This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(2): e254229 April-June. ISSN 2477-9409.
6-6 |
Acknowledgments
Romero-Domínguez had a CONACYT scholarship during his
Master of Science studies (B091484). Hernández-Mendoza, Quiroz-
Velásquez, and Hernández-Delgado are EDI-IPN. Hernandez-
Delgado is COFAA-IPN. Hernández-Mendoza and Quiroz-Velásquez
are SNI.
Literature cited
Abu-Zaitoon, Y., Aladaileh, S., and Tawaha, A. R. A.. (2016). Contribution of the
IAM Pathway to IAA Pool in Developing Rice Grains. Brazilian Archives
of Biology and Technology, 59, e16150677. https://doi.org/10.1590/1678-
4324-2016150677
Bajguz A. & Piotrowska-Niczyporuk A. (2023). Biosynthetic Pathways of
Hormones in Plants. Metabolites, 13(8), 884. https://doi.org/10.3390/
metabo13080884.
Braithwaite, M., Johnston, P. R., Ball, S. L., Nourozil, F., Hay, A. J., Shoukouhi,
P., Chomic, A., Lange, C., Ohkura, M., Nieto-Jacobo, M. F., Cummings,
N. J., Bienkowski, D., Mendoza-Mendoza, A., Hill, R. A., McLean, K.
L., Stewart, A., Steyaert, J. M. and Bissett, J. (2017). Trichoderma down
under: species diversity and occurrence of Trichoderma in New Zealand.
Australasian Plant Pathology. 46, 11–30. https://doi.org/10.1007/s13313-
016-0457-9
Cai, F., Chen, W., Wei, Z., Pang, G., Li, R., Ran, W.and Shen, Q. (2015).
Colonization of Trichoderma harzianum strain SQR-T037 on tomato
roots and its relationship to plant growth, nutrient availability and soil
microora. Plant Soil, 388, 337–350. https://doi.org/10.1007/s11104-
014-2326-.
Dam, N. M.& Bouwmeester, H. J. (2016). Metabolomics in the Rhizosphere:
Tapping into Belowground Chemical Communication. Trends in Plant
Science, 21, 256-265. https://doi.org/10.1016/j.tplants.2016.01.008
Feng, Y., Tian, B., Xiong, Lin,G., Cheng L., Zhang T., Lin B.,, Ke Z., and Xin
L. (2024). Exploring IAA biosynthesis and plant growth promotion
mechanism for tomato root endophytes with incomplete IAA synthesis
pathways. Chemical and Biological Technologies in Agriculture, 11, 187.
https://doi.org/10.1186/s40538-024-00712-8
Fu, S.F., Wei, J.Y., Chen, H.W., Liu, Y.Y., Lu, H.Y., and Chou, J.Y. (2015). Indole-
3-acetic acid: A widespread physiological code in interactions of fungi
with other organisms. Plant Signaling & Behavio,10(8), e1048052. doi:
10.1080/15592324.2015.1048052.
Ghasemi, S., Safaie, N., Shahbazi, S., Shams-Bakhsh, M., and Askari, H. (2020).
The Role of Cell Wall Degrading Enzymes in Antagonistic Traits of
Trichoderma virens Against Rhizoctonia solani. Iraniab Journal of
Biotechnology, 18(4), e2333. doi: 10.30498/IJB.2020.2333.
Guzmán-Guzmán, P., Aleman-Duarte, M. I., Delaye, L., Herrera-Estrella, A.,
and Olmedo-Monl, V. (2017). Identication of eector-like proteins
in Trichoderma spp. and role of a hydrophobin in the plant-fungus
interaction and mycoparasitism. BMC Genetics, 18, 16. https://doi.
org/10.1186/s12863-017-0481-y.
Etesami, H., & Glick B. (2024). Bacterial indole-3-acetic acid: A key regulator
for plant growth, plant-microbe interactions, and agricultural adaptive
resilience, Microbiological Research, 281, 127602. https://doi.
org/10.1016/j.micres.2024.127602.
Hernández-Mendoza, J. L., Moreno-Medina, V. R., Quiroz-Velásquez, J. D.,
García-Olivares, J. G., & Mayek-Pérez, N. (2010). Efecto de diferentes
concentraciones de ácido antranílico en el crecimiento del maíz. Revista
Colombiana de Biotecnología, XII(1),57-63. doi: https://www.redalyc.
org/articulo.oa?id=77617786007
Hirayama, T., & Mochida, K. (2022). Plant Hormonomics: A Key Tool for Deep
Physiological Phenotyping to Improve Crop Productivity. Plant and Cell
Physiology, 63(12), 1826-1839. https://doi.org/10.1093/pcp/pcac067.
Leontovyčová, H., Trdá, L., Dobrev, P.I., Šašek, V., Gay, E., Balesdent, M.H.,
and Burketová, L. (2020). Auxin biosynthesis in the phytopathogenic
fungus Leptosphaeria maculans is associated with enhanced transcription
of indole-3-pyruvate decarboxylase LmIPDC2 and tryptophan
aminotransferase LmTAM1. Research in Microbiology, 171(5-6), 174-
184. https://doi.org/10.1016/j.resmic.2020.05.001.
Lopez-Coria, M., Hernández-Mendoza, J. L., and Sánchez-Nieto, S. (2016). T.
asperellum induces maize seedling growth by activating the PM H+ 1
-2 ATPase. Molecular Plant-Microbe Interactions
, 29, 797-806. doi.
org/10.1069/MPMI-07-16-0138-R.
Lubna, Asaf, S., Hamayun, M., Gul, H., Lee, I. J., and Hussain, A. (2018).
Aspergillus niger CSR3 regulates plant endogenous hormones and
secondary metabolites by producing gibberellins and indoleacetic acid.
Journal of Plant Interactions, 13(1), 100–111. https://doi.org/10.1080/1
7429145.2018.1436199.
Naveed, M., Amjad, Q. M., Zahir, Z. A., Hussain, M. B., Sessitsch, A., and Mitter,
B. L. (2015). Annals of Microbiology, 65:1381-1389. doi: 10.1007/
s13213-014-0976-y
Mory, N. & Strader, L. (2020) Old Town Roads: routes of auxin biosynthesis
across kingdoms, Current Opinion in Plant Biology, 55, 21-27, https://
doi.org/10.1016/j.pbi.2020.02.002.
Nieto-Jacobo, M. F., Steyaert, J. M., Salazar-Badillo, F. B., Nguyen, D.V.,
Rostás, M., Braithwaite, M., and Mendoza-Mendoza, A. (2017).
Environmental Growth Conditions of Trichoderma spp. Aects Indole
Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth
Promotion Frontiers in Plant Science. 8, 102. https://doi.org/10.3389/
fpls.2017.00102.
Peñael-Jaramillo, M. F., Torres-Navarrete, E. D., Barrera-Álvarez, A. E., Prieto-
Encalada, H. G., Morante, C. J., and Canchignia-Matínez, H. F. (2016).
Ciencias agrarias producing indole-3acetic acid using Pesudomonas
veronii R4 and in vitro formation of roots in Thompson seedless grapevine
leaves. Ciencia y Tecnología, 9, 31-36. https://revistas.uteq.edu.ec/index.
php/cyt/article/view/158/172
Pirog, T.P. & Piatetska, D.V. & Klymenko, N.O. and Iutynska, G.O.. (2022). Ways
of Auxin Biosynthesis in Microorganisms. Microbiological Journal, 84,
57-72. doi: https://doi.org/10.15407/microbiolj84.02.057.
SAS Institute Inc. (2004). SAS/STAT ® 9.1 User’s Guide. Cary, NC: SAS Institute
Inc.
Saleem, A., Qasim, M. W., Ahmad, A., Bibi, A., Haq, I. U., Khan, A. A., and
Sajjad, M. (2024). Recent Advances in Photosynthesis, Plant Hormones
and Applications in Plant Growth. Haya: The Saudi Journal of Life
Sciences, 9(1), 17-22. http://dx.doi.org/10.36348/sjls.2024.v09i01.003
Sztein, A.E., Ilić, N., Cohen, J.D. et al. (2002). Indole-3-acetic acid biosynthesis
in isolated axes from germinating bean seeds: The eect of wounding on
the biosynthetic pathway. Plant Growth Regulation 36, 201–207. https://
doi.org/10.1023/A:1016586401506
Tang, J. Li, Y., Zhang, L., Mu, J., Jiang, Y., Fu, H., Zhang, Y., Cui, H., Yu, X.,
and Ye, Z. (2023) Biosynthetic Pathways and Functions of Indole-3-
Acetic Acid in Microorganisms. Microorganisms, 11(8), 2077. https://doi.
org/10.3390/microorganisms11082077
Tariq, A., & Ahmed, A. (2022). Auxins-Interkingdom Signaling Molecules.
IntechOpen. doi: 10.5772/intechopen.102599
Uribe-Bueno, M., Hernández-Mendoza, J.L., García, C., Ancona V., Larios-Serrato,
V. (2020). Independent Tryptophan pathway in Trichoderma asperellum
and T koningiopsis: New insights with bioinformatic and molecular
analysis. bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.230920.
Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J., and Chen, J. (2023).Trichoderma
and its role in biological control of plant fungal and nematode
disease. Frontiers in Microbiology, 3(14), 1160551. doi: 10.3389/
fmicb.2023.1160551.
Yin, Q., Zhang, J., Wang, S.
Jintang Cheng, Han Gao, Cong Guo, Lianbao
Ma, Limin Sun, Xiaoyan Han, Shilin Chen, An Liu. (2021).
N-glucosyltransferase GbNGT1 from ginkgo complements the auxin
metabolic pathway. Hortic Res 8, 229 https://doi.org/10.1038/s41438-
021-00658-0
Zuo W.L., Okmen B., Depotter J.R.L., Ebert M.K., Redkar A., Villamil J.M., and
Doehlemann G. (2019). Molecular Interactions between smut fungi and
their host plants. Annual Review of Phytopathology, 57, 411–430. doi:
10.1146/annurev-phyto-082718-100139.