zucc.) en el
tejido cuauhtémoc, saltillo, coahuila. http://repositorio.uaaan.mx:8080/
handle/123456789/1012
Cabrera, G. M., Gallo, M., & Seldes, A. M. (1995). A 3, 4-seco-cycloartane derivative
from Tillandsia usneoides. Phytochemistry, 39(3), 665-666. https://www.
sciencedirect.com/science/article/abs/pii/003194229500076J
Castañeda, Y. A. L., López, S. N. C., Pérez, C. E. M., Muñoz, E. A. C., & Becerril,
J. C. P. (2023). Artrópodos asociados a Tillandsia recurvata (L.) L.
(Bromeliaceae) en ambientes semiáridos del municipio de Tecozautla,
Hidalgo, México. TIP Revista Especializada en Ciencias Químico-
Biológicas
, 26, 1-13. https://doi.org/10.22201/fesz.23958723e.2023.526
Castellanos-Vargas, I., Cano-Santana, Z., y Hernández-López, B. (2009). Efecto
de Tillandsia recurvata L. (Bromeliaceae) sobre el éxito reproductivo
de Fouquieria splendens Engelm. (Fouquieriaceae). Ciencia Forestal
en México
, 34(105), 197-207. https://www.scielo.org.mx/scielo.
php?script=sci_arttext&pid=S1405-35862009000100011
Ceballos, S. J. (2023). Vascular epiphytes in Argentinian Yungas: Distribution,
diversity, and ecology. The Botanical Review, 89(1), 91-113. https://doi.
org/10.1007/s12229-022-09281-7
Cortés-Anzúres, B. O., Corona-López, A. M., Damon, A., Mata-Rosas, M.,
& Flores-Palacios, A. (2020). Phorophyte type determines epiphyte-
phorophyte network structure in a Mexican oak forest. Flora, 272,
151704. https://doi.org/10.1016/j.ora.2020.151704
Di Rienzo, J. A., Casanoves, F., Balzarani, M, G., González,L., Tablada, M. &
Robledo, C. W. (2020). InfoStat version 2020. Centro de Transferencia
InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.
infostat.com.ar
Flores-Flores, J. D., Nájera-Castro, J. A., & Torres-Espinosa, L. M. (2016).
Intensidades de aclareo y poda para el control del heno Tillandsia
recurvata
, en un bosque de Pinus cembroides. Revista Agraria, 13(1), 21-
25. https://doi.org/10.59741/agraria.v13i1.576
Flores-Palacios, A., Toledo-Hernández, V. H., Corona-López, A. M., Valencia-
Díaz S, Ruíz-Cancino J M., Coronado-Blanco & Nikolaevna - Myartseva
S. (2012). ¿Son las plantas epítas parásitos de los árboles? Evidencia
de mecanismos de daño directo e indirecto. Centro de Investigación
en Biodiversidad y Conservación (CIByC), Universidad Autónoma
del Estado de Morelos, México; Facultad de Ingeniería y Ciencias,
Universidad Autónoma de Tamaulipas, México. le:///C:/Users/User01/
Downloads/Son_las_plantas_epitas_parasitos_de_l.pdf
Flores-Palacios, A. (2017). Branch mortality inuences phorophyte quality for
vascular epiphytes. Botany, 95(7), 709-716. https://doi.org/10.1139/cjb-
2017-0023
Gámez-Vázquez, H.G., Rosales-Nieto, C.A., Urrutia-Morales, J., Mellado, M.;
Meza-Herrera, C.A., Vázquez-García, J.M., Hernández-Arteaga, L.E.S.,
Negrete-Sánchez, L.O., Loredo-Osti, C., Rivas-Jacobo, M.A., & Beltran
-López, S. (2022). Eect of Replacing Sorghum Stubble with Tillandsia
recurvata
(L.) on Liveweight Change, Blood Metabolites, and Hematic
Biometry of Goats. Biology, 2022, 11, 517. https://doi.org/10.3390/
biology11040517
Gómez-Ramírez, A., Guevara-Herrera, R., Gutiérrez-Licona, M. & López-
Maldonado, M. (2023). Reporte de aplicación de tratamientos de vinagre
y carbonato para el control de
Tillansia recurvata. e-CUCBA,
10(20),151–159. https://doi.org/10.32870/ecucba.vi20.307
Hawksworth, F.G. (1977). The 6-class dwarf mistletoe rating system. Gen. Tech.
Rep. RM-48. Fort Collins, CO: U.S. Department of Agriculture, Forest
Service, Rocky Mountain Forest and Range Experimental Station.
Klumpp, A., Domingos, M., & Pignata, M. L. (2023). Air pollution and
vegetation damage in South America—state of knowledge and
perspectives. Environmental Pollution and Plant Responses, 111-136.
http://doi.org/10.1201/9780203756935-7
Lafortezza, R., Ferreira, M. L., Ribeiro, A. P., Bollamann, H. A., Lima, L. N. A.,
Theophilo, C. Y. S., & Elia, M. (2023). Urban Forests and Air Pollution
Mitigation: An Inextricable Nexus for Sustainable Cities. Available at
SSRN 4444562. http://dx.doi.org/10.2139/ssrn.4444562
Miranda, A. G. C., Chaparro, M. A., Chaparro, M. A., & Böhnel, H. N.
(2016). Magnetic properties of Tillandsia recurvata L. and its use for
biomonitoring a Mexican metropolitan area. Ecological Indicators, 60,
125-136. https://doi.org/10.1016/j.ecolind.2015.06.025
Montana, C., Dirzo, R. & Flores, A. (1997). Structural parasitism of an epiphytic
bromeliad upon cercidium praecox in an intertropical semiarid ecosystem.
Biotropica, 29(4): 517- 521. 1997. https://www.jstor.org/stable/2388945
Morera-Gómez, Y., Alonso-Hernández, C. M., Armas-Camejo, A., Viera-Ribot,
O., Morales, M. C., Alejo, D. & Santamaría, J. M. (2021). Pollution
monitoring in two urban areas of Cuba by using Tillandsia recurvata
(L.) L. and top soil samples: Spatial distribution and sources. Ecological
Indicators
, 126, 107667. https://doi.org/10.1016/j.ecolind.2021.107667
Parente, C. E. T., Carvalho, G. O., Lino, A. S., Sabagh, L. T., Azeredo, A., Freitas,
D. F. S., Ramos, C. T., Rodrigo O. M., Virgílio, J. M., Ferreira, F., & Olaf
, O. (2023). First assessment of atmospheric pollution by trace elements
and particulate matter after a severe collapse of a tailings dam, Minas
Gerais, Brazil: An insight into biomonitoring with Tillandsia usneoides
and a public health dataset. Environmental Research, 233, 116435. https://
doi.org/10.1016/j.envres.2023.116435
Pérez-Noyola, F. J., Flores, J., Yáñez-Espinosa, L., Jurado, E., González
Salvatierra, C., & Badano, E. (2020). Is ball moss (Tillandsia recurvata)
a structural parasite of mesquite (Prosopis laevigata)? Anatomical and
ecophysiological evidence. Trees, 35(1), 135-144. https://doi.org/10.1007/
s00468-020-02023-5
Piazzetta, K.D., Ramsdorf, W.A., & Maranho, L.T. Use of airplant
Tillandsia
recurvata L., Bromeliaceae, as biomonitor of urban air
pollution. Aerobiologia, 35, 125–137 (2018). https://doi.org/10.1007/
s10453-018-9545-3
Reséndiz-Vega, M., & Sánchez-Trujillo, G. (2021). Función ambiental y control
de la heno motita (Tillandsia recurvata) en la cuenca atmosférica de
Tula de Allende Hidalgo. Revista de Ciencias Ambientales y Recursos
Naturales
, 19–30. https://doi.org/10.35429/jesn.2021.19.7.19.30
Rodríguez-Robles, U., & Arredondo, T. (2022). The role of the geologic substrate
on Tillandsia recurvata infestation and the development of forest
decaying on a semiarid oak forest. Catena, 208,105724. https://
doi.org/10.1016/j.catena.2021.105724
Sampieri, H. R. C., Fernández. C., & P. Baptista L. 1991. Metodología de la
investigación. Segunda Edición. Mc Graw-Hill Interamericana Editores,
S.A. de C.V. México D.F. 257 p.
Sánchez, B. M., Acosta, L. F. P., & Portugal, J. A. N. Q. (2022). Fenología y efecto
de la intensidad de luz en la germinación in vitro de Masdevallia solomonii
(Orchidaceae). Revista de Investigación e Innovación Agropecuaria y de
Recursos Naturales, 9(3), 56-67. https://doi.org/10.53287/kkqn7712ka32g
Servicio Nacional de Meteorología e Hidrología del Perú - SENAMHI.
(2023). Descarga de datos meteorológicos. https://www.senamhi.gob.
pe/?&p=estaciones
Velázquez-Cárdenas, Y., Rendón-Aguilar, B., & Espejo-Serna, A. (2021). Do
Harvest Practices of Bromeliads and Forest Management in Sierra
Norte of Oaxaca Have a Negative Eect on their Abundance and
Phorophyte Preference?. Ethnobiology and Conservation, 10. https://doi.
org/10.15451/ec2021-03-10.18-1-19
Wu, L., Liang, Y., Fu, S., Huang, Y., Chen, Z., y Chang, X. (2023). Biomonitoring
trace metal contamination in Guangzhou urban parks using Asian tramp
snails (Bradybaena similaris). Chemosphere, 334,138960. https://
doi.org/10.1016/j.chemosphere.2023.138960