Parasitoids attacking agricultural pests in Ecuador
7
ANARTIA
Publicación del Museo de Biología de la Universidad del Zulia
ISSN 1315-642X (impresa) / ISSN 2665-0347 (digital)
Anartia, 33 (diciembre 2021): 7-26
Diversity of native and exotic parasitoids attacking agricultural
pests in Ecuador: are Ecuadorian biocontrol programs
in decline?
Diversidad de parasitoides nativos y exóticos que atacan plagas agrícolas
en Ecuador: ¿están en declive los programas de biocontrol ecuatorianos?
Dorys T. Chirinos1, María Anchundia1, Rossana Castro1, Jessenia Castro Olaya1,
Juan E. Geraud2 & Takumasa Kondo3
1Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Portoviejo, Ecuador.
2Facultad de Agronomía, Universidad del Zulia, Maracaibo, Zulia. Venezuela.
3Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Palmira, Colombia.
Correspondence: Dorys T. Chirinos: dorys.chirinos@utm.edu.ec
(Received: 05-09-2021 / Accepted: 14-11-2021 / Online: 31-12-2021)
ABSTRACT
In Ecuador, agriculture is an important economic activity. Crops are grown mainly in the regions of the continental area:
Amazon, Andes and Coast. We conducted this study to elaborate a compendium about the diversity of parasitoids of agri-
cultural insect pests and to estimate the trend of biocontrol by the use of these natural enemies. Approximately 200taxa of
parasitoids were found to be reported controlling various pests that aect cultivated crops in continental Ecuador. e ma-
jor parasitoids referred in biological control in Ecuador are Telenomus spp. (Hymenoptera: Platygastridae), Trichogramma
spp. (Hymenoptera: Trichogrammatidae) and Encarsia spp. (Hymenoptera: Aphelinidae). e results suggest a decreasing
trend in the use of parasitoids as biocontrol agents from 1980 to the present (R2: 0.80, P<0.0001). In this paper, we discuss
the probable explanations of this trend.
Keywords: Biological control, hymenopterans, natural enemies, insect pests, tachinid ies, wasps.
RESUMEN
En Ecuador, la agricultura es una actividad económica importante. Los cultivos se siembran principalmente en las regiones
del área continental: Amazonia, Andes y Costa. Realizamos este estudio para elaborar un compendio sobre la diversidad de
parasitoides de plagas insectiles agrícolas y estimar la tendencia del biocontrol mediante el uso de estos enemigos naturales.
Se encontró que aproximadamente 200 taxa de parasitoides controlan varias plagas que afectan los cultivos en el Ecuador
continental. Los principales parasitoides utilizados en el control biológico en Ecuador son Telenomus spp. (Hymenoptera:
Platygastridae), Trichogramma spp. (Hymenoptera: Trichogrammatidae) y Encarsia spp. (Hymenoptera: Aphelinidae).
Los resultados sugieren una tendencia decreciente en el uso de parasitoides como agentes de control biológico desde 1980
hasta el presente (R2: 0,80, P <0,0001). En este artículo, discutimos las posibles explicaciones de esa tendencia.
Palabras clave: avispas, control biológico, enemigos naturales, himenópteros, moscas taquínidas, plagas.
Chirinos, Anchundia, Castro, Castro Olaya, Geraud & Kondo
8
INTRODUCTION
Historically, agriculture constitutes one of the funda-
mental pillars of the economy in Ecuador, through export
or local trade of a variety of crops, including banana, ca-
cao, coee, sugarcane, owers, vegetables, corn and potato
(Castillo et al. 2020, Peñalver-Cruz et al. 2019). ese
crops are mainly cultivated in the continental region of
the country, which is geographically divided by the An-
dean Mountains into three zones: the Coast, the Andes
and the Amazon (Fig. 1). roughout the crop produc-
tion process, biological competitors may appear, among
which insect pests stand out, whose populations must be
controlled to avoid adverse eects on productivity (Savary
et al. 2012, Culliney 2014).
In integrated pest management programs the rst pest
control alternative that must be considered is biological
control (Metcalf & Luckmann 1975). Although Ecuador
has a high diversity of agricultural pest species, there is also
a signicant ecological richness, as well as a considerable
abundance of natural enemies, among which parasitoids
stand out. In fact, parasitoids have been used extensively
for pest control in the coastal region since the 1980s (Cas-
tillo 2020). Additionally, in Ecuador, the existing infor-
mation on biological control of insect pests is limited to
conference reports, abstracts and proceedings (Castillo
2019). However, in certain cases such information is not
readily available (Castillo 2019) and furthermore, the in-
formation on parasitoid inventories associated to natural
biological control is dicult to access.
is study had two objectives: 1) to elaborate a com-
pendium of information about the diversity of parasit-
oids involved in biocontrol in Ecuador, with emphasis
on natural biological control and 2) to estimate the trend
of biocontrol as a pest control strategy since 1937 in this
country.
MATERIAL AND METHODS
Data selection
Studies involving parasitoids were obtained from the
databases, Scielo, the repositories of the National Insti-
tute of Agricultural Research (INIAP) of Ecuador and
Google Scholar. A literature search was carried out for
papers published between 1937 and 2020 that included
the keywords: agricultural pests, augmentative-, natural-,
conservation-, classical biological control, crops, diversity,
Figure 1. (A) Map of America illustrating the location of Ecuador (B) Map of Ecuador showing the regions: Andes, Amazon and Coast.
Parasitoids attacking agricultural pests in Ecuador
9
Ecuador, inventory of natural enemies, parasitism rates,
parasitoids, and pest management. We included technical
reports, conference abstracts, theses, book chapters, books
and scientic papers.
Data recording
We recorded studies in classical biological control,
augmentative biological control and natural biological
control. In the cases of classical biological control, the fol-
lowing were included: crop name, insect host, parasitoid
species, year of introduction, country of origin, region of
Ecuador where the control was carried out and the positive
or negative eect of the control. For studies on augmenta-
tive biological control, cases reported since the programs
began, and the time of application were reviewed.
Analysis of data
Once the information was collected, we plotted the fol-
lowing: a) parasitoid species by insect host per crop, indi-
cating the interactions between the trophic levels of each
agroecosystem, b) number of parasitoid species for each of
the geographical regions of continental Ecuador for those
species with three or more reports. We also conducted a
principal component analysis to associate the parasitoids
reported by geographical region. To obtain the principal
components, a standardization of the data was executed
(mean 0 and standard deviation 1), to avoid that the vari-
ables with greater variance dominated the others. Finally,
a regression model was estimated between the years of the
studies (X) versus the number of parasitoids (Y), adjusting
to a polynomial function (P < 0.0001).
Although the use of parasitoids began in 1937, only ve
studies with parasitoids were conducted in approximately
ve decades (1937-1979). Given that the substantial in-
crease in biocontrol programs with parasitoids began
in 1980, analyses were carried out evaluating the period
1980-2020.
RESULTS
Approximately 200 taxa of parasitoids were found to
be controlling various pests that aect cultivated crops in
continental Ecuador during the period 1937-2020. Among
the referred parasitoids, 10% belonged to the Order Dip-
tera, while 90% were found from the Order Hymenoptera.
Within the latter, the most abundant group was the super-
family Chalcidoidea followed by Platygastroidea.
Classical biological control
e rst classical biological control program was im-
plemented in Ecuador by Luis Rodríguez Torres who
introduced and established during 1937-1947 the aph-
elinid, Aphelinus mali Haldeman, 1851 (Hymenoptera:
Aphelinidae) to control the woolly apple aphid, Eriosoma
lanigerum Hausmann, 1802 (Hemiptera: Aphididae)
(Merino 1984). Later, in 1955, the parasitoid, Amitus hes-
peridum Silvestri, 1927 (Hymenoptera: Platygastridae)
was imported from Mexico with the intention of reduc-
ing the damage caused by the citrus blacky, Aleurocan-
thus woglumi Ashby, 1915 (Hemiptera: Aleyrodidae) on
citrus trees (Browning 1992, Merino 1984). Another pest
of citrus trees, the purple scale, Lepidosaphes beckii (New-
man, 1869) (Hemiptera: Diaspididae) was also the subject
of classic biological control program, using the parasitic
wasp, Aphytis lepidosaphes Compere, 1955 (Hymenop-
tera: Aphelinidae) (Merino & Vazquez 1962). ose pro-
grams were conducted in the Andean region with satis-
factory results. Unfortunately, the obtained references do
not present quantitative levels of parasitism and degrees of
infestation before and aer the programs were conducted.
e sugarcane borer, Diatraea saccharalis (Fabricius,
1794) (Lepidoptera: Crambidae) constitutes a major
problem in the coastal region where most sugarcane is
planted (Mendoza 2018). Although the parasitoid, Bil-
laea claripalpis Wulp, 1896 (Diptera: Tachinidae) was
known to occur in Ecuador as a biocontrol agent for this
pest, its parasitism rates were very low (18%) (Gaviria
1981). For this reason, a biological control program was
put into practice with a race of B. claripalpis introduced
from Peru back in 1965. At the time, the Peruvian race
was crossed with the native one, obtaining progeny that
showed a parasitism rates as high as 87.9%, which signi-
cantly reduced the infestation levels of the sugarcane borer
(Gaviria 1981).
Approximately 15 years later, two additional parasit-
oids of D. saccharalis were imported from Venezuela, the
parasitic ies, Lydella minense (Townsend, 1927) and
Lixophaga diatraeae (Townsend, 1916) (Diptera: Tachini-
dae) (Mendoza et al. 2005). However, none of those spe-
cies adapted to the Ecuadorian coast’s environment. At the
same time, the parasitic wasp, Cotesia avipes (Cameron,
1891) (Hymenoptera: Braconidae), was introduced from
Colombia, which together with B. claripalpis has been
able to regulate the populations of D. saccharalis (CIN-
CAE 2013, Mendoza 2018).
Castillo et al. (2020) refer several imports of egg para-
sitoids made from Colombia in 1983 with dierent levels
of success. Telenomus sp. (Hymenoptera: Platygastridae)
resulted in an eective control of the South American
white borer, Rupela albina Becker & Solis, 1990 (Lepi-
doptera: Crambidae) in rice. However, it is unknown if
Trichogramma semifumatum (Perkins, 1910) and Tricho-
Chirinos, Anchundia, Castro, Castro Olaya, Geraud & Kondo
10
gramma pretiosum Riley, 1871 (Hymenoptera: Tricho-
grammatidae), which were imported to control the bor-
ers, D. saccharalis and Diatraea lineolata (Walker, 1856)
(Lepidoptera: Crambidae), have had any eect controlling
the pests.
Between the years 1970 and 1990, cotton was pro-
duced on the Ecuadorian coast (FAO: Food and Agri-
culture Organization of the United Nations 2017) and in
1988 the parasitoid Bracon kirkpatricki (Wilkinson, 1927)
(Hymenoptera: Braconidae) was imported from Colom-
bia to control the pink bollworm, Pectinophora gossypiella
(Saunders, 1844) (Lepidoptera: Gelechiidae), with unsat-
isfactory results (Castillo et al. 2020). at same year, the
species Diachasmimorpha longicaudata Ashmead (Whar-
ton, 1987) (Hymenoptera: Braconidae), Psyttalia concolor
(Szépligeti, 1910) and Aganaspis daci (Weld, 1951) (Hy-
menoptera: Figitidae), were imported from the U.S.A.
for the biocontrol of fruit ies, Anastrepha spp. (Diptera:
Tephritidae) in cherimoya (Castillo et al. 2020). However,
those introductions did not show conclusive results. In
the Guayas province in the Ecuadorian coast, a classical
biological control program using the parasitoid D. longi-
caudata, introduced from Peru to control Anastrepha spp.
on various fruit trees was carried out in various locations
(Arias et al. 2009).
e coee berry borer, Hypothenemus hampei (Ferrari,
1867) (Coleoptera: Curculionidae) was detected in the
Zamora Chinchipe province (Amazon region) in 1981,
spreading to all other coee-producing areas of Ecuador
(Mendoza et al. 1994). In an eort to the control this de-
structive pest, during 1987-1988, two parasitoids, Prorops
nasuta Waterston, 1923 and Cephalonomia stephanoderis
Betrem, 1861 (Hymenoptera: Bethylidae) were intro-
duced by INIAP from Kenya and Togo in coee-produc-
ing provinces belonging to the three regions of continen-
tal Ecuador (Mendoza et al. 1994). Aer the quarantine
process and laboratory rearing, the species were released
(Klein Koch et al. 1988, Mendoza et al. 1994). Out of
the two parasitoids, C. stephanoderis was the best adapted
(82.0% parasitism) than P. nasuta (22.5%) (Klein Koch et
al. 1988).
A decade later, the parasitoid, Phymastichus coea La
Salle, 1990 (Hymenoptera: Eulophidae) was introduced
from Colombia, mediated by the Integrated Management
of Coee Berry Borer Project, and conducted by the Na-
tional Association of Coee Exporters of Ecuador (AN-
ECAFE), together with the International Institute for
Biological Control (Delgado et al. 2002). e wasps were
released during 2000 and 2001 in six Ecuadorian provinc-
es, reporting averages of parasitism that varied from 20 to
30% (Delgado et al. 2002).
Augmentative biological control
Some introduced parasitoid species were mass reared
and released during 1980-1990. Trichogramma sp. was
extensively released in the coastal region for the control
of eggs of various lepidopterous pests on cotton, soybean,
corn, as well as for the control of Tuta absoluta (Meyrick,
1917) (Lepidoptera: Gelechiidae) in tomato (Arias et al.
1992). In addition, there are also reports of releases of the
species Trichogramma fasciatum (Perkins, 1912) and T.
pretiosum in tomatoes grown in the Andes to control T.
absoluta (Castillo et al. 2020). Telenomus sp. was also used
in 1980 in an augmentative biological control program of
Diatraea spp. in corn (Arias et al. 1996). Subsequently, the
parasitoid, Encarsia formosa Gahan, 1924 (Hymenoptera:
Aphelinidae) was used in biocontrol programs of white-
y species (Hemiptera: Aleyrodidae) on tomato in the
Chimborazo province of the Andean region (Castillo et
al. 2020).
Most of the augmentative biological control programs
carried out since the 1980s were not sustainable over time.
However, the species B. claripalpis and C. avipes continue
to be released in sugarcane elds in the coastal region be-
cause they are considered the most eective methods for
controlling the sugarcane borer, D. saccharalis (CINCAE
2013, Mendoza 2018).
Currently, parasitoids are used as one of the pest man-
agement strategies in ower crops due to international
requirements. An example of this is the release of the para-
sitic wasp Diglyphus isaea (Walker, 1838) (Hymenoptera:
Eulophidae) for the control of the leafminer, Liriomyza
huidobrensis (Blanchard, 1926) (Diptera: Agromyzidae)
that causes losses in Gypsophila sp. summer owers (Prado
et al. 2018). Reported results of releases of D. isaea indicate
its important role as a biological control agent because of
the high percentages of parasitism (90%) associated with
low infestations of L. huidobrensis (Prado et al. 2018).
Parasitoids by crop and geographical region
e parasitoids reported for Ecuador are shown in Ta-
bles 1-12 and Figures 2-8. Each gure illustrates the inter-
connections, crop-insect host-parasitoid. Associated with
four important maize pests, 34 taxa of parasitoids have
been reported, four identied up to family, 11 at generic
level and 19 to species level (Table 1, Fig. 2).
On bananas and plantains, 22 genera and eight species
of parasitoids have been recorded as biocontrol agents for
fourteen phytophagous insects and one of those genera is a
hyperparasitoid (Table 2, Fig. 3). Interestingly, 77% of the
referred parasitoids associated with bananas and plantains
attack defoliator caterpillars. Attacking ve pests on Citrus
spp., 20 parasitoids have been reported belonging to eight
Parasitoids attacking agricultural pests in Ecuador
11
Table 1. Parasitoids reported in association with pests on corn, Zea mays L.
Pest Parasitoid Region Reference
Diatraea spp.
Billaea claripalpis
Cotesia flavipes
Lixophaga spherophori
Palpozenilla diatraeae
Palpozenilla sp.
Pediobius furvus
Coast Arias 2021, Páliz &
Mendoza 1999
Dalbulus maidis Gonatopus bartletti Coast Valarezo et al. 2009
Heliothis spp.
Glyptapanteles militaris
Lespesia spp.
Campoletis argentiflora
Chelonus texanus
Cotesia marginiventris
Encarsia spp.
Gonia sp.
Hyposoter albipes
Hyposoter exiguae
Conura igneoides
Therion californicum
Whinthemia sp.
Coast Mendoza 1994a, 1994b
Mocis latipes
Diptera: Sarcophagidae
Diptera: Tachinidae
Hymenoptera: Braconidae
Hymenoptera: Chalcididae
Coast Arias et al. 1996, Páliz
& Mendoza 1999
Spodoptera frugiperda
Chelonus sp.
Eiphosoma sp.
Euplectrus sp.
Meteorus sp.
Rogas sp.
Telenomus alecto
Telenomus remus
Coast Arias 2021, Mendoza
1994a, 1994b
Various Lepidoptera
Telenomus spp.
Trichogramma fasciatum
Trichogramma pretiosum
Trichogramma spp.
Andes Coast Benzing et al. 1997, Crespo
& Ramakrishna 1989,
Páliz & Mendoza 1999
genera and 12 species (Table 3, Fig. 4). Two important
pests of cassava in Ecuador are controlled by 17 primary
parasitoids (seven genera and ten species), and one associ-
ated hyperparasitoid has been reported (Table4, Fig.5A).
Eleven parasitoids (six genera and ve species) parasitize
two relevant pests associated with coee (Table5, Fig. 5B).
On vegetables, 13 taxa of insect pests have been re-
corded, which are controlled by 20 parasitoids classied in
eight genera and 12 species (Table 6). On the other hand,
17 parasitoids (11 genera and six species) are reported
parasitizing several species of phytophagous insects on
various fruit trees (Table 7). In rice agroecosystem, there
are ve major pests, which are controlled by 22 parasitoids
(17 genera and ve species) (Table 8, Fig. 6A). Four phy-
tophagous species that feed on sugarcane are attacked by
ten taxa of parasitoids, six identied to the genus level and
four to species level (Table 9, Fig. 6B).
Reports of parasitoids associated with eight phytopha-
gous insects in cacao date from 1980. In this agroeco-
system, 13 primary parasitoids (one species and 12 gen-
era) and one hyperparasitoid, were detected (Table 10,
Fig.7A). Additionally, two taxa of parasitoids were report-
ed attacking Neuroptera and Araneae (taxa with predatory
habits). In legumes (Fabaceae), 14 taxa of parasitoids were
mentioned (one species and 13 genera) that parasitize ten
insect hosts (Table 11, Fig. 7B).
Of the 12 phytophagous insects reported on palms,
two species belong to the family Chrysomelidae (Cole-
optera) and the rest to dierent families of Lepidoptera,
from which parasitoids belonging to six genera and seven
Chirinos, Anchundia, Castro, Castro Olaya, Geraud & Kondo
12
Figure 2. Parasitoids associated with pests that attack corn, Zea mays L. e arrows show the interconnections in the agroecosystem.
Pests are indicated in red letters and parasitoids in blue.
Figure 3. Parasitoids associated with pests that attack bananas and plantains. e arrows show the interconnections in the agroecosys-
tem. Pests are indicated in red letters, parasitoids in blue and hyperparasitoids in purple.
Parasitoids attacking agricultural pests in Ecuador
13
Table 2. Parasitoids reported in association with pests on bananas and plantains.
Pest Parasitoid Reference
Aleurotrixus floccosus Encarsia sp.
Eretmocerus sp.
Signiphora sp. Arias 2021
Anthichoris viridis, Caligo eurilochus, Caligo
teucer, Megalopyge sp., Opsiphanes tamarindi,
Phobetron sp., Sibine apicalis, Oiketicus kirbyi
Carinodes sp.
Casinaria sp.
Brachymeria incerta
Chetogena sp.
Cotesia opsiphanes
Cotesia sp.
Elachertus sp.
Iphiaulax sp.
Lampocryptidea sp.
Lespesia sp.
Macrocentrus sp.
Megaselia sp.
Meteorus sp.
Microgaster sp.
Neotheronia sp.
Rogas sp.
Sarcodexia lambens
Sarcodexia sternodontis
Sarcophaga sp.
Stenomesius ceramidiae
Systropus sp.
Telenomus sp.
Whinthemia sp.
Xenufens forsythi
Arias 2021, Arias et al. 1992,
Armijos 2008, Boucek 1962,
Malo & Willis 1961, Ramon 2010
Chaetanaphothrips signipennis,
Frankliniella parvula Megaphragma sp. Arias 2021
Dysmicoccus sp., Pseudococcus sp. Hambletonia pseudococcina Arias 2021,
Contreras-Miranda et al. 2021
Planococcus citri Leptomastix dactylopii
species have been reported (Table 12, Fig. 8). Using the
data reported in these studies, we estimated that the low-
est percentage of parasitoid taxa were found in sugarcane
and coee (4.8%), whereas the highest proportion of para-
sitoids is found in corn crop (14.8%), followed by those
observed in Musaceae (13.5%).
e major parasitoids used in biological control in Ec-
uador are Telenomus spp., Trichogramma spp., and Encarsia
spp. (Tables 1-12). Of the total of studies that involve para-
sitoids, 69.1, 19.6 and 11.3% have been carried out on the
Coast, Andes and Amazon, respectively. Principal Com-
ponent Analysis shows that parasitoids are conspicuously
associated with geographical regions, in the Coast and
the Andes. Doryctobracon crawfordi (Viereck, 1911) (Hy-
menoptera: Braconidae) is associated to the Andes while
Telenomus spp. and Trichogramma spp. are closely associ-
ated with the Coast (Fig. 9). ese dierences are likely to
be associated to the dierent crops grown in these regions.
Although Telenomus spp. and Trichogramma spp. are
the most noted parasitoids in biocontrol, most of the pro-
grams using parasitoids of these genera were conducted in
the 1990s (Arias et al. 1996, INIAP, 1996, Benzing et al.
1997, Mendoza 1994a, 1944b, Páliz & Mendoza 1999).
In the case of species of the genus Encarsia, studies in-
dicate its greater importance as a natural biological con-
trol, from 1990 to the present (Mendoza 1994a, 1994b
Valarezo et al. 2011, Dueñas et al. 2018, Zambrano et al.
2021).
Parasitoids in biocontrol: a declining strategy?
Despite the diversity of parasitoid species recorded in
Ecuador, the data seem to indicate a decreasing trend in
their use as a pest control strategy. e regression model
calculated between the number of parasitoids used in bio-
control (Y) versus the years of study (X) shows an increase
beginning in the 1980s reaching its maximum inection in
Chirinos, Anchundia, Castro, Castro Olaya, Geraud & Kondo
14
Table 3. Parasitoids reported in association with pests on citrus, Citrus spp.
Pest Parasitoid Region Reference
Aleurocanthus woglumi Amitus hesperidum Andes Browning 1992, Merino 1984
Aleurothrixus floccosus
Amitus spinifera
Cales noacki
Encarsia sp.
Eretmocerus sp.
Andes, Coast Arias et al. 1992, Cañarte-Bermúdez
& Navarrete-Cedeño 2019, Valarezo
2011, Valarezo et al. 2011
Anastrepha fraterculus,
Anastrepha striata Aganaspis pelleranoi Coast Valarezo 2011
Ceratitis capitata Diachasmimorpha longicaudata Andes Valarezo et al. 2011
Diaphorina citri Diaphorencyrtus aligarhensis
Tamarixia radiata Andes, Coast Chávez et al. 2019, 2017, Cuadros et
al. 2020, Erráez et al. 2020, Portalanza
et al. 2017, Valarezo et al. 2011
Lepidosaphes beckii Aphytis lepidosaphes Andes Merino & Vázquez 1962
Phyllocnistis citrella
Ageniaspis citricola
Cirrospilus sp.
Elasmus tischeriae
Galeopsomyia sp.
Horismenus sp.
Andes, Coast Cañarte-Bermúdez et al. 2020,
Cañarte-Bermúdez & Navarrete-
Cedeño 2019, Valarezo et al. 2004
Toxoptera aurantii
Aphelinus flavipes
Aphidius matricariae
Aphidius sp.
Diaeretus sp.
Lysiphlebus sp.
Andes, Coast Cañarte-Bermúdez & Navarrete-Cedeño
2019, Cañarte-Bermúdez et al. 2020,
Valarezo et al. 2011
Figure 4. Parasitoids associated with pests that attack citrus, Citrus spp. e arrows show the interconnections in the agroecosystem.
Pests are indicated in red letters and parasitoids in blue.
Parasitoids attacking agricultural pests in Ecuador
15
Table 4. Parasitoids reported in association with pests on cassava, Manihot esculenta Crantz.
Pest Parasitoid Region Reference
Erinnyis ello
Cotesia americanus
Cotesia congregata
Cotesia sp.
Chetogena scutellaris
Euplectrus sp.
Oencyrtus submetalicus
Telenomus dilophonotae
Telenomus sphingis
Thysanamyia sp.
Trichogramma exiguum
Trichogramma fasciatum
Trichogramma minitum
Trichogramma sp.
Amazon,
Coast
Hinostroza et al.
2014, Rogg 2000
Hemiptera: Aleyrodidae
Amitus macgowni
Encarsia sp.
Eretmocerus sp.
Euderomphale sp.
Signiphora aleyroidis *
Andes, Coast Trujillo et al. 2004
* Hyperparasitoid.
Table 5. Parasitoids reported in association with pests on coee, Coea arabica L.
Pest Parasitoid Region Reference
Hypothenemus hampei
Prorops nasuta Amazon, Andes Klein Koch et al. 1988
Mendoza et al. 1994
Cephalonomia stephanoderis Andes, Coast Mendoza et al. 1994b,
Klein Koch et al. 1988
Phymastichus coffea Coast Delgado et al. 2002
Perileucoptera coffeella
Catolaccus sp.
Cirrospilus sp.
Horismenus cupreus
Mirax sp.
Prigalio sp.
Tetrastichus sp.
Viridipyge letifer
Zagrammosona sp.
Coast Anchundia 1994,
Mendoza et al. 1994,
Sotomayor & Duicela 1995
Figure 5. Parasitoids associated with pests that attack A: cassava, Manihot esculenta Crantz, B: coee, Coea arabica L. e arrows
show the interconnections in the agroecosystem. Pests are indicated in red letters, parasitoids in blue and hyperparasitoids in purple.
Chirinos, Anchundia, Castro, Castro Olaya, Geraud & Kondo
16
Table 6. Parasitoids reported in association with pests on vegetables and other transitory crops.
Crop Pest Parasitoid Region Reference
Crucifers Plutella xylostella
Diadegma insulare
Diadegma majale
Diadegma sp.
Oomyzus sp.
Andes Gavilanes 2018, Lalangui
& Caicedo 2018
Brevicoryne brassicae Diaeretiella rapae Andes, Coast Zamorano 2012
Summer flowers Liriomyza huidobrensis Diglyphus isaea Andes, Coast Prado et al. 2018
Melon, pepper,
tobacco
Hemiptera:
Aleyrodidae
Amitus fuscipennis
Amitus sp.
Encarsia nigricephala
Encarsia sp.
Eretmocerus sp.
Andes, Coast Arias et al. 2008, Dueñas
et al. 2018, Navarrete et al.
2017, Valarezo et al. 2008
Aphis gossypii
Myzus persicae Aphidius spp.
Lysiphlebus testaceipes Coast Arias 2021, Dueñas et al. 2018,
Paredes 2011, Toledo et al. 2018
Potato Phthorimaea operculella
Symmetrischema tangolias
Tecia solanivora Copidosoma koehleri Andes Báez & Gallegos 2011
Tomato
Prodiplosis longifila Synopeas sp. Coast Arias 2021, Valarezo et al. 2011
Spodoptera sunia Telenomus remus Coast Arias 2021
Tuta absoluta Encarsia porteri Andes Benzing et al. 1997
Unidentified plants, cotton Bemisia spp. Encarsia lanceolata
Encarsia pergandiella Schuster et al. 1998,
Zambrano et al. 2021
Unidentified vegetables Unidentified Lepidoptera Incamyia chilensis
Trichogramma sp. Andes Andrade 1990
Table 7. Parasitoids reported in association with pests on various fruit trees.
Crop Pest Parasitoid Region Reference
Avocado Caloptilia azaleella Telenomus sp. Andes Venegas et al. 2018
Cherimoya
Guava,
Fruit trees
Anastrepha spp.
Ceratitis capitata
Aceratoneuromya indica
Aganaspis pelleranoi
Coptera haywardi
Diachasmimorpha longicaudata
Doryctobracon crawfordi
Sycophila sp.
Utetes anastrephae
Andes, Coast
Arias 2021,
Arias & Carrasco 2004,
Feicán et al. 1999,
León & Larriva 2019,
Minga et al. 2020,
Tigrero 2007, Valarezo 2011
Little orange Neoleucinodes elegantalis
Bracon sp. Andes, Amazon Noboa et al. 2017
Chelonus sp. Andes, Amazon Noboa et al. 2017
Copidosoma sp. Andes, Amazon Sosa 2009, Noboa et al. 2017
Lixophaga sp. Amazon, Andes Noboa et al. 2017
Lymeon sp. Andes Sosa 2009
Meteorus sp. Andes Sosa 2009
Mango Dysmicoccus brevipes Aenasius sp.
Cheiloneurus sp.
Metaphycus sp. Coast Arias 2021
Fruit trees Aleurothrixus floccosus Encarsia sp. Coast Valarezo et al. 2011
Parasitoids attacking agricultural pests in Ecuador
17
Table 8. Parasitoids reported in association with pests on rice, Oryza sativa L.
Pest Parasitoid Region Reference
Diatraea spp. Telenomus alecto Coast INIAP 1996
Rupela albinella Telenomus rowanii
Strabotes sp. Coast INIAP 1996, Arias 2021
Spodoptera sp. Euplectrus sp. Coast INIAP 1996
Syngamia sp. Bracon sp.
Conura sp. Coast INIAP 1996
Oebalus spp.,
Tibraca limbativentris
Telenomus sp.
Trichopoda sp.
Trissolcus basalis Coast Arias 2021, Arias et al. 1996
Tagosodes orizicolus
Anagrus sp.
Elenchus sp.
Gonatopus sp.
Haplagonatopus hernandenze
Paranagrus perforator
Coast Arias 2021
Various Lepidoptera
Conura sp.
Euplectrus sp.
Goniozus sp.
Hormius sp.
Pseudochaeta sp.
Stantonia sp.
Telenomus sp.
Trichogramma sp.
Coast Arias 2021, Arias et al. 1996,
Castillo et al. 2020
Figure 6. Parasitoids associated with pests that attack A: rice, Oryza sativa L. B: sugarcane, Saccharum ocinarum L. e arrows show
the interconnections in the agroecosystem. Pests are indicated in red letters and parasitoids in blue.
Chirinos, Anchundia, Castro, Castro Olaya, Geraud & Kondo
18
Table 10. Parasitoids reported in association with pests on cacao, eobroma cacao L.
Pest Parasitoid Region Reference
Aphid or Lepidoptera Ceraphron sp.*
Coast Páliz et al. 1982
Cecidomyiids Laptacis sp.
Platygaster sp.
Synopeas sp.
Unidentified larvae and pupae Brachymeria cominator
Unidentified Aranae** Trimorus sp.
Unidentified Diptera Trichopria sp.
Unidentified Lepidoptera
and Coleoptera
Cotesia sp.
Asobara sp.
Chelonus sp.
Dissomphalus sp.
Meteorus sp.
Unidentified Lepidoptera, Hemiptera,
Coleoptera, Neuroptera** Bothriothorax sp.
Tachinaphagus sp.
* Hyperparasitoid, **Predator.
Table 9. Parasitoids reported in association with pests on sugarcane, Saccharum ocinarum L.
Pest Parasitoid Region Reference
Diatraea saccharalis
Billaea claripalpis Coast CINCAE 2013, Gaviria 1981,
Mendoza 2018, Risco 1960
Ipobracon sp. Coast Mendoza et al. 2005, Mendoza 2018
Cotesia flavipes Coast CINCAE 2013, Mendoza 2018
Telenomus sp. Coast Mendoza et al. 2005, Mendoza 2018
Trichogramma spp. Coast Mendoza et al. 2005, Mendoza 2018
Duplachionaspis divergens Encarsia sp. Coast Mendoza et al. 2013, Mendoza et al. 2005
Perkinsiella saccharicida
Anagrus optabilis
Aprostocetus sp.
Ootetrastichus sp. Coast Mendoza et al. 2005, Arias 2021
Pseudogonatopus sp. Coast Mendoza et al. 2005, 2018
Coast Mendoza et al. 2005
Praelongorthezia praelonga Gitona brasiliensis Coast Mendoza et al. 2005, Mendoza 2013
the following decade (1990), and subsequently decreased
from the 2000s to the present. e estimated model ex-
plains this trend with a high and signicant coecient of
determination (R2 = 0.8093, P <0.0001) (Fig. 10). e use
of parasitoids have probably been replaced by other pest
control strategies.
We emphasize that in Ecuador there is an extensive leg-
islation that regulates the importation and use of biocon-
trol agents whose responsibility is assigned to the Agency
for the Regulation of Control and Phytosanitary Control
(AGROCALIDAD). is agency also regulates chemical
pesticides, restricting the use of highly toxic molecules and
the indiscriminate applications of pesticides.
However, surveys carried out with farmers in recent
years have diagnosed an excessive use of insecticides to
control arthropod pests in dierent crops (Bravo-Zamora
et al. 2020, Chirinos et al. 2020, Reinoso 2015, Valarezo et
al. 2008). Additionally, the adverse eects of insecticides
on the health of farmers and consumers have also been
documented in Ecuador in the last decade (González-An-
drade et al. 2010, Guevara et al. 2016, Lindao et al. 2017).
With respect to the environment, insecticide residues
Parasitoids attacking agricultural pests in Ecuador
19
Table 11. Parasitoids reported in association with pests on legumes.
Pest Parasitoid Region Reference
Anticarsia gemmatalis Euplectrus sp.
Glyphapanteles sp. Coast Mendoza 1994a
Bemisia tabaci Encarsia desantisi
Encarsia nigricephala
Eretmocerus sp. Coast Arias 2005, 2021
Hedylepta indicata Cotesia sp.
Brachymeria sp.
Macrocentrus sp. Coast Mendoza 1994a
Liriomyza sativae
Chrysocharis sp.
Closterocerus sp.
Ganaspidium sp.
Neochrysocharis sp.
Coast Chirinos et al. 2017
Liriomyza huidobrensis Halticoptera sp. Andes Chirinos et al. 2020
Pseudoplusia includens Litomastix truncatella Coast Mendoza 1994a
Euchistus sp.
Nezara viridula Oencyrtus sp.
Telenomus sp. Coast Arias 2005
Anticarsia gemmatalis
Pseudoplusia includens
Spodoptera spp.
Epinotia aporema
Cydia favibora
Trichogramma sp. Coast Arias et al. 1992, Arias
2005, Mendoza 1994a
Figure 7. Parasitoids associated with pests that attack A: cacao, eobroma cacao L., B: legumes e arrows show the interconnections
in the agroecosystem. Pests are indicated in red letters, parasitoids in blue and hyperparasitoids in purple.
Chirinos, Anchundia, Castro, Castro Olaya, Geraud & Kondo
20
Figure 8. Parasitoids associated with pests that attack palms (Arecaceae). e arrows show the interconnections in the agroecosystem.
Pests are indicated in red letters and parasitoids in blue.
Table 12. Parasitoids reported in association with pests on palms (Arecaceae).
Pest Parasitoid Region Reference
Brassolis astyra
Peleopoda arcanella
Herminodes insulsa
Opsiphanes cassina
Opsiphanes sophorae
Oiketicus kirbyi
Brachymeria spp.
Conura sp.
Xanthozona melanopyga Amazon Rogg 2000
Euprosterna elaeasa Brachymeria sp. Amazon Mexzón & Chinchilla 1996
Hispoleptis subfaciata Conura hispinephaga Amazon Mexzón & Chinchilla 1996
Hispoleptis subfaciata Zaommomyia sp. Amazon Mexzón & Chinchilla 1996
Oiketicus kirbyi Conura elaeisis Amazon Mexzón & Chinchilla 1996
Saliana severus Brachymeria annulata Amazon Mexzón & Chinchilla 1996
Opsiphanes cassina Xenufens forsythi Coast Yoshimoto 1976
Saliana severus Trissolcus urichi Amazon Mexzón & Chinchilla 1996
Sibine nesea Cotesia sp. Amazon Mexzón & Chinchilla 1996
Spaethiella tristis Horismenus sp. Amazon Mexzón & Chinchilla 1996
Spodoptera spp. Telenomus remus Amazon Rogg 2000
Parasitoids attacking agricultural pests in Ecuador
21
Figure 9. Principal component analysis between the geographical areas of continental Ecuador and the most studied parasitoids. Pe-
riod 1980-2020.
Figure 10. Regression model between the number of parasitoids studied and the years of study. Period 1980-2020.
Chirinos, Anchundia, Castro, Castro Olaya, Geraud & Kondo
22
have been detected in the Guayas river basin in the coastal
region in areas close to banana and pineapple producing
farms (Deknock et al. 2019).
Regarding ecological imbalances, several studies report
the suppressive eect of insecticide applications on para-
sitoids. Chirinos et al. (2017) recorded parasitoids asso-
ciated with the leafminer y Liriomyza sativae Blanchard
on beans, Phaseolus vulgaris L. and observed population
outbreaks of this phytophagous species, caused by the in-
terference with parasitism due to weekly sprays of lambda
cyhalothrin + thiamethoxam. In a eldwork conducted on
melon, Cucumis melo L. in the coastal region, Navarrete et
al. (2017) found lower rates of parasitism (3 to 7%) when
formulations based on imidacloprid and neem (Azadi-
rachta indica Juss.) were applied. A eld assay determined
the adverse eects of applications of insecticides based on
neem on the parasitism rates of Ageniaspis citricola Log-
vinovskaya, 1983 (Hymenoptera: Encyrtidae) on Citrus
aurantifolia (Christm.) Swingle (Cañarte-Bermúdez et al.
2020).
e frequent spraying of insecticides could be the con-
sequence of several factors, among which stand out a dis-
connection between research and crop production, the
farmer’s perception of the damage caused by pests, the lack
of knowledge about biological control and the excessive
reliance on pesticides as a method of control. e report
made by Delgado et al. (2002) analyzed the results of the
introductions of parasitoids to control H. hampei in cof-
fee. is study pointed out that biological control could
be potentially eective and reduce the use of insecticides
and lower production costs. However, they refer to the im-
portance of a greater sociological interaction between the
links in the researcher - producer chain to achieve these
objectives (Delgado et al. 2002).
Citrus farmers from the Coast indicated that they
mainly use chemical control due to the lack of knowledge
of the importance of the use and action of parasitoids in
pest management (Sornoza-Robles et al. 2020). Mendoza
et al. (2005) reported that the establishment of integrated
pest management programs in sugarcane are limited by the
alarming perception that farmers have about the damage
caused by a pest, as well as the excessive condence they
place on pesticides to control pests, which leads to their
dependence and abuse of these products. us, insecticide
applications seem to prevail in the control of agricultural
pests in Ecuador. Cañarte-Bermúdez & Navarrete-Cedeño
(2019) mentioned that 62% of citrus growers use chemi-
cal insecticides. All the vegetable farmers surveyed in ve
provinces of the Andean and coastal regions reported
spraying insecticides to control the main pests with a range
of 1 to 3 weekly sprays (Chirinos et al. 2020).
Since the late 1990s, some studies have focused at re-
ducing the use of pesticides in Ecuador and conserving
the action of natural enemies, including parasitoids. Fe-
icán et al. (1999) reported that one of the strategies for
the integrated management of fruit ies is the action of
the parasitoid D. crawfordi, and that it is essential for its
preservation to avoid the indiscriminate use of pesticides.
e introduction of D. longicaudata in 2005 for the con-
trol of fruit ies was aimed at encouraging fruit growers
to contribute to a production with less pesticide residues
(Arias et al. 2009). In an inventory of parasitoids associat-
ed with the fruit borer, Neoleucinodes elegantalis Guenée,
1854 (Lepidoptera: Crambidae) in Solanum quitoense
Lamarck, Noboa et al. (2017) reported that the parasitoid
species detected in that study could be used in the bio-
logical control of this pest to reduce the use of pesticides
in this crop.
e use of parasitoids in biological control programs
has great potential in the Neotropical region due to their
natural occurrence, considering that natural enemies have
probably co-evolved within the plant-herbivore system,
forming part of the ecosystem (Colmenarez et al. 2018).
e structural and functional analysis of benecial ento-
mofauna could form the basis for conservation biological
control programs (DeBach 1974). e two main strategies
of conservation biological control consist of: 1) habitat
modication to improve survival, longevity and reproduc-
tion of natural enemies and, 2) reducing the exposure of
natural enemies to pesticides (Löhr et al. 2018). In the
neighboring country, Colombia, studies on conservation
biological control in crops such as sugarcane, chili, oil
palm, coee and ornamental plants have been conducted
(Kondo et al. 2020). On the other hand, in Ecuador, un-
fortunately, with the synthesis of pesticides from 1945 on-
wards, the use of biological control decreased (Dangles et
al. 2009) due to the simplistic perspective in which this
alternative was framed. e bias in the use of this strategy
has resulted in ecological imbalances, environmental crises
and adverse economic and social eects (Metcalf & Luck-
mann 1975).
CONCLUSIONS
is review represents a compendium of about 200
taxa of parasitoids reported attacking agricultural pests in
continental Ecuador with an emphasis on natural biologi-
cal control. e major parasitoids reported are: Telenomus
spp. (Hymenoptera: Platygastridae), Trichogramma spp.
(Hymenoptera: Trichogrammatidae) and Encarsia spp.
(Hymenoptera: Aphelinidae), being the rst two parasit-
oids mainly referred in biological control programs con-
Parasitoids attacking agricultural pests in Ecuador
23
ducted between the 1980s and 1990s. e results suggest
a decreasing trend in the use of parasitoids as biocontrol
agents from 1980 to the present.
REFERENCES
Anchundia, L. A. 1994. Estudio de la uctuación poblacional del
minador de la hoja del café Perileucoptera coeella Lepidopte-
ra Lyonetiidae y sus enemigos naturales. Manabí: Universidad
Técnica de Manabí [esis].
Andrade, J. 1990. Perspectivas de control biológico en la provin-
cia del Chimborazo (zona central) del Ecuador. VI Seminario
Nacional de Sanidad Vegetal, Guayaquil, Ecuador. pp. 87–90.
Arias, M. 2005. Manejo integrado de plagas en soya. pp. 83–88.
In: Raices, E.., R. Guaman, C. Andrade, M. Arias, A. Espi-
noza, L. Peñaherrera, E. Valdiviezo, F. Mite, S. Muñoz, & G.
Viteri (eds.). Manual del cultivo de soya. (2da ed.). Guayaquil,
Ecuador: INIAP.
Arias, M. 2021. Control biológico en insectos plagas de impor-
tancia agrícola. pp. 28–30. In: Castillo, C., B. Montero & P.
Cuasapaz (eds.). Archivos Académicos USFQ. uito: Uni-
versidad San Francisco de uito USFQ.
Arias, M., J. Andrade, A. Jines & P. Ramos. 2008. Insectos plagas,
enemigos naturales y su manejo en tabacaleras de Ecuador. Ma-
nual No. 74. Guayaquil, Ecuador: INIAP. 40 p.
Arias, M., E. Cañarte, A. Espinoza, I.Garzón, G. Macías, J. Men-
doza, R. uijije, C. Suárez, O. Valarezo & O. Zambrano.
1996. Guía de recomendaciones de control o manejo integrado
de problemas tosanitarios en cultivos tropicales de importancia
economica.uevedo, Ecuador: INIAP. 68 p.
Arias, M., J. Mendoza, O.Valarezo & F. Chávez. 1992. Tecnología
disponible para la problemática entomológica en cultivos del lito-
ral. Boletin Técnico No. 69. Guayaquil, Ecuador: INIAP. 15 p.
Arias, M., A. J. Carrasco & M. Pluas. 2009. Control biológico
de larvas de moscas de la uta con el parasitoide Diachasmi-
morpha longicaudata (Ashmead) Hymenoptera: Braconidae.
Guayaquil, Ecuador: INIAP. 2 p.
Arias, M. & A. J. Carrasco. 2004. Manejo Integrado de las mos-
cas de utas en el litoral ecuatoriano. Guayaquil, Ecuador:
INIAP. 2 p.
Armijos, F. 2008. Principales tecnologías generadas para el manejo
del cultivo banano, plátano y otras musáceas. Boletín Técnico
No. 131. uito, Ecuador: INIAP. 64 p.
Baez, F. & P Gallegos. 2011. Prospección y eciencia de parasitoi-
des nativos de las polillas de la papa Tecia solanivora (Povol-
ny), Symmetrischema tangolias (Gyen) y Phthorimaea oper-
culella (Zeller) en el Ecuador. Memorias Del IV Congreso
Ecuatoriano de La Papa, Guaranda, Ecuador. 54–55.
Benzing, A., J. C. Monje, F. Ponce, C. Schüler & S. Jutzi. 1997.
Parasitismo natural de huevos de Noctuidae (Lepidoptera)
a diferentes altitiudes de la Sierra Central del Ecuador, con
énfasis especial en el cultivo de maíz. Jahrgang 97: 163–169.
Boucek, Z. 1962. A new Stenomesius (Hym., Eulophidae) reared
from Ceramidia viridis in Ecuador. Entomophaga, VII: 189–
192.
Bravo-Zamora, R., A. Villafuerte-Barreto, S. Peñarrieta-Bravo,
F. Santana- Parrales, F. Zambrano-Gavilanes & R. Fimia-
Duarte. 2020. Diagnóstico de uso e impactos de plaguicidas
en el cultivo de tomate (Solanum lycopersicum L.) en la pa-
rroquia Riochico, cantón Portoviejo, provincia de Manabí,
Ecuador. e Biologist 18: 105–118.
Browning, H. W. 1992. Overview of biological control of ho-
mopterous pests in the Caribbean. Florida Entomologist 75:
440–446.
Cañarte-Bermúdez, E., & Navarrete-Cedeño, B. 2019. Situación
tosanitaria de los cítricos en Ecuador. In A. Sotomayor, W.
Viera, L. Medina, & P. Viteri (Eds.), Memorias de II Simposio
Internacional Producción Integrada de Frutas, uito, Ecua-
dor. p. 19.
Cañarte-Bermúdez, E., B. Navarrete-Cedeño, S. Montero-Ce-
deño, H. C. Arredondo-Bernal, O. Chávez-López & N Bau-
tista-Martínez. 2020. Eect of neem on Phyllocnistis citrella
Stainton and its parasitoid Ageniaspis citricola Logvinovska-
ya in Ecuador. Enfoque UTE 11: 1–10.
Castillo, C. 2019. El control biológico de plagas agrícolas cum-
ple 82 años en Ecuador. In A. León Reyes & N. Barriga
(Eds.), Memorias del IV Simposio en Fitopatología, Control
Biológico e Interacción Planta-Patógeno. (pp. 67–68). uito,
Ecuador. USFQ Press.
Castillo, C. C., P. G. Gallegos & C. E Causton. 2020. Biological
control in continental Ecuador and the Galapagos Islands. In
Johan Coert van Lenteren, V. H. P. Bueno, M. G. Luna, & Y.
C. Colmenarez (Eds.), Biological Control in Latin America
and the Caribbean: Its Rich History and Bright Future (pp.
220–244). CAB International 2020.
Castillo, C. I. 2020. Biodiversity in Ecuador and Its Immense
Potential for Agricultural Pest Control. In D. Chong, Pablo,
Newman, David, Steinmacher (Ed.), Agricultural, Forestry
and Bioindustry Biotechnology and Biodiscovery (pp. 143–
162). Springer. https://doi.org/10.1007/978-3-030-51358-
0
Chavez, Y., R. Castro, G. González, J. Castro, S. Peñarrieta, I.
Perez-Almeida, D. T. Chirinos, & T Kondo. 2019. Popula-
tion uctuation of Diaphorina citri Kuwayama (Hemiptera:
Liviidae) and survey of some natural enemies in Ecuador. Re-
vista de Investigaciones Agropecuarias 45: 449–453.
Chavez, Y., D. T. Chirinos, G. González, N. Lemos, A. Fuentes,
R. Castro & T. Kondo. 2017. Tamarixia radiata (Waterston)
and Cheilomenes sexmaculata (Fabricius) as biological con-
trol agents of Diaphorina citri Kuwayama in Ecuador. Chil-
ean Journal of Agricultural Research 77: 180–184.
Chirinos, D. T., Castro, R., Cun, J., Castro, J., Peñarrieta Bravo,
S., Solis, L., & Geraud-Pouey, F. 2020. Los insecticidas y el
control de plagas agrícolas: la magnitud de su uso en cultivos
de algunas provincias de Ecuador. Revista Ciencia & Tecnolo-
gía Agropecuaria, 21(1): 1–16.
Chirinos, D. T., R. Castro & A. Garces. 2017. Efecto de insecti-
cidas sobre Liriomyza sativae (Diptera : Agromyzidae) y sus
parasitoides en frijol, Phaseolus vulgaris. Revista Colombiana
de Entomología 43: 21–26.
Chirinos, Anchundia, Castro, Castro Olaya, Geraud & Kondo
24
CINCAE. (2013). El barrenador del tallo. Diatraea saccharalis
(Fabr., 1794) (Lepidoptera: Pyralidae). http://cincae.org/
areas-de-investigacion/manejo-de-plagas/barrenador-del-
tallo/. Centro de Investigación de la Caña de Azúcar del
Ecuador
Contreras-Miranda, J. A., W. C. Espinoza, M. A. Ramírez &
M. E. Plúas. 2021. Presence of natural enemies of mealybugs
(Hemiptera: Pseudicoccidae) in banana and plantain. Man-
glar 18: 85–90.
Crespo, O, S. & B. Ramakrishna. 1989. Diagnóstico sobre las
principales plagas y enfermedades del maíz en el litorial ecua-
toriano. Palmira (Colombia). Seminario Manejo de Enferme-
dades y Plagas Del Maíz. pp. 65–67.
Cuadros, I. M., J. Vélez, J. Velasquez & D. T Chirinos. 2020. La
dispersión del psílido asiático, Diaphorina citri Kuwayama y
su parasitoide, Tamarixia radiata (Waterston) en la provin-
cia de Manabí, Ecuador. Inestigatio, 13: 59–64.
Culliney, T. W. 2014. Crop Losses to Arthropods (D. Pimen-
tel & R. Peshin (eds.); pp. 202–217). Springer Netherlands.
https://doi.org/10.1007/978-94-007-7796-5
Dangles, O., Á. Barragán, R. E. Cárdenas, G. Onore & C Keil.
2009. Entomology in Ecuador: Recent developments and
future challenges. Annales De La Société Entomologique De
France 45: 424–436.
DeBach, P. 1974. Biological Control by Natural Enemies. Cam-
bridge University Press.
Deknock, A., N. De Troyer, M. Houbraken, L. Dominguez-
Granda, I. Nolivos, W. Van Echelpoel, M. A. E. Forio, P.
Spanoghe & P. Goethals. 2019. Distribution of agricultural
pesticides in the freshwater environment of the Guayas river
basin (Ecuador). Science of the Total Environment 646: 996–
1008.
Delgado, P., Larco, A., García, C., Alcívar, R., Patiño, M., &
Chilán, W. (2002). Café en ecuador. Manejo de la broca del
uto (Hypothenemus hampei Ferrari) Manta, Ecuador:
ANACAFE. 77 p.
Dueñas, F., L. Haz, B. Macías, A. Reyes, R. Castro & D Chiri-
nos. 2018. Entomofauna asociada al cultivo de melón, Cu-
cumis melo L. en condiciones de campo. Misionero Del Agro
19: 56.
Erráez, M., M. Mazón, H. Troya & D. Valarezo. 2020. Identi-
cación y evaluación de la incidencia de insectos y hongos
benécos asociados a Diaphorina citri Kuwayama (Hemipte-
ra: Liviidae) en plantas traspatio (Citrus spp. y Murraya pa-
niculata) del cantón Catamayo (Loja - Ecuador). Ecuador Es
Calidad: Revista Cientíca Ecuatoriana 7: 25–33.
FAO (Food and Agriculture Organization of the United Na-
tions) 2017. El estado de arte del sector algodonero en países
del Mercosur y asociados (J. Carvalho, G. Aguirre, S. Tania, &
A. Gregolin (eds.)). FAO and ABC.
Feicán, C., C. Encalada & W. Larriva. 1999. Manejo integrado de
las moscas de la uta. Cuenca, Ecuador: INIAP. 28 p. http://
repositorio.iniap.gob.ec/handle/41000/2393
Gavilanes, K. 2018. Identicación morfológica y molecular de Plu-
tella xylostella y sus parasitoides en cultivos de brasicáceas de la
región sierra del Ecuador. Universidad Politécnica Salesiana.
[esis].
Gaviria, J. 1981. Industrialización de la caña. Compendio No.
42. Antioquia, Colombia. Gobierno de Antioquia. 8 p.
González-Andrade, F., R. López-Pulles & E Estévez. 2010.
Acute pesticide poisoning in Ecuador: A short epidemiologi-
cal report. Journal of Public Health 18: 437–442.
Guevara, A., C. Troya, D. Gaus, D.Herrera & M. Obregón.
2016. Manejo de intoxicación por inhibidores de la colineste-
rasa: Una experiencia en un hospital rural en Ecuador. Prácti-
ca Familiar Rural, 1(1): 1–9. https://doi.org/10.23936/pfr.
v1i1.131
Hinostroza, F., M. Mendoza, M. Navarrete, X. Muñoz. 2014.
Cultivo de yuca en el Ecuador (INIAP - Estación Experimen-
tal Santo Domingo (ed.); Boletin di, Vol. 436. http://reposi-
torio.iniap.gob.ec/handle/41000/5214
INIAP. 1996. Determinación y evaluación de los enemigos
naturales de los principales insectos plaga del arroz. uito,
Ecuador. INIAP. http://www.sidalc.net/
Klein Koch, C., O. Espinoza, A. Tandazo, P. Cisneros & D.
Delgado. 1988. Factores naturales de regulación y control
biológico de la broca del cafe (Hypothenemus hampei Ferr.).
Sanidad Vegetal 3: 5–30.
Kondo, T., M. R. Manzano & A, Cotes. M. 2020. Biological
Control in Colombia. In J.C. van Lenteren, V. H. P. Bueno,
M. G. Luna, & Y. C. Colmenarez (Eds.), Biological Control in
Latin America and the Caribbean: Its Rich History and Bright
Future (pp. 124–161). CAB International.
Lalangui, K. P. & J. D. Caicedo. 2018. Prospección de insectos
parasitoides de minadores de hoja en la sierra Ecuatoriana.
uito, Ecuador. Memorias Del 1er Congreso de Control Bio-
lógico Aplicado, 110–113.
León, F. & W. Larriva,. 2019. Parasitoides asociados a mosca de
la fruta en especies frutales en la microcuenca del río Magda-
lena Paute - Ecuador. Ecuador Es Calidad: Revista Cientíca
Ecuatoriana 6: 36–44.
Lindao V. A., J. L. Jave Nakayo, M. G. Retuerto, N. S. Erazo &
M. M. Echeverría. 2017. Impacto en los niveles de colineste-
rasa en agricultores de tomate (Solanum lycopersicum L) en
la localidad de San Luis, Chimborazo por efecto del uso de
insecticidas organofosforados y carbamatos. Revista Del Ins-
tituto de Investigación de La Facultad de Ingeniería Geológica,
Minera, Metalurgica y Geográca 20: 114–119.
Löhr, B., M. F. Díaz Niño, M. R. Manzano, C. A. Narváez, M.
I. Gómez-Jiménez, A. Carabalí, G. Vargas, T. Kondo & A.
E Bustillo. 2018. Uso de parasitoides en el control biológico
de insectos plaga en Colombia. In Cotes A.M. (Ed.), Control
biológico de topatógenos, insectos y ácaros. Volumen 1. Agentes
de control biológico (pp. 454–485). Agrosavia.
Malo, F. & E. R. Willis. 1961. Life History and Biological Con-
trol of Caligo eurilochus, A Pest of Banana. Journal of Eco-
nomic Entomology, 54(3): 530–536.
Mendoza, J., Gualle, D., & Gomez, P. 2013. Plagas potenciales:
una amenaza para el cultivo de la caña de azúcar en Ecuador.
Guayaquil, Ecuador. III Congreso Aeta, 1–11.
Parasitoids attacking agricultural pests in Ecuador
25
Mendoza, J. R. 2018. Experiencias sobre control biologico en el
cultivo de caña de azúcar en Ecuador. In P. Castillo, C., Mon-
tero, B. y Cuasapaz (Ed.), uito: Ecuador. Memorias del 1er
Congreso de Control Biológico Aplicado (pp. 12–15).
Mendoza, J. 1994a. Control biologico de insectos plagas en Pichi-
lingue. Revista Informativa Del Instituto Nacional Autóno-
mo de Investigaciones Agropecuarias. uevedo, Ecuador:
INIAP. http://www.sidalc.net/
Mendoza, J. 1994b. Guía para el manejo integrado de insectos pla-
gas en maiz en el litoral ecuatoriano. Boletin No. 248. ueve-
do, Ecuador: INIAP. 32 p. http://repositorio.iniap.gob.ec/
handle/41000/1560
Mendoza, J., D. Gualle, P. Gómez, A.Ayora, I. Martínez & C.
Cabezas. 2005. Progresos en el manejo de plagas en caña de
azúcar en Ecuador. http://www.aeta.org.ec/2do congreso
cana/art_campo/MENDOZA cana.pdf
Mendoza, J., R. uijije, M. Patiño & D. Delgado. 1994. Resulta-
dos de varios estudios efectuados con Prorops nasuta y Cepha-
lonomia stephanoderis para el control biológico de la broca del
café Hypothenemus hampei, en Ecuador. Informe Técnico.
INIAP. 23 p. https://www.cabi.org/wp-content/uploads/
Mendoza-1994-Biocontrol-of-coee-berry-borer.pdf
Merino, G. 1984. Secuencia de la actividad entomológica en
el país y apreciación de su desarrollo desde mediados de la
década de 1940. Publicación Museo Ecuatoriano de Ciencias
Naturales, Series Mis 3: 15–16.
Merino, G. & V. Vazquez. 1962. Historia y procedimiento de la
implantación del control biológico del “coma de los citrus, Lepi-
dosaphes beckii (Newm) mediante la avispa Aphytis lepido-
saphes (Comp.) en el Ecuador. Boletin Técnico No. 8. uito,
Ecuador. Ministerio de Fomento/DGA/SCIA. http://repo-
sitorio.iniap.gob.ec/handle/41000/4572
Metcalf, R. L. & W. H Luckmann. 1975. e pest management
concept. In Introduction to Insect Pest Management (p. 672).
John Wiley and Sons.
Mexzón, R. & C. M. Chinchilla. 1996. Enemigos naturales de
los artrópodos perjudiciales a la palma aceitera (Elaeis gui-
neensis Jacq .) en América tropical. ASD Oil Palm Papers
(Costa Rica) 13: 9–33.
Minga, C., M. Mazón, & H. Troya. 2020. Population dynamics,
native parasitoids and incidence of Tephritidae (Insecta, Dip-
tera) in cherimoya (Annona cherimola Mill.) secondary for-
ests at Southern Ecuador. International Journal of Pest Man-
agement. ttps://doi.org/10.1080/09670874.2020.1844923
Navarrete, B., O. Valarezo, E. Cañarte & R Solórzano. 2017.
Efecto del nim (Azadirachta indica Juss.) sobre Bemisia taba-
ci Gennadius (Hemiptera: Aleyrodidae) y controladores bio-
lógicos en el cultivo del melón Cucumis melo L. La Granja:
Revista de Ciencias de La Vida, 25: 33–44.
Noboa, M., A. Díaz, W. Vásquez & W Viera. 2017. Parasitoids
of Neoleucinodes elegantalis Gueneé (Lepidoptera: Crambi-
dae) in Ecuador. IDESIA (Chile) 35: 1–6.
Páliz, V., J. Mendoza & V Cansing. 1982. Insectos asociados al
cultivo del cacao en el Ecuador. uevedo, Ecuador: INIAP. 26
p. http://repositorio.iniap.gob.ec/handle/41000/1594
Páliz, V. N. & J. R. Mendoza. 1999. Plagas del maíz (Zea mays)
en el litoral ecuatoriano, sus características y control. ueve-
do, Ecuador: INIAP. 78 p. http://repositorio.iniap.gob.ec/
handle/41000/1616
Paredes, J. 2011. Capacidad de dos especies de ádos (Homopte-
ra: Aphididae) para transmitir Squash Mosaic Virus-SqMVen
melón bajo condiciones de invernadero eidenticación de sus
enemigos naturales. Escuela Superior Politecnica del Litoral
[esis].
Peñalver-Cruz, A., J. K. Alvarez-Baca, A. Alfaro-Tapia, L. Gon-
tijo & B. Lavandero. 2019. Manipulation of Agricultural
Habitats to Improve Conservation Biological Control in
South America. Neotropical Entomology 48: 875–898.
Portalanza D. E., L. Sanchez, M. Plúas, I. Felix, V. A. Costa, N.
da S. Dias-Pini, S. Ferreira-Stafanous & M. L. Gómez-Tor-
res. 2017. First records of parasitoids attacking the Asian cit-
rus psyllid in Ecuador. Revista Braileira de Entomologia 61:
107–110.
Prado, J. K., A. Anrango, M. J. Romero & M. A. Gómez. 2018.
Liberación óptima de enemigos naturales para control de
Liriomyza huidobrensis en Gypsophila sp. In P. Castillo, C.,
Montero, B. y Cuasapaz (Ed.), Memorias del 1er Congreso de
Control Biológico Aplicado (pp. 57–59).
Ramon, S. N. 2010. Caracterización morfológica de los hiper-
parásitos de los enemigos naturales del caterpillar del banano
Ramón Universodad Técnica de Machala [esis]. http://
repositorio.utmachala.edu.ec/handle/48000/354
Reinoso, J. 2015. Diagnóstico del uso de plaguicidas en el cultivo
de tomate riñón en el Cantón Paute. Maskana 6: 147–154.
Risco, S. H. 1960. La Situación actual de los barrenadores de la
caña de azúcar del género Diatraea y otros taladradores, en
el Perú, Panamá y Ecuador. Revista Peruana de Entomología
Agrícola 3: 6–10.
Rogg, H. W. 2000. Manejo integrado de plagas en cultivos de
la amazonia ecuatoriana. uito, Ecuador: IICA. 228 p.
https://repositorio.iica.int/handle/11324/16679
Savary, S., A. Ficke, J. N. Aubertot & C. Hollier. 2012. Crop
losses due to diseases and their implications for global food
production losses and food security. Food Security 4: 519–
537.
Schuster, D. J., G. A. Evans, F. D. Bennett, P. A. Stansly, R. K.
Jansson, G. L. Leibee & S. E. Webb. 1998. A survey of para-
sitoids of Bemisia spp . whiteies in Florida, the Caribbean,
and Central and South America. International Journal of Pest
Management 44: 255–260.
Sornoza-Robles, D., F. E. Zambrano-Gavilanes, J. R. Moreira-
Saltos, J. F. Zambrano-Dueñas, R. Armiñana-García & R.
Fimia-Duarte. 2020. Percepción de los agricultores sobre la
ecacia de parasitoides en el control de plagas y en la soste-
nibilidad agroecológica del Limonero, Riochico, Portoviejo,
Ecuador. Neotropical Helminthology 14: 75–84.
Sosa, M. 2009. Prospección de enemigos naturales del barrenador
del uto (Neoleucinodes elegantalis (Guenee)) de la naranjilla
(Solanum quitoense) y evaluación de la incidencia de las plagas
en su cultivo. Universidad Central del Ecuador. [esis].
Chirinos, Anchundia, Castro, Castro Olaya, Geraud & Kondo
26
Sotomayor, I., & L. Duicela. 1995. Inentario Tecnológico del
cultivo del café. uevedo, Ecuador: INIAP. 55 p. http://re-
positorio.iniap.gob.ec/handle/41000/1618
Tigrero, J. O. 2007. Arquitectura del fruto e incidencia de pa-
rasitismo sobre larvas de Anastrepha (Diptera: Tephritidae).
Boletin Técnico 7, Serie Zoológica 3: 31–40.
Toledo, Á., C. Yagual, D. Alvarado, R. Castro & D Chirinos,.
2018. Entomofauna asociada al cultivo de pimiento Capsi-
cum annuum, en Mariscal Sucre, Guayas, Ecuador. Misionero
Del Agro 19(5): 57.
Trujillo, H. E., B. Arias, J. M. Guerrero, P. Hernandez, A. Bel-
lotti & J. E Peña. 2004. Survey of parasitoids of whiteies
(Homoptera: Aleyrodidae) in cassava growing regions of Co-
lombia and Ecuador. Florida Entomologist 14: 1–3.
Valarezo, O. 2011. Bioecología y manejo de las moscas de la fru-
ta en Manabí. La Técnica 5: 76–81.
Valarezo, O., E. Cañarte & B. Navarrete. 2004. Distribución,
bioecología y manejo de Phyllocnistis citrella Stainton en
Ecuador. Portoviejo, Ecuador: INIAP. 52 p. http://reposito-
rio.iniap.gob.ec/handle/41000/1158
Valarezo, O., E. Cañarte, & B. Navarrete. 2011. Plagas en cítricos
y su control biológico. Guía para su identicación en el campo.
Portoviejo, Ecuador: INIAP. 29 p. http://repositorio.iniap.
gob.ec/handle/41000/1305
Valarezo, O., E. Cañarte, B. Navarrete, J. Guerrero & B. Arias.
2008. Diagnóstico de la “mosca blanca” en Ecuador. La
Granja: Revista de Ciencias de La Vida, 7(1): 13–20.
Valarezo, O., E. Cañarte, B. Navarrete, & M. Intriago. 2009. La
chicharrita Dalbulus maidis y su manejo en el cultivo de maiz.
Divulgativo No. 305. Editorial, INIAP. 6 p. http://reposito-
rio.iniap.gob.ec/handle/41000/1265
Venegas, B. E., R. Avila, J. Ochoa, J. Poveda, E. Rosero, A. Sán-
chez, A. Toral & L. Vásquez. 2018. Identicación del enrolla-
dor de la hoja y posibles parasitoides en el cultivo de aguacate
(Persea americana). In León A. & N. Barriga (Eds.), Memo-
rias del 4to Simposio en Fitopatología, Control Biológico e Inte-
racciones Planta- Patógeno (p. 90). USFQ Press.
Yoshimoto, C. M. 1976. Pseudoxenufens forsythi a new genus
and species of Trichogrammatidae (Hymenoptera: Chalci-
doidea) from western Ecuador. e Canadian Entomologist,
108(4): 419–422.
Zambrano, N. D., W. Arteaga, J. Velasquez & D. T Chirinos.
2021. Side eects of Lambda Cyhalothrin and iamethox-
am on insect pests and atural enemies associated with cotton.
Sarhad Journal of Agriculture, 37(4): 1098–1106.
Zamorano, A. 2012. Inuencia de la planta hospedera del ádo
ceniciento de la col Brevicoryne brassicae en el desempeño del
parasitoide Diaeretiella rapae. Ponticia Universidad Católi-
ca del Ecuador [esis].