This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(3): e254232 July-September. ISSN 2477-9409.
6-6 |
eect, especially under nutrient-limited conditions. The FA treatment
improved morphological variables such as stem diameter by 25.6 %
and fresh weight by 48 % and dry weight by 42.8 % compared to the
control, and increased yield by 43 %, demonstrating its potential as a
biostimulant in systems without mineral fertilization.
However, when considering all variables were considered
simultaneously through multivariate analysis, FA did not outperform
the complete nutrient solution and showed no synergistic eect when
combined with it. Biochemically, its application was associated with
higher nitrate and soluble solids accumulation, without improvements
in pigments, antioxidant capacity, or visual quality.
These results suggest that fulvic acid can partially modulate growth
and metabolism during early development, but the nutrient context
strongly conditioned its ecacy. Therefore, fulvic acid represents a
viable alternative to stimulate microgreen development under limited
nutrient conditions or as a complementary strategy. However, it does
not replace the need for balanced mineral fertilization when the goal
is to maximize productivity, quality, and commercial consistency of
the crop.
Literature cited
Anastacio-Angel, G., González-Fuentes, J.A., Zermeño-González, A., Robledo-
Olivo, A., Lara-Reimers, E.A., & Peña-Ramos, F.M. (2024). Efecto
de bioestimulantes en crecimiento, siología y calidad bioquímica
de frambuesa (Rubus idaeus L.) sometida a estrés hídrico. Terra
Latinoamericana, 42,1-4. https://doi.org/10.28940/terra.v42i0.1772
Bell, J.C., Bound, S.A., & Buntain, M. (2022). Biostimulants in agricultural and
horticultural production, In I. Warrington (Ed.), Horticultural Reviews,
49, (pp. 35-95). https://doi.org/10.1002/9781119851981.ch2
Canellas, L.P., Olivares, F.L., Aguiar, N.O., Jones, D.L., Nebbioso, A., Mazzei,
P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in
horticulture. Scientia Horticulturae, 196, 15-27. https://doi.org/10.1016/j.
scienta.2015.09.013
Choe, U., Yu, L.L., & Wang, T.T (2018). The science behind microgreens as an
exciting new food for the 21st century. Journal of Agricultural and Food
Chemistry, 60(31), 7644-7651. https://doi.org/10.1021/jf2057816
Drobek, M., Fraś, A., Molas, J., & Kurasiak-Popowska, D. (2019). Plant
biostimulants: Importance of the quality and yield of horticultural crops
and the improvement of biological and physiological processes. Folia
Horticulturae, 31(2), 139-149. https://doi.org/10.2478/fhort-2019-0012
Ebert, A.W. (2022). Sprouts and microgreens: Novel food sources for healthy
diets. Plants, 11(4), 571. https://doi.org/10.3390/plants11040571
Gao, Y., Chen, S., Y., & Shi, Y. (2023). Eect of nano-calcium carbonate on
morphology, antioxidant enzyme activity and photosynthetic parameters
of wheat (Triticum aestivum L.) seedlings. Chemical and Biological
Technologies in Agriculture, 10(1), 31. https://doi.org/10.1186/s40538-
023-00404-9
Graziani, G., Cirillo, A., Giannini, P., Conti, S., El-Nakhel, C., Rouphael, Y., &
Di Vaio, C. (2022). Biostimulants improve plant growth and bioactive
compounds of young olive trees under abiotic stress conditions.
Agriculture, 12(2), 227. https://doi.org/10.3390/agriculture12020227
Hasanuzzaman, M., Parvin, K., Bardhan, K., Nahar, K., Anee, T.I., Masud, A.A.C.,
& Fotopoulos, V. (2021). Biostimulants for the regulation of reactive
oxygen species metabolism in plants under abiotic stress. Cells, 10(10),
2537 https://doi.org/10.3390/cells10102537
He, X., Zhang, H., Ye, X., Hong, J., & Ding, G. (2021). Nitrogen assimilation
related genes in Brassica napus: Systematic characterization and
expression analysis identied hub genes in multiple nutrient stress
responses. Plants, 10(10), 2160. https://doi.org/10.3390/plants10102160
Lichtenthaler, H.K., & Wellburn, A.R. (1983). Determinations of total carotenoids
and chlorophylls a and b of leaf extracts in dierent solvents. Biochemical
Society Transactions, 11(5), 591-592. https://doi.org/10.1042/bst0110591
Lin, X.Y., Ye, Y.Q., Fan, S.K., Jin, C.W., & Zheng, S.J. (2016). Increased sucrose
accumulation regulates iron-deciency responses by promoting auxin
signaling in Arabidopsis plants. Plant Physiology, 170(2), 907-920.
https://doi.org/10.1104/pp.15.01598
Márquez-García, B., Horemans, N., Cuypers, A., Guisez, Y., & Córdoba, F. (2011).
Antioxidants in Erica andevalensis: A comparative study between wild
plant and cadmium-exposed plants under controlled conditions. Plant
Physiology and Biochemistry, 49(1), 110-115. https://doi.org/10.1016/j.
plaphy.2010.10.007
Mosaad, I.S., Selim, E.M.M., Gaafar, D.E., & Al-Anoos, M.A. (2024). Eects of
humic and fulvic acids on forage production and grain quality of triticale
under various soil salinity levels. Cereal Research Communications.
https://doi.org/10.1007/s42976-024-00609-0
Muscolo, A., Francioso, O., Tugnoli, V., & Nardi, S. (2007). The auxin-like
activity of humic substance is related to membrane interactions in carrot
cell cultures. Journal of Chemical Ecology, 33(1), 115-129. https://doi.
org/10.1007/s10886-006-9206-9
Nardi, S., Pizzeghello, D., Muscolo, A., & Vianello, A. (2002). Physiological eects
of humic substances on higher plants. Soil Biology and Biochemistry,
34(11), 1527-1536. https://doi.org/10.1016/S0038-0717(02)00174-8
Pizzeghello, D., Nicolini, G., & Nardi, S. (2001). Hormone-like activity of humic
substances in Fagus sylvatica forests. New Phyrologits,151(3), 647-657.
https://doi.org/10.1046/j.0028-646x.2001.00223.x
Rodríguez-Roque, M.K., Rojas-Grau, M.A., Elez-Martínez, P., & Martín-Belloso,
O. (2013). Soymilk phenolic compounds, isoavones, and antioxidant
activity as aected by in vitro gastrointestinal digestion. Food Chemistry,
136(1), 206-212. https://doi.org/10.1016/j.foodchem.2012.07.115
Rouphael, Y., Colla, G., & De Pascale, S. (2021). Sprouts, microgreens and edible
owers as novel functional foods. Agronomy, 11(12), 2568. https://doi.
org/10.3390/agronomy11122568
Sano, T., Kutsuna, N., Becker, D., Hedrich, R., & Hasezawa, S. (2009). Outward‐
rectifying K+ channel activities regulate cell elongation and cell division
of tobacco BY‐2 cells. The Plant Journal, 57(1), 55-64. https://doi.
org/10.1111/j.1365-313X.2008.03672.x
Seth, T., Mishra, G.P., Chattopadhyay, A., Roy, P.D., Devi, M., Sahu, A., &
Nair, R.M. (2025). Microgreens: Functional food for nutrition and
dietary diversication. Plants, 14(4), 526. https://doi.org/10.3390/
plants14040526
Sharma, S., Shree, B., Sharma, D., Kumar, S., Kumar, V., Sharma, R., & Saini, R.
(2022). Vegetable microgreens: The gleam of next generation superfoods,
their genetic enhancement, health benets, and processing approaches.
Food Research International, 155, 111038. https://doi.org/10.1016/j.
foodres.2022.111038
Tallei, T.E., Kepel, B.J., Wungouw, H.I.S., Nurkolis, F., & Fatimawali, A.A.A.
(2024). A Comprehensive review on the antioxidant activities and
health benets of microgreens: current insights and future perspectives.
International Journal of Food Science and Technology, 59(1), 58-71.
https://doi.org/10.1111/ijfs.16805
Verlinden, S. (2020). Microgreens: Denitions, product types, and production
practices, In I. Warrington (Ed.), Horticultural Reviews, 47 (pp. 85-124).
Wiley Online Library. https://doi.org/10.1002/9781119625407.ch3
Toscano, S., Cavallaro, V., Ferrante, A., Romano, D., & Patané, C. (2021). Eects
of dierent light spectra on nal biomass production and nutritional
quality of two microgreens. Plants, 10(8), 1584. https://doi.org/10.3390/
plants10081584
Wang, K., Li, Y., Zhang, Y., Lou, X., & Sun, J. (2022). Improving myobrillar
proteins solubility and thermostability in low-ionic strength solution:
A review. Meat Science, 189, 108822. https://doi.org/10.1016/j.
meatsci.2022.108822
Xiao, Z., Lester, G.E., Luo, Y., & Wang, Q. (2012). Assessment of vitamin and
carotenoid concentrations of emerging food products: edible microgreens.
Journal of Agricultural and Food Chemistry, 60(31),7644-7651. https://
doi.org/10.1021/jf2057816
Xiao, Z., Raush, S.T., Luo, Y., Sun, J., Yu, L., Wang, Q., Chen, P., Yu, L., &
Stommel J.R. (2019). Microgreens of Brassicaceae: Genetic diversity
of phytochemical concentrations and antioxidant capacity. LWT –
Food Science and Technology, 101, 731-737. https://doi.org/10.1016/j.
lwt.2018.10.076
Zhang, P., Zhang, H., Wu, G., Chen, X., Gruda, N., Li, X., & Duan, Z. (2021).
Dose-dependent application of straw-derived fulvic acid on yield and
quality of tomato plants grown in a greenhouse. Frontiers in Plant
Science, 12, 736613. https://doi.org/10.3389/fpls.2021.736613