
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Holguín et al. Rev. Fac. Agron. (LUZ). 2025, 42(2): e254226
5-6 |
Table 4. Disease severity caused by Fusarium oxysporum f. sp. nicotinae and Fusarium phyllophilum on root, stem and leaf organs of N.
tabacum cv. Corojo 2012.
Isolates
Root Stem Leaves I
3
Necrotic plants
4
DS
1
± SD DS ± SD
2
DS ± SD (%) (%)
FON-B 4.17 ± 1.69 a 3.50 ± 1.72 b 4.31 ± 1.10 a 89.72 a 58.0 a
FON-D 3.40 ± 1.90 b 3.30 ± 1.83 b 3.70 ± 1.25 b 71.11 b 41.5 b
FP-E 4.26 ± 1.45 a 3.95 ± 1.45 b 4.40 ± 0.97 a 91.10 a 62.0 a
FP-F 3.80 ± 1.69 b 3.60 ± 1.90 b 3.80 ± 1.32 b 73.05 b 37.5 b
Control 0 0 0 0 0
1
DS: damage scale, maximum value of 5.
2
SD: Standard deviation.
3
I. Disease intensity was determined using the Townsend and Heuberger formula. (1943), I (%) = [(∑ a x b) / N x K] x 100, where:
a = number of plants or organs aected, b = scale grade, K = last scale grade used, N = total plants. Dierent letters in the columns indicate signicant dierences (Tukey, p≤0.05).
4
Percentage of
necrotic seedlings with no chance of survival.
Figure 1. Severity of Fusarium phyllophilum (FP-E) on Nicotiana
tabacum cv. Corojo 17 days after inoculation. A) control without
inoculation, B) wilted and necrotic seedling with no chance of
survival.
Conclusions
The vascular wilt disease caused by F. oxysporum f. sp. nicotinae
and/or F. phyllophilum represents a limiting factor for tobacco
production in Granma, Cuba. It was found a recurrence of 62 % with
seedling necrosis and a severity of 4.20 in a scale of 5 grades, which
aected the germination and seedling development variables. This has
an impact on the yield and commercial quality of leaves, especially
for the manufacture of Cuban cigars, underlining the importance of
early diagnosis to establish management measures to prevent the
spread of the pathogen in producing regions of Cuba and the world.
Literature cited
Akhter, A., Hage, K., Soja, G., & Steinkellner, S. (2015) Compost and biochar alter
mycorrhization, tomato root exudation, and development of Fusarium
oxysporum f. sp. lycopersici. Frontiers in Plant Science, 6(529), 1-13.
https://doi.org/10.3389/fpls.2015.00529
Ankati, S., Srinivas, V., Pratyusha, S., & Gopalakrishnan, S. (2021). Streptomyces
consortia-mediated plant defense against Fusarium wilt and plant growth-
promotion in chickpea. Microbial Pathogenesis, 157, 104961. https://doi.
org/10.1016/j.micpath.2021.104961
Balzarini, M. G., Gonzalez, L., Tablada, M., Casanoves, F., Di Rienzo, J. A., y
Robledo C. W. (2008). Manual del Usuario, Editorial Brujas, Córdoba,
Argentina. 316 p.
Berruezo, L. A., Harries, E. M., Galván, M. Z., Stenglein, S. A., y Mercado, G.
(2021). Evaluación de la tolerancia a Fusarium oxysporum and Fusarium
solani en variedades de tabaco (Nicotiana tabacum L.) tipo Virginia
bajo condiciones controladas en el noroeste de Argentina. Revista de
la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo,
53(2), 214-224. https://www.scielo.org.ar/pdf/refca/v53n2/1853-8665-
refca-53-02-214.pdf
Browne, R. & Cooke, B. (2005). A comparative assessment of potential
components of partial disease resistance to Fusarium head blight using a
detached leaf assay of wheat, barley and oats. European Journal of Plant
Pathology, 112, 247-258 https://doi.org/10.1007/s10658-005-2077-z
Cakır, B., Gül, A., Yolageldi, L., & Özaktan, H. (2014). Response to Fusarium
oxysporum f. sp. radicis-lycopersici in tomato roots involves regulation
of SA-and ET-responsive gene expressions. European Journal of Plant
Pathology, 139(2), 379-391. https://doi.org/10.1007/s10658-014-0394-9
Carmona, S. L., del Pilar Villarreal-Navarrete, A., Burbano-David, D., Gómez-
Marroquín, M., Torres-Rojas, E., & Soto-Suárez, M. (2020). Boosting
photosynthetic machinery and defense priming with chitosan application
on tomato plants infected with Fusarium oxysporum f. sp. lycopersici.
bioRxiv, 19, 1-35. https://doi.org/10.1101/2020.08.18.256628
Espino, E., Uriarte, B. E., Cordero, P. L., Rodríguez, N., Izquierdo, A., Blanco,
L. E., y Díaz, M. (2012). Instructivo técnico para el cultivo del tabaco
en Cuba. Ministerio de la Agricultura. Instituto de Investigaciones del
Tabaco, p. 148.
Espinoza-Ahumada, C. A., Gallegos-Morales, G., Hernández-Castillo, F. D.,
Ochoa-Fuentes, Y. M., Cepeda-Siller, M., y Castillo-Reyes, F. (2019).
Antagonistas microbianos a Fusarium spp., como agente causal
de pudrición de raíces y tallo en melón. Ecosistemas y Recursos
Agropecuarios, 6(16), 45-55. https://doi.org/10.19136/era.a6n16.1843
García, S. E., Aldrete, A., Alvarado, D., Cibrián, D., Méndez, J. T., Valdovinos, G.,
y Equíhua, A. (2017). Efecto de Fusarium circinatum en la germinación y
crecimiento de plántulas de Pinus greggii en tres sustratos. Agrociencia,
51(8), 895-908. https://www.scielo.org.mx/pdf/agro/v51n8/1405-3195-
agro-51-08-895.pdf
Gilardi, G., Matic, S., Guarnaccia, V., Garibaldi, A., & Gullino, M. L. (2021). First
report of Fusarium clavum causing leaf spot and fruit rot on tomato in
Italy. Plant Disease, 105(8), 2250. https://doi.org/10.1094/PDIS-05-20-
1096-PDN
González, L. C., Gonzalez, H. H. M., y Ochoa, X. G. R. (2023). Marchitez
por Fusarium oxysporum Schlthl en masaguaro (Pseudosamanea
guachapele) (Kunth). INGE CUC, 19(1), 11-21. https://doi.org/10.17981/
ingecuc.19.1.2023.02
Gui, Z.-Q., Yuan, X.-L., Yang, J., Du, Y.-M., & Zhang, P. (2024). An updated
review on chemical constituents from Nicotiana tabacum L.: Chemical
diversity and pharmacological properties. Industrial Crops and Products,
214, 118497. https://doi.org/10.1016/j.indcrop.2024.118497
Ha-Thanh, P., Ngoc Tuan, T., Van Van, N., Van Lu, N., Thai Binh, H., Van Chin,
N., & Do Dung, D. (2022). Results of trial oriental tobacco varieties
planting in Ninh Thuan and Dak Lak Province, Vietnam in 2021. Journal
of Experimental Agriculture International, 44(2), 78-87. https://doi.
org/10.9734/jeai%2F2022%2Fv44i230801
Hu, B., Zheng, Y., Lv, J., Zhang, J., & Dong, Y. (2023). Proteomic analysis of the
faba bean-wheat intercropping system in controlling the occurrence of
faba bean Fusarium wilt due to stress caused by Fusarium oxysporum f.
sp. fabae and benzoic acid. BMC Plant Biology, 23(1), 472. https://doi.
org/10.1186/s12870-023-04481-8
Hudson, O., Fulton, J. C., Dong, A. K., Dufault, N. S., & Ali, M. E. (2021).
Fusarium oxysporum f. sp. niveum molecular diagnostics past, present
and future. International Journal of Molecular Sciences, 22(18), 9735.
https://doi.org/10.3390/ijms22189735
Kema, G. H., Drenth, A., Dita, M., Jansen, K., Vellema, S., & Stoorvogel,
J. J. (2021). Fusarium wilt of banana, a recurring threat to global
banana production. Frontiers in Plant Science, 11, 628888. https://doi.
org/10.3389/fpls.2020.628888
Khademi, M., Varasteh-Shams, M., Nazarian-Firouzabadi, F., & Ismaili, A.
(2020). New recombinant antimicrobial peptides confer resistance to
fungal pathogens in tobacco plants. Frontiers in Plant Science, 11, 1236.
https://doi.org/10.3389/fpls.2020.01236
Laraba, I., Busman, M., Geiser, D. M., & O’Donnell, K. (2022). Phylogenetic
diversity and mycotoxin potential of emergent phytopathogens within
the Fusarium tricinctum species complex. Phytopathology, 112(6), 1284-
1298. https://doi.org/10.1094/PHYTO-09-21-0394-R
Luna-Rodríguez, M., González-Oviedo, N. A., Rivera-Fernández, A., y Flores-
de la Rosa, F. R. (2023). Detección del gen xyl3 en cepas de Fusarium
oxysporum f. sp. vanillae. Revista Mexicana de Ciencias Agrícolas, 14(6),
e2711. https://doi.org/10.29312/remexca.v14i6.2711