© The Authors, 2025, Published by the Universidad del Zulia*Corresponding author: jverar12@unemi.edu.ec
Keywords:
Wastewater
Phytoremediation
Phytochemistry
Treatment
Chemical study of the macrophyte duckweed (Lemna minor L.)
Estudio químico de la macróta lenteja de agua (Lemna minor L.)
Estudio químico da macróta lentilha-d`água (Lemna minor L.)
José Humberto Vera Rodríguez
1,2*
César Gavin-Moyano
1
Mónica del Rocío Villamar Aveiga
1
Jhonny Darwin Ortiz Mata
1
Jaime David Sevilla Carrasco
1
Leonel Rolando Lucas Vidal
2
Byron Eduardo García Mata
3
Rev. Fac. Agron. (LUZ). 2025, 42(1): e254202
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v42.n1.II
Environment
Associate editor: Dr. Jorge Vilchez-Perozo
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
1
Universidad Estatal de Milagro, Facultad Ciencias e
Ingeniería, Milagro, Guayas, Ecuador, 091050.
2
Universidad Técnica Estatal de Quevedo, Facultad de
Posgrados, Quevedo - Ecuador, 120550.
3
Universidad Agraria del Ecuador UAE, Facultad de Ciencias
Agrarias Dr. Jacobo Bucaram Ortiz, Guayaquil, Guayas
Ecuador, 091307.
Received: 07-10-2024
Accepted: 08-11-2024
Published: 19-12-2024
Abstract
Duckweed (Lemna minor L.) has attracted considerable
attention in the scientic eld due to its nutritional contribution and
capacity to phytoremediate waters. Therefore, the objective of the
study was to analyze the chemical composition of the macrophyte
(Lemna minor) from natural environments. Chemical compounds
and Weende composition were determined from the plant, and the
fresh weight gain was observed in dierent types of water (deep
well and bovine slurry), waters that were subjected to physical-
chemical analysis. The chemical analysis of the macrophyte resulted
in the presence of 1.42 mg.g
-1
of total chlorophyll; 2.35 mg.kg
-1
of
ascorbic acid; tannin content less than 2.50 mg.kg
-1
; 45.34 mg.kg
-1
of phenols; also the presence of alkaloids, phenols and reducing
sugars in the chemical screening. The Weende analysis indicates a
composition of: 89 % of dry matter, 30 % of crude protein, 4 % of
gross energy, 3.2 % of ether extract, 15 % of ashes, 32 % of nitrogen-
free extract and 10 % of ber. The fresh weight gain of Lemna
minor obtained in water contaminated with bovine slurry increased
signicantly 13 g.day.m
3
and 5 g.day.m
3
in deep well water. The
physical-chemical properties of the water improve their quality 16
days after treatment with this aquatic plant with respect to the initial
analysis. This macrophyte exhibits remarkable phytoremediation
properties to absorb, metabolize and stabilize various pollutants
eective in the purication of contaminated waters.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(1): e254202 January-March. ISSN 2477-9407.
2-5 |
Resumen
La lenteja de agua (Lemna minor L.) ha provocado una
considerable atención en el ámbito cientíco por su aporte nutricional
y capacidad de torremediar aguas. Por tanto, el objetivo del estudio
fue analizar la composición química de la macróta (Lemna minor)
proveniente de ambientes naturales. De la planta se determinaron
compuestos químicos, composición Weende, además se observó la
ganancia de peso fresco en diferentes tipos de agua (pozo profundo
y purín bovino), aguas que fueron sometidas a análisis físico
químico. El análisis químico de la macróta resultó con presencia
de 1,42 mg.g
-1
de clorola total; 2,35 mg.kg
-1
de ácido ascórbico;
contenido de taninos menor a 2,50 mg.kg
-1
; 45,34 mg.kg
-1
de fenoles;
además con presencia de alcaloides, fenoles y azucares reductores al
screening químico. El análisis de Weende indica una composición
de: 89 % materia seca, 30 % proteína cruda, 4 % energía bruta, 3,2
% extracto etéreo, 15 % cenizas, 32 % extracto libre de nitrógeno y
10 % bra. La ganancia de peso fresco de Lemna minor obtenida en
agua contaminada con purín bovino aumentó signicativamente 13
g.día.m
3
y 5 g.día.m
3
en agua pozo profundo. Las propiedades físico-
químicas del agua mejoran su calidad a los 16 días de tratadas con esta
planta acuática con respecto al análisis inicial. Esta macróta exhibe
notables propiedades de torremediación para absorber, metabolizar
y estabilizar diversos contaminantes ecaces en la depuración de
aguas contaminadas.
Palabras clave: aguas residuales, torremediación, toquímica,
tratamiento.
Resumo
A lentilha-d’água (Lemna minor L.) tem causado considerável
atenção no meio cientíco por sua contribuição nutricional e
capacidade de torremediar águas. Portanto, o objetivo do estudo
foi analisar a composição química da macróta (Lemna minor) de
ambientes naturais. Os compostos químicos e a composição Weende
foram determinados a partir da planta, e o ganho de massa fresca foi
observado em diferentes tipos de água (poço fundo e esterco bovino),
águas que foram submetidas a análises físico-químicas. A análise
química da macróta resultou na presença de 1,42 mg.g
-1
de clorola
total; 2,35 mg.kg
-1
de ácido ascórbico; teor de taninos inferior a
2,50 mg.kg
-1
; 45,34 mg.kg
-1
de fenóis; também com a presença de
alcalóides, fenóis e açúcares redutores na triagem química. A análise
de Weende indica composição de: 89 % de matéria seca, 30 % de
proteína bruta, 4 % de energia bruta, 3,2 % de extrato etéreo, 15 %
de cinzas, 32 % de extrato isento de nitrogênio e 10 % de bra. O
ganho de massa fresca de Lemna minor obtido em água contaminada
com dejeto bovino aumentou signicativamente em 13 g.dia.m
3
e 5
g.dia.m
3
em água de poço profundo. As propriedades físico-químicas
da água melhoram sua qualidade 16 dias após o tratamento com esta
planta aquática em comparação com a análise inicial. Esta macróta
apresenta notáveis propriedades de torremediação para absorver,
metabolizar e estabilizar vários contaminantes ecazes na puricação
de águas contaminadas.
Palavras-chave: águas residuais, torremediação, toquímica,
tratamento.
Introduction
Duckweed (Lemna minor L.) is a macrophyte that has attracted
increasing scientic interest due to its chemical characteristics and
versatility in the phytoremediation of polluted waters and in human
and animal food (Ávila et al., 2020). It is capable of assimilating
water pollutants and has a high nutritional value, which positions it
as a promising resource to address current environmental and food
challenges (Salas et al., 2016). This dual potential highlights its
importance in ecological sustainability and food security.
In the context of phytoremediation, duckweed has demonstrated
its eectiveness in removing heavy metals (Intriago et al., 2024),
agrochemicals (Jaimes Prada et al., 2024) and other organic pollutants
(Benavides et al., 2021), oering a sustainable and economical option
for cleaning up aquatic ecosystems (Garaboto, 2015). Its capacity for
bioaccumulation and tolerance to adverse conditions positions it as an
invaluable tool in the restoration of water bodies aected by human
activity and industry (Vargas & Barajas, 2016).
Duckweed also stands out for its chemical composition rich in
protein, vitamins, minerals and bioactive compounds (Blanco, 2018).
This nutritional prole makes it a key resource for improving food
availability for both humans and animals (Mercado-Albarrán et al.,
2019). In addition, its rapid growth and ability to adapt to diverse
conditions make it a sustainable alternative for food production
(Bello-Armenta & Marín, 2023).
L. minor has demonstrated a remarkable ability to absorb toxic
metals such as lead (Pb), cadmium (Cd), mercury (Hg) and chromium
(Cr) from water, an ability that results from its ability to accumulate
metals in its tissues (Irin & Hasanuzzaman, 2024). Furthermore,
duckweed not only absorbs heavy metals, but can also transform
heavy metals into a less toxic form for the ecosystem through
metabolic processes (Liebers et al., 2023).
The identication and characterisation of metabolic compounds
in L. minor is crucial to understand its potential as a phytoremediation
plant. A study by Miras-Moreno et al. (2022) suggests that secondary
metabolites, such as avonoids and phenolic compounds, may
increase the tolerance of L. minor to heavy metals, acting as chelating
agents that reduce the toxicity of these metals at the cellular level.
Chlorophyll indicates the photosynthetic capacity of the plant,
aecting its growth and pollutant uptake. Ascorbic acid acts as an
antioxidant, protecting the plant from environmental stress and
improving its survival. In addition, tannins and phenols help to
sequester heavy metals and reduce the toxicity of pollutants, thus
increasing their ability to purify water (Vámos et al., 2023).
The objective was to analyse the chemical composition of the
macrophyte (Lemna minor L.) . This study aims to contribute to the
understanding of its role in the detoxication of aquatic ecosystems,
its nutritional use and to promote its sustainable use.
Materials and methods
The macrophyte sample was taken from a natural aquifer in
Ciudadela San Fernando 2, El Triunfo, Guayas province, Ecuador,
located at 2º31’41‘’ S - 79º41’50‘’ W at 44 m.a.s.l. 1 kg fresh
weight of the duckweed was taken to the chemistry laboratory of
the biotechnology department of the State University of Milagro,
Ecuador.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Vera et al. Rev. Fac. Agron. (LUZ). 2025, 42(1): e254202
3-5 |
Quantication of Chlorophyll content
Chlorophyll was determined using the spectrophotometric
method of Hiscox & Israelstam (1979). 0.5 g of fresh plant sample
was ground in a mortar and pestle and mixed with 10 mL of 80
% acetone to create a homogeneous suspension, which was then
immediately ltered and collected in a test tube. To avoid degradation
of the chlorophyll, the test tube was wrapped in aluminium foil. The
absorbance of the solution was measured at 663 nm and 645 nm using
a spectrophotometer.
Determination of ascorbic acid
(a) Mobile phase: 15.6 g disodium phosphate and 12.2 g
dipotassium phosphate were dissolved in 2000 mL water, adjusting
the pH to 2.5 ± 0.05 with phosphoric acid. (b) Chromatographic
system: A Perkin Elmer 200 Series liquid chromatograph at 245 nm
with a 6 x 150 mm column and a ow rate of 0.60 mL.min
-1
was used.
The standard preparation was introduced into the chromatograph and
the reading was taken. c) Sample extraction: For sample extraction,
5:100 metaphosphoric acid was used and dilutions of the sample were
made to 0.5 mg.mL
-1
to adjust the method (Gutierrez et al., 2007).
Determination of total tannins
It was established under the Folin Ciocalteu method, 0.1 g of
dry sample was weighed and mixed with 10 mL of distilled water,
shaking using a vortex for 1 minute and centrifuging at 3000 rpm for
10 minutes. The supernatant was collected to determine tannins. A
standard solution of tannic acid (0 to 100 mg.L
-1
) was prepared. 0.5
mL of each standard solution was added to a test tube, followed by
the addition of 2.5 mL of Folin-Ciocalteu’s reagent. After 5 minutes,
2 mL of 20 % sodium carbonate was added, mixed and the volume
adjusted to 10 mL. Finally, absorbance was measured at 765 nm and
a calibration curve was constructed (Kasay et al., 2013).
Determination of total phenols
The phenolic concentration of the hydroalcoholic extract of
duckweed was measured spectrophotometrically using the Folin
Ciocalteu chemist. The calibration curve was adjusted with gallic acid
and four concentrations (1, 3, 6 and 9 mg.L
-1
of distilled water) were
prepared. To the solutions 250 μL of Folin Ciocalteu 1N and 1250
μL of 20 % sodium carbonate were added and allowed to stand for
several hours. Finally, absorbance was recorded at 760 nm (Blainski
et al., 2013).
Determination of secondary metabolites
Secondary metabolites were identied from the 50/50
hydroethanolic extract. To 1 mL of the extract 3 drops of Mayers
Reagent was added, the formation of a white coloured precipitate
is indicative of the presence of alkaloids, while, to 1 mL of the
extract 3 drops of Wagners Reagent was added, the formation of a
brownish red/dark brown coloured precipitate indicates the presence
of alkaloids. Tannins were detected with 45 % iron chloride. 1 mL of
sol A and 1 mL of sol B is added to 0.5 mL of the extract and heated
in a water bath for 10 min, the appearance of a dark red cuprous
precipitate is reported as positive for reducing sugars (Díaz Solares
et al., 2015).
Weende analysis
Moisture was measured by oven-drying at 105 °C for 24 hours,
crude protein was analysed by the Kjeldahl method, and ash was
obtained by ashing at 500 °C. Ether extract was extracted using
Soxhlet, while crude bre was determined by acid and base digestion
(Greneld & Southgate, 2003).
Description of physicochemical analysis of water treated with
(Lemna minor L.)
Two 1 pools were set up, one with deep well water and one
with bovine sewage water. 150 grams of fresh L. minor L. were
introduced into each pool. The physico-chemical characteristics of
the water before treatment and 16 days later (resistivity, salinity, total
dissolved solids, conductivity, dissolved oxygen, temperature) were
analysed with the help of a multi-parameter meter (HACH HQ Field
Case, Case Model: HQ40D53000000). In addition, the fresh plant
mass of L. minor was assessed after 16 days. The daily weight gain of
duckweed was determined according to:
Results and discussion
Table 1 presents the quantitative chemical characterisation of
duckweed (L. minor) essential for understanding its properties and
usefulness.
Table 1. Chemical characterisation of duckweed (Lemna minor L.).
Parameters Results Unit
Total chlorophyll 1.42 mg.g
-1
Ascorbic acid 2.35 mg.kg
-1
Tannins <2.50 mg.kg
-1
Phenols 45.34 mg.kg
-1
Source: Own elaboration
Total chlorophyll in duckweed was 1.42 mg.g
-1
, being an essential
pigment for photosynthesis and used in animal feed (Krupka et al.,
2023). L. minor presented 2.35 mg.kg
-1
of ascorbic acid, essential
for humans and animals, promoting growth and immune functions
(Mora-Herrera et al., 2011). It was found <2.50 mg.kg
-1
of tannins,
within a safe and acceptable range for both human consumption and
animal feed (Eck-Varanka et al., 2023; Inguanez et al., 2022; Utami et
al., 2018). Finally, duckweed showed a high concentration of phenols
45.34 mg.kg
-1
, which act as phytoalexins and antioxidants (Gómez et
al., 2020; Radulović et al., 2020; Hernández-Moreno et al., 2022).
Table 2 shows the qualitative phytochemical screening of L.
minor which was performed on the 50/50 % hydroethanolic extract
obtained by maceration, extraction, colouring and foaming reactions.
Table 2. Phytochemical screening of L. minor L.
Parameters Method Metabolite Results
Phytochemical
screening
Qualitative
colorimetric
Alkaloids
Mayer Reactant Positive
Wagner reactant Positive
Tannins
Ferric chloride assay Positive
Reducing sugars
Fehling test
Positive
Chemical screening of L. minor showed the presence of alkaloids,
phenols and reducing sugars. Alkaloids act as defence mechanisms in
plants and may have medicinal or hallucinogenic eects, depending on
their interaction with the central nervous system (Cholich et al., 2021;
Regni et al., 2024). Phenols are organic compounds that contribute
 ℎ ℎ 
  −


.
1
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(1): e254202 January-March. ISSN 2477-9407.
4-5 |
to pigmentation and possess antioxidant, anti-inammatory and
anticarcinogenic properties, beneting human health (Jiménez et al.,
2022). Reducing sugars are essential for the transport and absorption
of nutrients in plants and are a signicant source of energy in human
and animal diets, serving as an alternative to traditional protein
sources (Chauca Espinoza et al., 2017).
Table 3 shows the analyses of deep well water and cattle slurry
treated with L. minor.
Table 3. Analyses of deep well water and bovine slurry.
Parameter
Deep well Cattle slurry
M
1
M
2
σ M
1
M
2
σ
Resistivity (kΩ.cm
-1
) 3.36 3.85 0.25 3.04 3.18 0.07
Salinity (%) 0.14 0.12 0.01 0.16 0.15 0.01
Total Dissolved Solids
(mg.L
-1
)
142.5 123.6 9.45 157.9 150.5 3.70
Conductivity (µS.cm
-1
) 198 260 19 329 317 36
Dissolved oxygen
(mg.L
-1
)
7.68 6.96 0.36 6.81 6.58 0.12
pH 8.32 7.80 0.26 8.32 7.50 0.41
Temperature (ºC) 26.5 26.7 0.1 27.2 27.7 0.25
M
1
Initial sample; M
2
Sample 16 days later; σ Standard deviation.
The resistivity of well water increased to 0.49 ohms per centimetre
after 16 days of duckweed application, while water contaminated
by bovine slurry showed 0.14 ohms per centimetre, indicating an
increase in charged particles. According to Sánchez-García (2021),
resistivity varies according to the concentration of salts and minerals,
highlighting the importance of dissolved ions in the electrical
conductivity of water. Improvements in salinity, total dissolved solids
and pH parameters were recorded in both well and slurry water,
suggesting that L. minor optimises the physical parameters of water
(Pérez et al., 2022). Conductivity also decreased, reaching 38 μS.cm
-1
and 12 μS.cm
-1
, indicating the lentil’s ability to absorb nutrients and
pollutants (Vargas & Barajas, 2016). However, a drop in dissolved
oxygen was evidenced, reaching 6.96 mg.L
-1
in deep well water and
6.58 mg.L
-1
in slurry water, which may aect the health of the aquatic
ecosystem (Diaz, 2002).
However, gure 1 shows the fresh weight of L. minor reached
in 16 days in dierent types of water with an initial sowing of 150
grams.
After 16 days of study, a remarkable increase in the plant mass
of L. minor, an aquatic plant commonly used as an indicator of water
quality, was observed. On average, the mass of L. minor in the cattle
slurry contaminated water increased signicantly by 13 g.day.m
-3
,
compared to the modest increase of 5 g.day.m
-3
observed in the deep
well water. Canales-Gutiérrez, (2010) mention that L. minor has
the ability to increase its biomass production based on the nutrient
content of the water where it is found, tripling its biomass in 7 days
when fertilisers are added. This explains its increase in fresh weight
gain in water with bovine slurry.
The Weende analysis of L. minor was determined (table 4).
Table 4. Weende analysis of Lemna minor L.
Parmeter
Content (%)
Dry matter 89
Crude protein 30
Crude energy 4.0
Ethereal extract 3.2
Ash 15
Free Nitrogen Extract 32
Fibre 10
Source: Own elaboration.
Duckweed is a sustainable source of protein, with up to 40 %
of its dry biomass rich in minerals. Its rapid growth makes it ideal
for animal, aquaculture and human food. Córdoba et al. (2010),
Sońta et al. (2023) and Soria-Hernández et al. (2024) highlight that
its inclusion in commercial diets can reduce production costs in
tilapia and pig farms by up to 50 %, demonstrating its economic and
environmental viability.
Conclusions
Lemna minor L. has been chemically characterised, highlighting
the presence of chlorophyll, vitamin C and phenols, with antioxidant
properties benecial to human and animal health. In addition,
alkaloids, phenols and reducing sugars, compounds that play crucial
roles in the plant’s defence mechanisms, were identied.
Water treatment with L. minor has shown signicant improvement
in physical and chemical parameters such as resistivity, salinity, pH
and conductivity.
Its remarkable increase in biomass in a short time positions it as
a sustainable and protein-rich source. These ndings underline the
nutritional and environmental value of L. minor, highlighting its
importance in food security and the preservation of natural resources.
Literature cited
Avila, E. M. B., Suárez, M. A. C., López, J. H. V., & Valdiviezo, M. D. C.
(2020). Lechuguín (Eichhornia Crassipes (Mart.) Solms) y lenteja
de agua (Lemna spp) en la reducción de la dureza del agua de
riego. ConcienciaDigital, 3(1.1), 133-146. https://doi.org/10.33262/
concienciadigital.v3i1.1.1136
Blainski, A., Lopes, G. C., & De Mello, J. C. P. (2013). Application and analysis
of the folin ciocalteu method for the determination of the total phenolic
content from Limonium brasiliense L. Molecules, 18(6), 6852-6865.
https://doi.org/10.3390/molecules18066852
Bello-Armenta, M. A., & Marín, R. R. C. (2023). Evaluación del rendimiento
productivo y coeciente de digestibilidad aparente en Colossoma
macropomum, de un alimento formulado con Lemna minor
. Revista
Figure 1. Fresh weight gain of Lemna minor L. 16 days after
planting in dierent types of water.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Vera et al. Rev. Fac. Agron. (LUZ). 2025, 42(1): e254202
5-5 |
EIA, 20(40), 1-18. https://doi.org/10.24050/reia.v20i40.1655
Benavides, K. L. Q., Baylón, N. K. G., Avalos, H. D., & Panduro, H. G. D. (2021).
Utilización de Eichhornia crassipes y Lemna minor en la remoción de
nitrógeno y fósforo de las aguas residuales de la laguna de oxidación
de la ciudad de Pucallpa, Perú. Ciencia Latina Revista Cientíca
Multidisciplinar, 5(3), 2813-2827. https://doi.org/10.37811/cl_rcm.
v5i3.491
Blanco, C. (2018). Evaluación del desempeño zootécnico y calidad de agua en
alevinos de cachama (Piaractus brachypomus) suplementados con Lemna
minor. Revista Colombiana de Zootecnia, 4(8), 46-47. https://anzoo.org/
publicaciones/index.php/anzoo/article/view/1
Canales-Gutiérrez, Á. (2010). Evaluación de la biomasa y manejo de Lemna gibba
(lenteja de agua) en la bahía interior del Lago Titicaca, Puno. Ecología
Aplicada
, 9(2), 91-99. http://www.scielo.org.pe/scielo.php?script=sci_
arttext&pid=S1726-22162010000200004
Chauca Espinoza, K., Grosso Gamboa, C. A., Cabrera Matara, J., León Torres,
C., Arellano Barragán, J., Rodríguez, C. N., & Pretel Sevillano, O.
(2017). Extracción de azúcares reductores totales ART por métodos
físicos y químicos de planta de Zea mays (Poaceae) maíz amarillo
duro. Arnaldoa, 24(1), 289-300. http://www.scielo.org.pe/scielo.
php?script=sci_arttext&pid=S2413-32992017000100012
Cholich, L. A., Pistán, M. E., Torres, A. M., Ortega, H. H., Gardner, D. R., &
Bustillo, S. (2021). Caracterización, y actividad citotoxica en celulas
gliales, de extractos enriquecidos con alcaloides de vainas de las plantas
Prosopis exuosa y Prosopis nigra (Fabaceae). Revista de Biología
Tropical, 69(1), 197-206. http://dx.doi.org/10.15517/rbt.v69i1.43515
Córdoba, P. Z., Mendiola, J. L. R., Cerrilla, M. E. O., Jiménez, E. O., Torres,
M. T. S., Haro, J. G. H., & Herrera, M. B. (2010). Utilización de la
lenteja agua (Lemnaceae) en la producción de Tilapia (Oreochromis
spp.). Archivos de zootecnia, 59, 133-155. https://dialnet.unirioja.es/
servlet/articulo?codigo=7212381
Diaz, D. S. (2002). Uso de plantas acuáticas en el tratamiento de agua
y aguas residuales en la Universidad de Matanzas” Camilo
Cienfuegos”. Avanzada Cientíca, 5(2), 1-3. https://dialnet.unirioja.es/
servlet/articulo?codigo=5074362
Díaz Solares, M., Cazaña Martínez, Y., Pérez Hernández, Y., Valdivia Ávila,
A., Prieto Abreu, M., & Lugo Morales, Y. (2015). Evaluación
cualitativa de metabolitos secundarios en extractos de variedades
e híbridos de Morus alba L. (morera). Revista Cubana de Plantas
Medicinales, 20(3), 358-366. http://scielo.sld.cu/scielo.php?pid=S1028-
47962015000300010&script=sci_arttext
Eck-Varanka, B., Kováts, N., Hubai, K., & Sainnokhoi, T. A. (2023). Assessing
the eect of glyphosate toxicity on Lemna minor in dierent
temperature regimes. Pollutants, 3(4), 451-460. https://doi.org/10.3390/
pollutants3040031
Garaboto, M. A. (2015). Biosorción de cadmio y plomo en solución con lenteja
de agua (Lemna obscura) inmovilizada en Silica. Revista Digital de
Investigación y Postgrado, 5(2), 742-758. https://dialnet.unirioja.es/
descarga/articulo/5282243.pdf
Greneld, H., & Southgate, D. (2003). Datos de composición de alimentos,
Obtención, Gestión y Utilización. Organización de las Naciones Unidas
para la Agricultura y la Alimentación (FAO), 2, 23-221. https://www.fao.
org/4/y4705s/y4705s.pdf
Gómez, E. S. O., López, A., & Reátegui, D. (2020). Infusiones de plantas
medicinales: Actividad antioxidante y fenoles totales. Agroindustrial
Science, 10(3), 259-266. https://dialnet.unirioja.es/servlet/
articulo?codigo=8085663
Gutierrez, T., Hoyos, O., & Páez, M. (2007). Determinación del contenido de ácido
ascórbico en uchuva (Physalis peruviana L.), por cromatografía líquida
de alta resolución (CLAR). Biotecnología en el Sector Agropecuario y
Agroindustrial: BSAA, 5(1), 70-79. https://dialnet.unirioja.es/servlet/
articulo?codigo=6117626
Hernández-Moreno, L. V., Salazar, J. R., Pabón, L. C., & Hernández-Rodríguez, P.
(2022). Actividad antioxidante y cuanticación de fenoles y avonoides
de plantas colombianas empleadas en infecciones urinarias. Revista
UDCA Actualidad & Divulgación Cientíca, 25(1), 1-8. https://doi.
org/10.31910/rudca.v25.n1.2022.1690
Hiscox, J. D., & Israelstam, G.F. (1979). A method for the extraction of chlorophyll
from leaf tissue without maceration. Canadian Journal of Botany, 57(12),
1332-1334. https://doi.org/10.1139/b79-163
Inguanez, L., Zhu, X., de Oliveira Mallia, J., Tiwari, B. K., & Valdramidis, V. P.
(2023). Extractions of protein-rich Alaria esculenta and Lemna minor by
the use of high-power (assisted) ultrasound. Sustainability, 15(10), 1-23.
https://doi.org/10.3390/su15108024
Intriago, L. M. R., Intriago, H. R. R., & Delgado, I. R. (2024). Estudio Descriptivo
del Potencial Fitorremediador de Azolla, Lemna minor Y Eichhornia
crassipes en Ambientes Contaminados. Ciencia Latina Revista Cientíca
Multidisciplinar, 8(3), 10303-10314. https://doi.org/10.37811/cl_rcm.
v8i3.12182
Irin, I. J., & Hasanuzzaman, M. (2024). Organic Amendments: Enhancing
Plant Tolerance to Salinity and Metal Stress for Improved Agricultural
Productivity. Stresses, 4(1), 185-209. https://doi.org/10.3390/
stresses4010011
Jaimes Prada, O., Lora Díaz, O., & Tache Rocha, K. (2024). Lenteja de agua
(Lemna minor
): potencial alimentario y ambiental. Revisión. Revista
mexicana de ciencias pecuarias, 15(2), 404-424. https://doi.org/10.22319/
rmcp.v15i2.6107
Jiménez, A. J., Jaramillo, C. J., & de Astudillo, L. R. (2022). Estudio comparativo
de los métodos espectrofotómetrico y potenciométrico para la
determinación cuantitativa de fenoles totales en plantas medicinales
ecuatorianas. InfoANALÍTICA, 10(1), 129-141. https://dialnet.unirioja.es/
servlet/articulo?codigo=8380346
Kasay, M. I., Huamán, J., & Guerrero, M. (2013). Estudio cualitativo y cuantitativo
de taninos de la Oenothera rosea l’hér. ex aiton. Revista Peruana de
Química e Ingeniería Química, 16(1), 13-19. https://revistasinvestigacion.
unmsm.edu.pe/index.php/quim/article/view/6540
Krupka, M., Olkowska, E., Klimkowicz-Pawlas, A., Łęczyński, L., Tankiewicz,
M., Michalczyk, D. J., ... & Piotrowicz-Cieślak, A. I. (2023). The impact
of soil and water pollutants released from poultry farming on the growth
and development of two plant species. Agriculture, 14(1), 1-22. https://
doi.org/10.3390/agriculture14010087
Liebers, M., Hommel, E., Grübler, B., Danehl, J., Oermann, S., & Pfannschmidt,
T. (2023). Photosynthesis in the biomass model species Lemna minor
displays plant-conserved and species-specic features. Plants, 12(13),
1-16. https://doi.org/10.3390/plants12132442
Mercado-Albarrán, I. M., Ramírez-Carranza, D. R., Cruz-Monterrosa, R. G.,
Díaz-Ramírez, M., Jiménez-Guzmán, J., García-Garibay, M., Miranda de
la Lama, G., Beristain Cardoso, R., & Rayas-Amor, A. (2019). Sistema
acuapónico con humedal subsupercial para producción de carpa
(Cyprinus carpio L.), fresa (Fragaria x ananassa (Duchesne ex Weston)
y canola (Brassica napus L.). Agro Productividad, 12(11), 93-98. https://
doi.org/10.32854/agrop.vi0.1520
Miras-Moreno, B., Senizza, B., Regni, L., Tolisano, C., Proietti, P., Trevisan, M.,
Lucini, L., Rouphael, Y., Del Buono, D. (2022). Biochemical insights
into the ability of Lemna minor L. extract to counteract copper toxicity in
maize. Plants, 11(19), 1-15. https://doi.org/10.3390/plants11192613
Mora-Herrera, M. E., Peralta-Velázquez, J., López-Delgado, H. A., García-
Velasco, R., & González-Díaz, J. G. (2011). Efecto del ácido ascórbico
sobre crecimiento, pigmentos fotosintéticos y actividad peroxidasa en
plantas de crisantemo. Revista Chapingo. Serie horticultura, 17(SPE2),
73-81. https://www.scielo.org.mx/scielo.php?pid=S1027-
152X2011000500008&script=sci_arttext
Pérez, G., Jiménez Prieto, Y., & Rasúa, M. D. C. M. (2022). Humedales
construidos bioactivados con microorganismos ecientes: una vía
para la gestión de residuales en el matadero Chichí Padrón. Centro
Azúcar, 49(3), 57-68. http://scielo.sld.cu/scielo.php?pid=S2223-
48612022000300057&script=sci_arttext
Regni, L., Tolisano, C., Del Buono, D., Priolo, D., & Proietti, P. (2024). Role
of an aqueous extract of duckweed (Lemna minor L.) in increasing
salt tolerance in Olea europaea L. Agriculture, 14(3), 1-10. https://doi.
org/10.3390/agriculture14030375
Radulović, O., Stanković, S., Uzelac, B., Tadić, V., Trifunović-Momčilov,
M., Lozo, J., & Marković, M. (2020). Phenol removal capacity of
the common duckweed (Lemna minor L.) and six phenol-resistant
bacterial strains from Its rhizosphere: In vitro evaluation at high phenol
concentrations. Plants, 9(5), 1-17. https://doi.org/10.3390/plants9050599
Salas, R. G., Cruz, O. R., Navarro, M. V., & Palafox, J. P. (2016). Lenteja de agua,
una opción en dietas para tilapia roja. Revista AquaTIC, 38, 85-93. http://
revistaaquatic.com/ojs/index.php/aquatic/article/view/101
Sánchez-García, M. D., Bolaina-Vazconcelos, J., Chávez-Hernández, G., Damas-
López, D. A., Estrada-Botello, M. A., Mendoza-Palacios, J. D. D.,
& Sánchez-Hernández, R. (2021). Modelación del agua subterránea
en plantaciones de palma de aceite y pastizales mediante técnicas
geofísicas. Ecosistemas y Recursos Agropecuarios, 8(3), 1-12. https://www.
scielo.org.mx/scielo.php?pid=S2007-90282021000300007&script=sci_
arttext
Sońta, M., Więcek, J., Szara, E., Rekiel, A., Zalewska, A., & Batorska, M. (2023).
Quantitative and qualitative traits of duckweed (Lemna minor) produced
on growth media with pig slurry. Agronomy, 13(7), 1-16. https://doi.
org/10.3390/agronomy13071951
Soria-Hernández, C.; Richards-Chávez, A.; Ochoa-García, J.C.; Rodríguez-
López, J.L.; Chuck-Hernández, C. (2024). The eect of ultrasound on the
extraction and functionality of proteins from duckweed (Lemna minor).
Molecules. 29, 1-17. https://doi.org/ 10.3390/molecules29051122
Utami, D., Kawahata, A., Sugawara, M., Jog, R. N., Miwa, K., & Morikawa, M.
(2018). Eect of exogenous general plant growth regulators on the growth
of the duckweed Lemna minor. Frontiers in Chemistry, 6, 1-9. https://doi.
org/10.3389/fchem.2018.00251
Vámos, S., Li, C., Moradi, A., & van Moorsel, S. J. (2023). High tolerance to
zinc but no evidence for local adaptation in the aquatic plant Lemna
minor. Nordic Journal of Botany, 7, 1-12. https://doi.org/10.1111/
njb.04078
Vargas, E. R., & Barajas, L. N. A. (2016). Tolerancia de Lemna gibba a metales
pesados bajo condiciones de estrés nutricional. Ingeciencia, 1(2),
32-41. https://revistas.ucentral.edu.co/index.php/Ingeciencia/article/
view/308/275