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Abstract

The relativistic quantum mechanical tensorial theory in 1 + 1 dimensions is considered.
Its kinematical and dynamical features are reviewed as well as the problem of finding the Dirac
spinor for given finite multivectors. For stationary states, the dynamical tensorial equations,
equivalent to the Dirac equation, are solved for a free particle and for a particle inside a box.
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Teoría tensorial de la mecánica cuántica relativística en
1+1 dimensiones

Resumen

En este trabajo se considera la teoría tensorial de la mecánica cuántica relativísta en 1+1
dimensiones. Se revisan las caracteriticas cineterísticas cinemáticas y dinámicas de esta teo-
ría, así como tambien se trata el problema de encontrar el espinor de Dirac para multivectores
finitos dados. Para estados estacionarios, las ecuaciones tensoriales dinámicas, equivalentes a
la ecuación de Dirac, se resuelven para una partícula libre y para una partícula en una caja.

Palabras clave: 1+1 dimensiones; espinor de Dirac; Mecánica cuántica; teoría tensorial.

Introduction

From the beginning of the quantum
theory it has been accepted that spinors are
essential for describing physical systems in
the quantum domain. However, a physical
system can be described by giving simulta-
neously the observables and the state in the
form of tensorial densities, that is, probabil-
ity densities, currents and fields that may be
bilinearly defined in terms of the relativistic
wave function and its derivatives. Physicists
like Pauli, Gordon, Belinfante, Proca (1-4),
among others, studied this type of quanti-

ties by their utility in the interpretation of
relativistic quantum theory. The idea of for-
mulating relativistic quantum mechanics
without using spinors, and in the form of a
hidrodynamic of tensorial densities which
satisfy dynamical equations equivalent to
the Dirac equation, was considered by Costa
de Beauregard and Takabayasi (5, 6). The
inversion of the bilinear relations which per-
mits to express the Dirac spinor in terms of
multivectors, has been considered (7). The
dynamical aspects of the tensorial theory
show the existence of an equivalence theo-
rem between the Dirac equation and
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Maxwell-like equations This allows to visu-
alize relativistic quantum mechanics as a
generalized electromagnetism (8). Despite of
this, solving problems by using the tensorial
theory in 3 + 1 dimensions is troublesome.
The reason for that is the non-linear charac-
ter of the resultant dynamical equations,
and the complexity of the probabilistic fluid
associated to spin. The tensorial theory in 1
+ 1 dimensions is certainly more simple, but
as far as we know, it has not been consid-
ered in the scientific literature (9). We shall
study this theory obtaining a dynamical
equation for the probability density, solving
this equation for some standard problems,
in particular, that of a particle inside a one-
dimensional box.

In this paper, the problem of the vari-
ous boundary conditions that may be im-
posed for a relativistic “free” particle inside a
one-dimensional box will be considered. The
spinorial problem of a Dirac fermion in a one
dimensional box interacting with a scalar
solitonic potential was considered earlier
with periodic boundary conditions (10), as
well as with more general ones (11), to eluci-
date the phenomenon of fractional fermion
number. For the case of the Dirac “free”
massless operator, also in 1 + 1 dimensions,
eigenvalues and eigenfunctions were ob-
tained for a family of self-adjoint extensions
(12), and the case with a non-zero vector po-
tential was also examined (13). A detailed
study of the possible boundary conditions,
i.e., self-adjoint extensions, for a relativistic
particle inside a box, as well as their non-
relativistic limits, has been considered by
two of us [V.A. and S. De V.] (14).

In this paper we use the tensorial the-
ory in order to understand the physics be-
hind some of the spinorial boundary condi-
tions that make self-adjoint the “free” hamil-
tonian for a particle in a box.

In sections I and II, we review the kine-
matical and dynamical structures of the
tensorial theory, as well as the problem of
finding the Dirac spinor in terms of finite
multivectors. In section III we particularize

the obtained results for stationary states.
Finally, in sections IV and V we study the
free particle and the problem of a particle in-
side a box.

1. Non-dynamical Structure
of the Tensorial Theory

Let Ψ Ψ= ( , )x t be a Dirac-like spinor
which does not necessarily satisfy the Dirac
equation In 1 + 1 dimensions Ψ is a two com-
ponents spinor and represents the quantum
state, but a pure state can also be described
by an observable density matrix, that is

C = ⊗ =2 2Ψ Ψ ΨΨ [1]

where Ψ Ψ= =γ0 is the Dirac adjoint of the
spinor, Ψ = is the hermitian conjugate spinor
and γ0 is one of the gamma matrices
γ γ γ β βαµ = =( , ) ( , )0 1 that satisfy the so called
Clifford relation:

γ γ γ γµ ν ν µ µν+ = = −2 2 1 1g diag( , )

The Clifford number C is a 2 2× com-
plex matrix. The Dirac adjoint of a Clifford
number C is defined as C C C= =γ γ0 0= and
can be written in a unique way as a linear
combination of four matrix basis:

{ }Γ A i= −1 5, ,γ γµ where γ α5 = verif ies
γ γ γ γµ µ5 5 0+ = , that is:

C S V iA
A

A

= = + −
+

∑ λ γ ω γµ
µΓ 1 5

4

[2]

The components { }λ ωµ
A S V=

+
, , of

C are real and can be obtained by using the
scalar product for matrices:

λ A
A AC Tr C= =( , ) [( ) ]Γ Γ1

2
= ,

where the symbol Tr means trace. So:

S = ΨΨ [3]

V µ = Ψ Ψγµ [4]
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ω γ
+
= iΨ Ψ5 [5]

which are the finite multivectors. We shall
refer to V µ as to the two-vector probability
current, S and V 0 as to the internal and the
probability densities, respectively, V1 is the
spatial component of the probability cur-

rent, finally ω
+

is the pseudo-scalar density
(7). (The symbol + denotes the dual opera-

tion, so ω
+

is a pseudo-tensor).

It is convenient to write explicitely
equations [3], [4] and [5] as: S = Ψ Ψ=β ,

V 0 = Ψ Ψ= , V1 = Ψ Ψ=α and ω βα
+
= i Ψ Ψ= . Any

of the2 2× Pauli matrices can be used as the
Dirac matrices α and β. In the standard or
Dirac representation in 1 + 1 dimensions,
α σ= x and β σ= z . In the so called Weyl rep-
resentation, α σ= z and β σ= x .

From equation [1], we get:

C

S

C

S2 2

2




 = [6]

that is to say,
C

S2
represents a pure state.

Substituting equation [2] in [6] and us-
ing the identities:

γ γ γµ ν µν µν= −
+

1 5g D , γ γ γµ µν
ν

5 =
+

D

where D Dµν µν

+ +
= − and D01 1

+
= (Dµν

+
being the

permutation pseudo-tensor), we obtain as a
consequence of the purity of the quantum
state

S V V2
2

+ =
+ µ

µω [7]

This relation implies that only three fi-
nite multivectors are independents.

Introducing the covariant derivatives of

Ψ and Ψ by using D
ieA

cµ µ
µ= ∂ +

h
,

∂ ∂ ∂µ = 





1
c xt’ ’

, and λ = h

2mc
, we may write

the set of Clifford numbers:

C i D Dµ µ µλ= ⊗ − ⊗2 ( )Ψ Ψ Ψ Ψ [8]

Which may also be written as:

C I T i hµ µ νµ
ν

µγ γ= + −
+

1 5 [9]

The differential multivectors defined by
equation [9] are obtained, as we pointed out
above, by using the scalar product between
matrices. That is

I i D Dµ µ µλ= −( )Ψ Ψ Ψ Ψ

= − −i
eA S

mc
λ ∂ ∂µ µ

µ( )Ψ Ψ Ψ Ψ
2

[10]

T i D Dµν ν νλ= −( )Ψ γ Ψ Ψ γ Ψµ µ

= − − µi
eA V

mc
λ ∂ ∂ν ν

ν( )Ψ γ Ψ Ψ γ Ψµ µ 2
[11]

h i i D iD
+

= −µ µ µλ ( )Ψ γ Ψ Ψ γ Ψ5 5

= − −

+

i i i
eA

mc
λ ∂ ∂

ω
µ µ

µ( )Ψ γ Ψ Ψ γ Ψ5 5
2

[12]

wheree e= − is the electron charge and m is
their mass. The electromagnetic potential is
A V Aµ = ( , ). Obviously we may choose A = 0 in
1 + 1 dimensions.

The differential multivectors I µ and hµ

+

are called respectively, the convective cur-
rent and pseudo-current and Tµν the prob-
ability tensor. By constructing the quanti-
ties CC C Cµ µ± the following relation be-
tween multivectors may be obtained

SI h V Tµ + µ
+

+ =ω ν
νµ [13]

D V h T V S S V
+ + +

− = ∂ − ∂µν
ν

ρ ρ
ν

µ ρ ρ µω λ( ) ( ) [14]

D V T S S
+ µ + +

= ∂ − ∂µν ρ
ν

ρ ρλ ω ω( ) [15]
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λ ωµν
µ

ρ
ν

ρ ρD V V I Sh
+ + +

∂ = − [16]

λ ω ωµν
ν

ρ ρ
ν

µρ ρ
µD V V ST V

+ + +
∂ − ∂ = −( ) Ι [17]

2. Dynamical Structure
of the Tensorial Theory

Dynamical equations

Let O i D
mc

D = −µ
µγ

h
be the Dirac op-

erator. If Ψ satisfies the Dirac equation:

OD Ψ = 0 [18]

Ψbecomes a Dirac spinor.

Let us define the Clifford number:

C OD D= ⊗Ψ Ψ [19]

In view of equation [23], each complex
multivector belonging to CD

is null, that is:

ΨΓ ΨA
DO = 0 [20]

Thus, the real and imaginary parts of
equations [20] are zero. Making full use of the
definitions of the multivectors and of the rela-
tions between the gamma matrices given
above, in addition to the following:
γ γ γ γµ µ= = 0 0 ; γ γ5 5= = and

D Dµ
+ +

= − +ν
αβ α

µ
β
ν

β
µ

α
νδ δ δ δ we obtain the dy-

namical equations implied by the Dirac
equation These equations may be conven-
iently grouped in three pairs:

λ ∂ ωµν
νD I V

+ + µ µ= − [21]

λ ∂νµ
νD S h

+
µ

+

= [22]

T Sµ
µ = [23]

D Tµν
µν

+
+

= 0 [24]

∂µ
µ =V 0 [25]

λ ∂ ωµν νD V
+

µ

+
= [26]

These equations are the fundamental dyna-
mical relations implied by the Dirac equa-
tion

The currents I µ ,h µ
+

andV µ in equation
[25], are conserved inasmuch as each one of
them satisfies a continuity equation

The above three pairs of dynamical
equations [21-26] look like a rather large set
of relations to be satisfied. However, the first
pair, which we call the Maxwell-like equa-
tions, may be considered as the fundamen-
tal one. In fact, the other two pairs may be
derived from these Maxwell-like equations
and the non-dynamical relations [7, 13, 14].

So, the dynamical information of the
Dirac equation is contained in only two vec-
torial equations In other words, if the Dirac
equation is verified, it implies three pairs of
dynamical equations which with help of the
non-dynamical or algebraic relations may
be reduced to a single pair. On the other
hand, if the three pairs of dynamical rela-
tions are verified, then [20] is satisfied for
everyΓ A . The spinor Ψ is in general not null,
thus Dirac equation is satisfied. In this way,
the equivalence between Maxwell-like equa-
tions and the Dirac equation is completed.

Let us assume that we know the neces-
sary multivectors and that we want to obtain
their corresponding spinor. In the next sec-
tion we will show how to obtain the spinor
for a given set of finite multivectors.

Spinors from multivectors

Let us first consider the following gen-
eral spinor in the Dirac representation

Ψ
Ω

Ω( , )
( )

( )
x t

a e

b e

i

i
=











+

−

ε

ε
[27]
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From equations [3,4,5] one obtains:
S a b= − , V a b0 = + , V ab1 2 2= cos( )Ω and

ω
+
= 2 2absin( )Ω . From which one gets

a V S= +1
2

0( ) [28]

b V S= −1
2

0( ) [29]

cos( )

( ) ( )

2
1

1 2 2

1

2

Ω =

+





+

V

V ω

[30]

In order to obtain the overall phase εup
to an integration constant, one may use any
of the Maxwell-like equations It is conven-
ient to write them only in terms of finite mul-
tivectors, the external electromagnetic po-
tential Aµ and the gradient of ε. For this, let

us write the currents I µ and h µ
+

in terms of
the spinor [27]:

I S V
eA S

mc
µ µ

µ= − + −2 0

2
λ ∂ ε ∂ µ( )Ω [31]

h
V

Sµ

+

µ= − +2
0

λ ω ∂ ε ∂
+

µ( )Ω

− −µ

+
+

µ

eA

mc S
D V V

ω λ ∂
αρ

α ρ2
4 [32]

where we have used equation [16] in order to

express h µ
+

in term of I µ .

Substituting equation [31] in [21] and
[32] in [22], one gets:

λ ∂ ω λ ∂ ε ∂µν
ν

µD S V
+ +

µ= − +2 0( )Ω

− −µ
µ

eA S

mc
V

2
[33]

λ ∂ λ ∂ λ ω ∂ ε ∂µν
ν αρ

α ρ µS D S D V V S V
+ +

µ

+

µ= + + +2 0( )Ω

eA S

mc
µ

+
ω

2
[34]

In this way, with equations [33] or [34]
both implied by the Dirac equation, one ob-
tains ∂ εµ from the finite multivectors and
the external electromagnetic potential. This
quantity is observable. Integrating it, one
can calculate ε up to an integration con-
stant.

3. Stationary States

In the case of stationary states the
overall phase may be written as:

ε ε( , ) ( )x t
E

t f x= = − +
h

, moreover ∂t Ω = 0

and ∂t Aµ = 0. So, from the general spinor in
the Dirac representation [27], one obtains

Ψ( , ) ( )x t x e
i

E
t

=
− 



ψ h , whereψ( )

( )

( )
x

a e

b e

i f

i f
=











+

−

Ω

Ω
.

The finite multivectors may be written as:

S = ∗ − ∗φ φ χ χ
V 0 = ∗ + ∗φ φ χ χ

V1 = ∗ + ∗φ χ χ φ

ω φ χ χ φ)
+
= ∗ − ∗i(

where φ = +a ei f( )Ω and χ = −b ei f( )Ω are re-
spectively the spatial parts of the so called
large and small components of the spinor Ψ
in the Dirac representation.

Denoting hereafter with primes the dif-
ferentiation with respect to x and choosing
the so called axial gauge A1 0= and eA U0 ≡
we can write the following relevant
Maxwell-like equations

− ′ = −



 −λ ω

+ E U

mc
S V

2

0 [35]
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λ ω′ = −





+
S

E U

mc 2
[36]

The other dynamical equations implied
by the Maxwell-like equations are

( )V1 0′ = [37]

λ ω( )V 0 ′ =
+

[38]

We emphasize that the pseudo scalarω
+

is nothing but the “scaled gradient” of the
probability density V 0 . In addition to these
relations, we have the kinematical relation
[7]:

S V V2
2

0 2 1 2+ = −
+
ω ( ) ( )

Returning to the problem of calculating
the spinor starting from multivectors for
stationary states, we obtain from the spatial
component of equation [33] a differential
equation that permits us to get the phase
f x( ) up to an integration constant, with Ω
obtained from equation [30]:

2 0 1λ ( )Sf V V′ + ′ =Ω [39]

The time component of equation [33] is
precisely equation [35].

Given a potential energy U x( ), the
Maxwell-like equations yield a linear differ-
ential equation for the probability density.
By using equations [38, 35, 36] we obtain:

( ) ( ) ( ) ( )V g V k V
g

V0 0 2 0

2

02 0′′′ + ′′ + ′ − =
λ

[40]

where:

g x
U x

E U x
( )

( )

( )
= ′

−
and k

E U mc

c
2

2 2 2

2 2
= − −( ) ( )

h
.

It is worth mentioning that obtaining a
dynamical equation for the probability den-
sity has been from the beginnings an impor-
tant aim of quantum mechanics.

In the next section we solve this equa-
tion for g x( ) = 0 in this case a harmonic type
equation is obtained.

4. Free Particle

Let us now solve the Maxwell-like equa-
tions for a free particle. MakingU = 0 in the
equation [40], we obtain with

k
E mc

c
2

2 2 2

2 2
= − ( )

h
, the fundamental equation

for the probability density V x0 ( ):

( ) ( ) ( )V k V0 2 02 0′′′ + ′ = [41]

The general solution of equations
[41, 37] may be written as:

[ ]V x
mc

ck
A B kx C kx0

2

2 2 0( ) ( ) ( )= + − >
h

sin cos

[42]

V x D1( ) = [43]

where A, B, C and D are arbitrary constants.
For the other two finite multivectors the gen-
eral solution is given by:

S x
E

mc
V x

ck

E
A( ) ( )= −

2

0 h
[44]

ω
+

= +( ) ( ) ( )x B kx C kxcos sin2 2 [45]

Using the constraint [7] one obtains:

− + + + =( )mc

E
A B C D

2 2

2

2 2 2 2 0 [46]

The most simple solution of equation
[42] is a constant probability density:

V x
mc

ck
A0

2

0( ) = >
h

[47]

Thus, equations [44,45] can be written
as:
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S x
mc

ckE
A( )

( )=
2 2

h
[48]

ω
+

=( )x 0 [49]

The probability current is given by:

V x
mc

E
A1

2

( ) = ± [50]

where the constraint [46] has been used.
Obviously, A is a normalization constant.

The Dirac spinor [27], that is

Ψ
Ω

Ω( )
( )

( )
x

a e

b e
e

i f

i f

i
E

t
=











+

−

−
h , may be obtained by

using equations [28, 29, 30, 39], from which
one obtains:

Y
mc

ck
A

ck

E mc
e eik x i

E
t

∝ ±
+



















± −2

2

1

h

h
h [51]

This spinor is the well known solution
to the Dirac equation for a free particle.

5. “Free” Particle Inside a Box

Let us now consider a relativistic “free”
particle confined inside a one-dimensional
box with fixed walls at x = 0and x L= . In or-
der to obtain the four arbitrary constants
and the energy eigenvalues, instead of con-
sidering a confinement potential at the walls
of the box, we impose upon the solutions
[42-45] adequate boundary conditions.

Using equation [43], the constraint [7]
becomes

( ) ( ) ( ) ( )V x S x x D0 2 2
2

2− − =
+
ω [52]

For a particle confined inside a box, we
put V V L1 10 0( ) ( )= = , then D = 0 everywhere
and

S x x V x2 0 2( ) ( ) ( ) ( )+ =
+
ω

2

[53]

So, V x0 ( ) cannot vanish unless

S x x( ) ( )= =
+
ω 0 but this yields the trivial solu-

tion.

Using equation [53] at the boundaries
of the box.

S V2
2

0 20 0 0( ) ( ) ( ) ( )+ =
+
ω

S L L V L2
2

0 2( ) ( ) ( ) ( )+ =
+
ω [54]

In order to satisfy this set of relations,
one may write for 0 2≤ <θ ξ π,

S V( ) ( )0 00= −cosθ , ω θ
+

= −( ) ( )0 00sin V [55]

S L V L( ) ( )= −cosξ 0 , ω ξ
+

= −( ) ( )L V Lsin 0 [56]

where the parametersθ ξ, label the subfami-
lies of boundary conditions. It can be shown
that this two parameters family of boundary
conditions is the most general one for a par-
ticle confined in a box, and that they are in-
cluded in the domain of the Dirac Hamilto-
nian for a “free” particle inside a box. We will
only consider those boundary conditions
that are symmetrical under space inver-
sions. The fundamental equation [41] is in-
variant under space inversions if

V x V L x0 0( ) ( )= − [57]

Then, by using equations [38,44], we
obtain

ω ω
+ +

= − −( ) ( )x L x [58]

S x S L x( ) ( )= − [59]

In this case we only have a one-
parameter family

S V( ) ( )0 00= cos ξ , ω ξ
+

=( ) ( )0 00sin V [60]
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S L V L( ) ( )= cos ξ 0 , ω ξ
+

= −( ) ( )L V Lsin 0 [61]

Among  the  infinite  boundary  condi-
tions parametrized by ξ we choose the most
simple ones ξ π= 0, and ξ π= /2, 3 2π/ . In
the following list we specify the tensorial
boundary conditions for the local observ-
ables [TBC], their corresponding spinorial
boundary conditions [SBC], and the energy
eigenvalue equations [EEE]. For the first
case ξ π= 0, we obtain:

ω ω
+ +

= =( ) ( )0 0L [62]

a) TBC: S V( ) ( )0 00= − , S L V L( ) ( )= − 0 [63]

SBC: φ φ( ) ( )0 0= =L

EEE: cos( )2 1kL =

b) TBC: S V( ) ( )0 00= , S L V L( ) ( )= 0 [64]

SBC: χ χ( ) ( )0 0= =L

EEE: cos( )2 1kL =

For the second case ξ π= /2, 3 2π/ , we
obtain:

S S L( ) ( )0 0= = [65]

c) TBC: ω
+

= −( ) ( )0 00V , ω
+

=( ) ( )L V L0 [66]

SBC: χ φ( ) ( )L i L= − , χ φ( ) ( )0 0= i

EEE: tan( )kL
ck

mc
− =h

2
0

d) TBC: ω
+

=( ) ( )0 00V , ω
+

= −( ) ( )L V L0 [67]

SBC: χ φ( ) ( )L i L= , χ φ( ) ( )0 0= −i

EEE: tan( )kL
ck

mc
+ =h

2
0

Then, using the constraint [7] the mul-
tivectors for the first case are:

V x A
mc

ck

mc

E
kx0

2 2

1 2( ) ( )= ± −










h
cos [68]

V x1 0( ) = [69]

S x
E

mc
V x

ck

E
A( ) ( )= −

2

0 h [70]

ω
+

=( ) ( )x A
mc

E
kx

2

2sin [71]

The upper sign corresponds to the
boundary condition a) and the lower one to
the boundary condition b) Note that in order
that V x0 ( ) be positive the lower sign in equa-
tion [68] must be used only for electrons
with negative energy.

The multivectors for the second case
are:

V x A
mc

E

E

ckmc
kx0

2 2

2

2

2
2( )

( )
( )=




 ± −
h

sin

mc

ck
kx

2

2
h

cos ( )



 [72]

V x1 0( ) = [73]

S x
E

mc
V x

ck

E
A( ) ( )= −

2

0 h [74]

ω
+

= ±





( )
( )

( ) ( )x A
mc

E
kx

ck

mc
kx

2 2

2 2
2 2sin cos

h [75]

Where the upper sign corresponds to
the boundary condition c) and the lower one
to the boundary condition d).

Knowing the finite multivectors, the Di-
rac spinors may be obtained using the rela-
tions [28-30] and [39]. For the first case of
boundary conditions the followiing spinors
are obtained for a) and b).

Ψ ∝ −
+













−
A

kx
i ck

E mc
kx e

i
E

t
sin

cos

( )

( )
h h

2

[76]

Ψ ∝
+













−
A

kx
i ck

E mc
kx e

i
E

t
cos

sin

( )

( )
h h

2

[77]
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where the upper and the lower sign respec-
tively has been used in order to obtain the
spinors [76,77] respectively.

For the second case of boundary con-
ditions ξ π= /2, 3 2π/ , using the upper sign
of the equations [72,75], we obtain the spi-
nor:

Ψ ∝
−

−
+

−

















−
A

kx

i ck

E mc
kx

e
i
E

t
sin

cos

( )

( )

ζ

ζ
2

22

h
h [78]

where tan( )ζ = hck

mc 2
. Using the lower sign we

obtain:

Ψ ∝
−

+
−

















−
A

kx

i ck

E mc
kx

e
i
E

t
cos

sin

( )

( )

δ

δ
2

22

h
h [79]

where tan( )δ = − hck

mc 2
.

Conclusions

We have seen that from the tensorial
viewpoint the relativistic quantum mechan-
ics in 1 + 1 dimensions appears as a very
rich theory, whose objects are explicitly local
observables which satisfy Maxwell-like
equations In contrast, in the spinorial for-
mulation, which is very much compact and
relatively simple, the relevant information is
implicit and the physical meaning of all its
objects is not straightforward. In the tenso-
rial theory, we have a linear differential
equation for the observable probability den-
sity which is a consequence of the Maxwell-
like equations equivalent to the Dirac equa-
tion Then, imposing symmetries and bound-
ary conditions is easier, and is more physi-

cally meaningfull. For example, the current
V µ cannot vanish anywhere, inasmuch as in
that case, the other two finite multivectors,
the scalar and the pseudo scalar, should
also be zero. The only possibility is the van-
ishing of the spatial component of V µ . If
V1 0= at a boundary, either the scalar or the
pseudo scalar may vanish, but not both of
them.
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