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Abstract

A technique is presented that allows to obtain analytic approximations for the energy eigen-
values of the one-dimensional Schrödinger equation with anharmonic potentials. This technique 
is based on an original way of obtaining perturbative expansions, together with the used of quasi-
rational approximants found from these expansions at various points. The technique is applied 
explicitly to the ground state of the quartic anharmonic oscillator.
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Aproximantes analíticos para los autovalores 
de energía de potenciales anarmónicos

Resumen

Se presenta una técnica que permite obtener aproximaciones analíticas para los autovalo-
res de energía de la ecuación de Schrödinger unidimensional con potenciales anarmónicos. La 
técnica está basada en una forma original de obtener expansiones perturbativas, junto con el 
uso de aproximantes cuasi-racionales obtenidos a partir de estas expansiones en varios puntos. 
La técnica es aplicada explícitamente al estado base del oscilador anarmónico de grado cuatro.

Palabras clave: potenciales anarmónicos, aproximaciones cuasi-racionales,

Introduction

The quantum anharmonic oscillator is 
one of the most studied potentials in the one-
dimensional Schrödinger equation for which 
no exact analytic solution is known. Many 
techniques have been developed that allow to 
deal with the problem of finding the energy 
eigenvalues or even the eigenstates, either 
numerically or in an approximate analytic 
way, see for instance (1-11). The last alterna-
tive is particularly attractive, since it allows 
to obtain analytic expressions that can be 

used, in many contexts, in the same way as 
one would use the exact ones, if they existed. 
The present work goes in this direction. Of 
course, the usefulness of a particular tech-
nique depends on how precise the analytic 
approximations are, as well as the simplicity 
of the approximating functions themselves. It 
will be shown here that using the power se-
ries and asymptotic expansion of the energy 
eigenvalues (in the parameters of the poten-
tial), together with expansions at intermedi-
ate points, it is possible to build very precise 
and simple quasi-rational approximants for 
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the energy eigenvalues of the quartic anhar-
monic oscillator. The Schrödinger equation 
for the quartic anharmonic oscillator is given 
by
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Redefining x as 4/1−→ Ax  and E as 
2/1−→ AE , and taking  2/3−= BAl , we ob-

tain a Schrödinger equation depending only 
of one parameter of the form:
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The approximants will be functions of 
this parameter, )(lEE = , and they will be 
constructed demanding that its behavior al-
most matches that of the exact eigenvalues 
for 0→l and ∞→l , as well as its behav-
ior at possible intermediate points that can 
be chosen arbitrarily.

Power series

To find the power series, the energy can 
be expanded as ,2

210 +++= ll EEEE  
while the wavefunctions is given by 

+++= 2
210 lylyyy . Introducing these 

expressions for E and y in eq. [2], in the case 
of non-degenerates eigenvalues, and asking it 
to be satisfied at every order in l, leads to a 
system of differential equations,
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where we defined 
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L +−= . The coef-

ficients ,, 10 EE , as well as the functions 
,, 10 yy  of the power series, can be easily 

found since 000 yy EL =  can be solved ex-
actly. In the case of the ground state, 10 =E
and )2/exp( 2

0 x−=y . The wavefunctions 
1y  can be written in the general form as
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When this is introduced in eq. [4], the func-
tion 0y  disappears and a relation between 
two polynomials is left. Since this relation 
must be satisfied at each order in x, a system 
of equations in 1E  and the  p1’s is obtained, 
and whose solution is 01 =p , ,8/32 −=p  

03 =p , 8/14 −=p  and 4/31 =E . The 
same procedure can be repeated for the 
other functions ,, 32 yy , writing in the 

form ∑
=

=
n

k

k
kn xp

0
0yy . We obtain ,10 =E  

,4/31 =E   6/212 −=E ,  64/3333 =E , 
1024/308854 −=E . This coincides with the 

results that are obtained using the standard 
Rayleigh-Schrödinger perturbation method, 
with the advantage that no information about 
the eigenstates of energy levels different from 
the one being considered is required in order 
to obtain the terms of higher order. One can 
also find expansions at intermediate points 
defining aa ll +=  and expanding E and y 
as power series around of 0=al . Doing this, 
one can find a system of equations similar to 
the one shown above, but now the operator 
L becomes  4222 / xxdxdLL a α++−=→ . 
This operator does not have any known exact 
solutions, so the coefficients must be found 
by solving the differential equations numeri-
cally.

Asymptotic series
We can do the change of variables 

yx 6/1−= l , and defining 3/2~ −= ll  and 
EE 3/1~ −= l , the Schrödinger equation be-

comes
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We can expand as before 
+++= 2

210
~~~~~~
ll EEEE  and 
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~~~~~ lylyyy  which leads to the 

following system of equations:
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with 
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L +−= . The expansion of the 

energy leads to
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In other words, the eigenvalue E goes 
as 1/3≈ l  when l →∞ . The coefficients 

,
~

,
~

,
~

210 EEE  can be found solving the differ-
ential equations [8]-[11]. In particular, if we 
find up to the (n-1)-th function 1

~
−ny  and up 

to the (n-1)-th coefficient 1
~

−nE , then n-th coef-
ficient can be found multiplying the differen-
tial equation for ny~  by 0

~y and integrating in 
y. One obtains
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Construction of the approximants

Taking into account the form of the as-
ymptotic series, one can write an approxi-

mant in terms of rational functions depend-
ing on the parameters l, together with aux-
iliary functions that allow to reproduce the 
behavior at l →∞  of the form:

)(
)(

)1(

)(
)(

)1(
)(
)(

)1(

1

3/13/1

l
ll

l
ll

l
ll

Q

P
µ

Q

P
µ

Q

P
µE

c

ba
app

−

−

+

++++=
 

    [14]

Where we have defined the following re-
lationship:
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1)( ll . Here µ is a free pa-

rameter that can be adjusted in order to im-
prove the precision of the approximant, and 
n defines its size, which will depend on the 
total number of terms used from each series. 
The coefficients ak, bk, ck and qk can be ob-
tained expanding the auxiliary functions and 
equating, order by order in ,l l  or al , with 
the corresponding expansions after multiply-
ing both, the expansion and the approximant 
by the denominator )(lQ of the later.

The way how we arrive to Eq. [14] is ex-
plained in previous works (1, 5, 9), however 
we will explain the main ideas here. First we 
are using polynomials of the same degree in 
numerator and denominator because of the 
asymptotic expansion starts with the frac-
tional power potential 1/3, with is smaller 
than one. Now in order to obtain the first 
term of the asymptotic expansions, we can-
not use 3/1l  because, in this way, we are in-
troducing a ramification point in 0=l , which 
is not in the actual function, since the first 
term of the power series start with a constant 
value. Now the simplest way to go around 
this problem, is to use ( ) 3/11 lµ+  instead of 

3/1l . In this way if 0>µ , then the singularity 
for l  will be µl /1−= , which is out of our 
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region of interest, 0≥l . Introducing the aux-
iliary function ( ) 3/11 lµ+  we get all the pow-
ers of the asymptotic expansions of the form

( )n−3/1l , but in order to get all the terms in 
the asymptotic expansions we have to intro-
duce the second and third rational function 
in the right hand side of Eq. [14]. The singu-
larities of the additional auxiliary functions 
are in the same point l = –1 / µ, which means 
that if the free parameter µ is chosen always 
a positive number, there is not any problem 
in the region of interest for l , which is 0≥l
, as were explain before.

Results and conclusions

In the case of the ground state, for the 
asymptotic expansion the differential eqs. 
[8]-[11] were solved numerically, using a 
program in Mathematica with 16 digits of 
precision, and the following values for the 
coefficients we found  ,06036194.1

~
0 =E  

 ,362022294.0
~

1 =E  034510565.0
~

2 =E , 

00515693.0
~

3 =E  and  .000831127.0
~

4 −=E  
The technique was applied forcing the ap-
proximant to coincide with the exact eigen-
values at the points 1/ 2l = , 1l = , 2l = , 

5l =  and 10l = . This is equivalent to using 
only the first terms in the expansion of the 
eigenvalue at these intermediate points. Tak-
ing n = 3 and µ = 2, we found:
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 ] [ ++× ll 05910003.211)80267791.15 3
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With this approximant, the maximum 
percent error obtained was of the order of 

410 %−≈  for all values of l in the range ),0[ ∞ . 
The technique described here can be applied 
also to other energy levels, as well as to any 
potential of the form  ba BxAxxV +=)( , or 
even radial potentials of the same form. This 
will be discussed in future publications, as 
well as the case of degenerate eigenvalues.
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