This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(1): e254211 January-March. ISSN 2477-9409.
6-6 |
De La Guardia, L., de Miranda, J. H., & dos Santos Luciano, A. (2024). Assessment
of irrigation water use for dry beans in center pivots using Era5 land
climate variables and Sentinel-2 NDVI time series in the Brazilian
Cerrado. SSRN. https://doi.org/10.2139/ssrn.4917244
Del Valle, T. M., & Jiang, P. (2022). Comparison of common classication
strategies for large-scale vegetation mapping over the Google Earth
Engine platform. International Journal of Applied Earth Observation and
Geoinformation, 115, 103092. https://doi.org/10.1016/j.jag.2022.103092
Eliades, M., Bruggeman, A., Djuma, H., Christo, C., & Kuells, C. (2022).
Quantifying evapotranspiration and drainage losses in a semi-arid
nectarine (Prunus persica var. nucipersica) eld with a dynamic crop
coecient (Kc) derived from leaf area index measurements. Water, 14(5),
734. https://doi.org/10.3390/w14050734
Elogne, A. G., Piponiot, C., Zo-Bi, I. C., Amani, B. H., Van der Meersch, V., &
Hérault, B. (2023). Life after re—Long-term responses of 20 timber
species in semi-deciduous forests of West Africa. Forest Ecology and
Management, 538, 120977. https://doi.org/10.1016/j.foreco.2023.120977
Fuentes-Peñailillo, F., Gutter, K., Vega, R., & Silva, G. C. (2024). Transformative
technologies in digital agriculture: Leveraging Internet of Things, remote
sensing, and articial intelligence for smart crop management. Journal
of Sensor and Actuator Networks, 13(4), 39. https://doi.org/10.3390/
jsan13040039
Ge, X., Ding, J., Jin, X., Wang, J., Chen, X., Li, X., & Xie, B. (2021). Estimating
agricultural soil moisture content through UAV-based hyperspectral
images in the arid region. Remote Sensing, 13(8), 1562. https://doi.
org/10.3390/rs13081562
Judge, J., Liu, P. W., Monsiváis-Huertero, A., Bongiovanni, T., Chakrabarti, S.,
Steele-Dunne, S. C., & Cosh, M. (2021). Impact of vegetation water
content information on soil moisture retrievals in agricultural regions: An
analysis based on the SMAPVEX16-MicroWEX dataset. Remote Sensing
of Environment, 265, 112623. https://doi.org/10.1016/j.rse.2021.112623
Ippolito, M., De Caro, D., Ciraolo, G., Minacapilli, M., & Provenzano, G. (2023).
Estimating crop coecients and actual evapotranspiration in citrus
orchards with sporadic cover weeds based on ground and remote sensing
data. Irrigation Science, 41(1), 5-22. https://doi.org/10.1007/s00271-022-
00829-4
Karunathilake, E. M. B. M., Le, A. T., Heo, S., Chung, Y. S., & Mansoor, S.
(2023). The path to smart farming: Innovations and opportunities in
precision agriculture. Agriculture, 13(8), 1593. https://doi.org/10.3390/
agriculture13081593
Kganyago, M., Adjorlolo, C., Mhangara, P., & Tsoeleng, L. (2024). Optical remote
sensing of crop biophysical and biochemical parameters: An overview
of advances in sensor technologies and machine learning algorithms for
precision agriculture. Computers and Electronics in Agriculture, 218,
108730. https://doi.org/10.1016/j.compag.2024.108730
Khose, S. B., & Mailapalli, D. R. (2024). Spatial mapping of soil moisture content
using very-high resolution UAV-based multispectral image analytics.
Smart Agricultural Technology, 8, 100467. https://doi.org/10.1016/j.
sat.2024.100467
Kumari, A., Singh, J., & Gupta, H. (2024). Multi-temporal analysis of vegetation
extent using Google Earth Engine. In Natural Resource Monitoring,
Planning and Management Based on Advanced Programming (pp. 29-45).
Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0643-5_2
Lemesios, I., & Petropoulos, G. P. (2024). Vegetation regeneration dynamics
of a natural Mediterranean ecosystem following a wildre exploiting
the LANDSAT archive, Google Earth Engine, and geospatial analysis
techniques. Remote Sensing Applications: Society and Environment, 34,
101153. https://doi.org/10.1016/j.rsase.2024.101153
Lobos, G., Veas, A., Balbontín, C., Muñoz, V., Franck, N., & Portilla, Á. (2017).
Manejo hídrico en frutales bajo condiciones edafoclimáticas de Limarí y
Choapa. Boletin INIA N° 355. Instituto de Investigaciones Agropecuarias
de Chile. https://hdl.handle.net/20.500.14001/6619
Mc Feeters, S. K. (1996). The use of the Normalized Dierence Water Index (NDWI)
in the delineation of open water features. International Journal of Remote
Sensing, 17(7): 1425-1432. https://doi.org/10.1080/01431169608948714
Manfreda, S., & Dor, E. B. (2023). Remote sensing of the environment using
unmanned aerial systems. In Unmanned Aerial Systems for Monitoring
Soil, Vegetation, and Riverine Environments (pp. 3-36). https://doi.
org/10.1201/9780367334232-1
Masi, M., Di Pasquale, J., Vecchio, Y., & Capitanio, F. (2023). Precision farming:
Barriers of variable rate technology adoption in Italy. Land, 12(5), 1084.
https://doi.org/10.3390/land12051084
Mehedi, I. M., Hanif, M. S., Bilal, M., Vellingiri, M. T., & Palaniswamy, T. (2024).
Remote sensing and decision support system applications in precision
agriculture: Challenges and possibilities. IEEE Access.
https://doi.
org/10.1109/ACCESS.2024.1234567
Munaganuri, R. K., & Yamarthi, N. R. (2024). PAMICRM: Improving precision
agriculture through multimodal image analysis for crop water requirement
estimation using multidomain remote sensing data samples. IEEE Access.
https://doi.org/10.1109/ACCESS.2024.1234568
Pedroza-Parga, E., Velásquez-Valle, M. A., Pedroza-Sandoval, A., Sánchez-
Cohen, I., & Yáñez-Chávez, L. G. (2022). The impact of vegetation cover
on soil erosion and soil deposition due to runo. Ingeniería agrícola y
biosistemas, 14(1), 17-31. https://doi.org/10.5154/r.inagbi.2021.12.135
Terink, W., Lutz, A. F., Simons, G. W. H., Immerzeel, W. W., & Droogers, P.
(2015).
SPHY v2. 0: Spatial processes in hydrology. Geoscientic Model
Development
, 8(7), 2009-2034. https://doi.org/10.5194/gmd-8-2009-
2015
Toosi, A., Javan, F. D., Samadzadegan, F., Mehravar, S., Kurban, A., & Azadi, H.
(2022). Citrus orchard mapping in Juybar, Iran: Analysis of NDVI time
series and feature fusion of multi-source satellite imageries. Ecological
Informatics
, 70, 101733. https://doi.org/10.1016/j.ecoinf.2022.101733
Sabie, R., Bawazir, A. S., Buenemann, M., Steele, C., & Fernald, A. (2024).
Calculating Vegetation Index-Based Crop Coecients for Alfalfa in
the Mesilla Valley, New Mexico Using Harmonized Landsat Sentinel-2
(HLS) Data and Eddy Covariance Flux Tower Data. Remote Sensing,
16(16), 2876. https://doi.org/10.3390/rs16162876
Yi, W., Wang, N., Yu, H., Jiang, Y., Zhang, D., Li, X., & Xie, Z. (2024). An
enhanced monitoring method for spatio-temporal dynamics of salt marsh
vegetation using google earth engine. Estuarine, Coastal and Shelf
Science, 298, 108658. https://doi.org/10.1016/j.ecss.2024.108658
Wu, Z., Cui, N., Zhang, W., Yang, Y., Gong, D., Liu, Q., & Zhu, B. (2024).
Estimation of soil moisture in drip-irrigated citrus orchards using multi-
modal UAV remote sensing. Agricultural Water Management, 302,
108972. https://doi.org/10.1016/j.agwat.2024.108972