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Abstract 

The incidence of different approaches to the Fermi surface of pure indium. 
indium-thallium and indium-lead diluted alloys on the residual electrical resistivity has been 
evaluated in the pseudopotential model. Fermi surface, iterative transport relaxation time and 
correlated parameters are evaluated in the 8-OPW scheme and al1 transport integrals are 
numerically executed using the method of finite elements. The modified Heine-Animalu- 
Abarenkov scattering potential was used. The particular effects of the scattenng of the conduc- 
tion electrons on the second-zone hole and the third-zone electron p-arm for each Fermi surface 
(FS) considered were tested, the contribution of the scattering in the second-zone being 
dominant over other contributions. Our results are in agreement with the experimental ones 
when the relativistic FS approach is used. 
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Efecto de la estructura electrónica sobre la resistividad 
eléctrica de aleaciones diluidas de Indio-Plomo 

e Indio-Talio 

Resumen 

Hemos evaluado la resistividad eléctrica residual de aleaciones diluidas indio-talio e 
indio-plomo en el modelo de pseudopotencial, tratando de dilucidar el efecto que tiene sobre 
esta propiedad la consideración de diferentes aproximaciones de cálculo de superficies de 
Fermi. Estos parámetros correlacionados y el tiempo de relajación determinado iterativamente. 
son evaluados en el esquema, 8-OPW, calculándose todas las integrales de transporte 
mediante el método de elementos finitos. El potencial dispersor usado es el de 
Heine-Animalu-Abarenkov'el cual es parametrizado a fin de considerar detalles propios del 
proceso de aleación. El efecto particular de la dispersión de los electrones de conducción en la 
segunda zona de huecos y en la rama-p de la tercera zona de electrones para cada SF 
considerada fue chequeado, siendo dominante la contribución de la dispersión en la segunda 
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zona. Nuestros resultados están en concordancia con los resultados experimentales 
reportados en la literatura cuando usamos una SF calculada en la aproximación relativista. 

Palabras clave: Aleaciones diluidas de Indio; estructura electrónica; resistividad 
eléctrica. 

Introduction Second, we must select an FS. Again, 

The study of transport coefficients of 
metals and alloys has been the subject of 
much research, fundamentally. because 
those coefficients perrnit u s  to obtain infor- 
mation in regards to specific characteristics 
of the studied materials. In the specific case 
of residual coefficients, particular attention 
has been paid to the scattering of the con- 
duction electrons as a result of impurities. 
Despite the elastic behavior of electron- 
impurity interaction, the calculation of 
these coefficients presents formidable diffi- 
culties that can only be overcome by using 
different models and approaches. 

First, we must select a model to de- 
scribe the scattering of conduction electrons 
by impurities between the pseudopotential 
model (PM) (1) and the Komnga-Koster- 
Green function (KKR) (2) method. Choosing 
the former introduces the limitations of the 
Born approach,  s u c h  a s  the  non-  
consideration of the contribution of the 
backscatterers to the total scattering, 
though the calculation is facilitated as it al- 
lows the independent appraisal of both the 
effect of the structural distribution and the 
scattering power of impurities. The free pa- 
rameters of the PM approach guarantee an 
agreement between the measured and the 
caiculated transport coefficients. 

Choosing the latter allows for less 
physical restrictions but the incorporation 
of certain effects such as those of lattice dis- 
tortion (3.4) demands grater -effort on the 
part of the researchers. The KKR uses the 
muffin-tin potential to describe the host 
metal and impurity cluster scattenng poten- 
tials entering into the KKR formalism 
through a partial-wave phase shift (5). 

the problem is reduced to the competition 
between PM-OPW (6) and the cellular meth- 
ods (7,8), where the differences are basically 
introduced by the crystalline waves function 
used. Both comprise an ample spectrum of 
atornic hosts, the first one being of little use 
when transition atomic hosts are consid- 
ered. In the pseudopotential model in par- 
ticular, and depending on the calculation 
assumptions used (9- 1 l), the FS of the host 
metal under study indium - presents topo- 
logical differences that must certainly influ- 
ence the residual transport coefficients. 

In this work we use the pseudopoten- 
tial method with the phenomenological po- 
tential of Heine-Animalu-Abarenkov for the 
scattering. With the purpose of knowing the 
effect of the electronic structure on the re- 
sidual resistivity of pure indium. In-Tl and 
In-Pb diluted ailoys, the Fermi surface and 
correlated parameters are evaluated 
through both a relativistic and a non- 
relativistic approach in the case of the 
former, and from a relativistic approach in 
the last two. 

The organization of this paper is as fol- 
lows: Chapter 2 introduces the aspects per- 
taining to residual resistivity and FS. Chap- 
ter 3 sets forth the method of calculations 
and finally chapter 4 presents the results 
and discussion. 

Theoretical aspects 

Indium diluted alloys 
The diluted alloys studied in the pres- 

ent work have an indium matrix as  host 
metal. The indium crystallizes in the 
tetragonal system. its Bravais lattice being 
face centered. Like aluminium, indium is lo- 
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cated in the 111 A group of the periodic table, 
having one p and two S electrons of valence, 
electronic configuration which allows u s  to 
use the same methods as  those employed 
with aluminium, 

Having two S and two p electrons of va- 
lence, lead is a substitutive impurity in in- 
dium; and thallium being isoelectronic with 
indium, is also substitutional. The changes 
of indium. lattice parameters due to the in- 
clusion of the impurities have been studied 
by Holthman et al. (10) who have reported 
mathematical expressions of these parame- 
ters as  functions of the atomic concentra- 
tion of impurities, where the electronic and 
size effects are considered. In the case of 
thallium, only the size effect is important. 
Table 1 schedules the parameters of the In- 
Pb and In-Tl alloys used in this work. 

Residual electrical resistivity 

The electrical conductivity tensor o is 
defined in the theoretical framework given 
by the transport Boltzmann equation as  one 
integral over the FS of the alloy, the inte- 
grand one function being dependant on both 
the electronic velocity vector v(k) and the 
electronic mean free path vector h(k). Be- 
cause of the tetragonal symmetry of indium, 
the components of the conductivity tensor 
in plane z = constant are equal, i e  o, = oyy, 
and different from the tensor component ozz 
perpendicular to that plane. The inversion of 
the o tensor permits us  to define the ani- 
sotropic electrical resistivity p (3). 

where the subscnpt i takes the values x or z 
to define the parallel or perpendicular elec- 
trical resistivity to plane z. The transport 
equation also provided an equation to relate 
vectors v(k) and h(k), 

where P(k. k3 is the transition probability be- 
tween the electronic states k and k', the vec- 
tor mean free path being independent of the 
direction of the applied electric field E. The 
analytical solution of integral equation [2] is 
not simple in practice, and for that reason an 
iterative solution is proposed [l 11 

where ro, the average lifetime of electrons, is 
the inverse of the electron-impurity rate 
scattenng, 

Another relation between v(k) and h (k), 
which expedites the solution of equation [l] 
is obtained introducing an anisotropic re- 
laxation time zp, appropriate to resistivity, 

where the particular condition of parallelism 
between these vectors is vaiid only for an iso- 
tropic system with a spherical FS. Funda- 
mentaiiy the definition of P(k, k' ) permits us  
to establish the difíerences indicated in the 
introduction regarding the scattering of con- 
duction electrons by impurities. P(k, k') is re- 
lated to the impunties concentration C .  the 
number of sites in the alloy N and the transi- 
tion matrix T(k, k' ) by, 

P(k, k') = ~ . x N C T ( ~ , ~ ' ) ~ ~ ( E , .  - E k )  [61 

where 

In the Born approdmation, the T ma- 
trix approaches the V(k, k' ) matrix, where 
the electronic wave function is a plane wave 
or a combination of plane waves. Surely, 
this approach is valid for metals and alloys 
where the electronic conduction is guaran- 
teed for S and p electrons, but is not true 
when localized electrons participate in the 
conduction processes. 
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A detailed study on the evaiuation of prefactor in the first right term of equation [9] 
q k ,  k' ) in the KKR model is presented in the serves to normalize the impurity matrix to 
works by Coleridge (13.14) and Mertig et al. the host matrix. In this work we use the 
(1 5). In our case the electronic wave function modified Heine-Animalu-Abarenkov pseu- 
is written in the n-OPW model dopotential for Vi and Vh. Animalu and Heine 

(6), following a quasi-phenomenological 

y k ) = g  I a , [ k - % )  [ 71 
pseudopotential model calculated the form 
factors of a group of elements which have 

where gi is a reciprocal lattice vector and n 
fkes the wave number necessary to split the 
degeneration introduced by syrnmetry effects. 

When P(k, k') is known, an approach of 
zero order of h(k) in equation [3] is necessary 
to evaluate equation [l]. An excellent one is 
obtained using the Ziman approximation, 
which in the n-OPW model is written: 

Q C 
h0 (k) = v(k) -0- 

47c 2h ~ , l c ? a n  (k)an*(kr) A V ( Q ~ . ~ ,  

where Q,,,. = k' - k + g n  + !Yn. and 

AV(Q,,,.) = (k' - gn .  I ~ ~ ( r ) l k  - 9,) 

is the form factor. This factor defines the 
scattering power or interaction potential be- 
tween the impurity atoms and the host. 

Impurity scattering 
pseudopotentials 

The scattering potential is evaluated 
from the following relation (1 6,17) 

E . Q .  
AV@) = --I 

& h Q h  
- Vh @)[l - A S  (Q)] 

191 

where subscripts i and h refer to the impurity 
and host atoms. E represents the dielectric 
constant of Hartree and Q the respective 
atomic volumes. A S  is the structural change 
introduced by the impurity atoms in the in- 
dium. host matrix. V identifies the pseudo- 
potentiai of both the host of pure indium and 
the host of impurities respectively. The 

been tabulated inreference (6). Our personal 
experience has demonstrated (18) that the 
direct use of that pseudopotential in the cal- 
culation of residual resistivity in aluminium. 
alloys generates results in disagreement 
with the experience; however, the very minor 
changes introduced in equation [9] permit us 
to pararnetrize that relation, 

where bi (i = 1, 2.3) are pararneters close to 
one, and have been phenomenologicaily cal- 
culated. The deformation contribution in 
equation 191 is evaluated according to Fukai 
(16) and Harrisson (6), by means of the ex- 
pression: 

where 

where Cy constitutes the elastic stiffness 

- o), <r be- constant of the host matrix, y = 3 - 
(1 - o) 

ing the Poisson coefficient of the indium 
dn 

host; - the change of atomic volume per 
dc 

unit of impurity; ri the radius of the i-th 
atomic shell and n, the number of atoms in 
that shell. 
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Another pseudopotential frequently 
used to calculate transport properties is the 
Aschroft local pseudopotential(9): however, 
a preliminary study (19) using it generated 
results of a smaller magnitude than those 
observed in the experience. 

Electronic structure and Fermi 
surface 

The transport integrals are evaiuated on 
the FS and for that reason it is necessary to 
know the real FS. Particularly for indium. we 
h d  two discrepant topologies of its FS in the 
literature. The fk-st, designed non-relativistic 
Fermi surface, introduced by Aschroft et al., 
(9) presents a closed second-zone hole and a 
third-zone electron arranged in a p-arm in 
the (1 10) direction and an a-arm in the (101) 
direction. The second, named relativistic 
Fermi surface (20,21), considers the spin- 
orbit interaction and discards the a-arm, the 
third zone of the FS appearing as a ring 
around the X syrnmetry point. 

In this section we briefly present the 
pseudopotential formulation for the evalua- 
tion of the electronic structure and the FS of 
indium and indium diluted alloys. 

The hamiltonian H of our system is 
written as 

where V(r) represents the crystalline poten- 
tial and V,, is the potential associated to the 
spin-orbit interaction. 6 , ,  is a delta function 
which leads us  to the relativistic approach if 
6 , ,  = 1 and to non-relativistic approach if 

wave function which is a combination of 
OPW, 

where 

where P, is an operator projecting the core 
wave function upon the wave vector space 
when the spin is not considered. The O opera- 
tor introduces the spin effect in equation 
i161, 

O = I(I" - 1)6 , ,~  [171 

I and IS being the identity operator in 
the wave vector space and the spin space re- 
spectively. Using equations [13] and [14] we 
obtain the secular equation which permits 
u s  to evaluate the band electronic structure 
and the FS in the non-relativistic and rela- 
tivistic approaches. 

where Ug is the Founer transform of the crys- 
taiiine potential, and Sg the structure factor 
of the crystalline u n i t q  celi. 

The matrix elements associated with 
the spin-orbit interaction have been widely 
evaluated in the literature (20-22), 

where 

where a ~ i s  the structure f he  constant, p is 
the linear momentum operator and o is the 
Pauli Spin operator. 

The hamiltonian equation is solved in 
the OPW methods by assuming a crystalline 

D., (k) = Ii J, (kr)R.,, (rb 'dr (211 
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RR1 is the radial wave function to the atomic 
core. and Jl is the 1-order sphencal Bessel 
function. The nght-side of equation 1171 
must include a sum for each subscript n and 
L; however, the overlap integrals D,,[ are 
dominant for the (n,l) pairs, narnely (4,1), 
(5,l) and (5.1), corresponding to indium, 
thallium and lead respectively. 

Computational aspects 

Electronic structure and Fermi surface 
The electronic structure and the FS are 

calculated by equation [ 161, in the first case, 
furing the wave vector k and increasing the 
electronic energy E to obtain the E values 
that avoid the secular equation, and in the 
second, fdng  the energy on to the Fermi 
leve1 and varying the wave vector k up to ac- 
complish the same previous condition. For 
the non-relativistic calculation the enerffy 
was varied with steps of 0.08 mryd while the 
wave vector step was of 0.0002 au, E or k 
generating a secular determinant smaller 
than or equal to 10-'O au being considered 
as solution for the secular equation. For the 
relativistic aproximation, the use of the 
hamiltonian operator resulted computation- 
ally cumbersome presenting complex terms, 

the algorithms being different from those 
used in the previous case, although the pre- 
cision of the calculation was maintained. 

1. Non-relativistic approach: This ap- 
proach is determined completely by SsSo = O 
in equation [ 161 and considenng the U g  pa- 
rameters as known quantities. Luiggi (1 1) 
studied the effect of the U g  pararneters on 
the FS, choosing the two parameter sets 
proposed by Aschroft et al. (9) to study in- 
dium and using 8-OPW as the wave func- 
tion. The parameters used in this work are 
scheduled in Table 1. The direct effect of lead 
and thallium impunties is not considered in 
this approach. 

2. Relativistic approach: This 
approach corresponds to equation [16] with 
S,,, = 1. The fact of considering the spin con- 
tribution duplicates the number of terms in 
the wave function, the secular equation be- 
ing twice as large as the one obtained in the 
non-relativistic approach. The pararneters 
for indium and diluted alloys are selected 
from those proposed by Holthman (20) and 
Holthman et al. (10). Those parameters are 
shown in Table 1. Al1 calculation details 
appear in reference (1 1). 

Our calculations in indium permit us 
to confirm that the FS and the electronic 
structure are sensitive to: 

Table 1 

Parameters of indium and indium diluted alloys, used in the relativistic and non-relativistic 
electronic structure and Fermi surface calculations 

Non-Relativistic Relativistic 

-- - -  - -  --- - I ~ ~ L  - !n .. _ _ In 9,522%atPb pkL060%at-T?-. 

Ef (ua) 0.63838 0.64178 0.64203 0.64160 

kj ( ua) 0.79899 0.80 1 1 1 0.80127 0.80100 
U(1.1.1) 0.04419 -0.05510 0.05531 0.05515 

u(o,o,2) -0.'01845 -0.02299 -0.02343 -0.02297 

u(2,0,0) 0.00241 0.0 1797 0.0 1780 0.01772 

u(2,0,2) 0.05603 

U(1.1,3) 0.06198 

u(2,2.0) 0.05878 

- ( )  _ .  0.06~158 - ~ - - -  ~ 

Scientific Journal from the Experimental 
Faculty of Sciences, Volurne 6 No 1, January-April1998 



64 Electrical resistivity in diluted indium alloys 
~ -- -. 

Table 2 
Electronic energy calculated on high symmetry points of the first Brillouin zone, showing changes 

introduced by impurities when the relativistic approach is used 

Simmetry point Indium In 0.522% at  Pb In 1 .060°h at T1 

-0.00804 -0.00804 -0.00804 r 
1.48392 1.47912 1.46952 

0.47752 0.47672 0.47752 

1 .O3028 1 .O4227 1 .O4068 
X 

1.05184 1 .O4784 1 .O4784 

1.07660 1 .O8540 1 .O8406 

0.44 156 0.438340 0.439 16 

0.54392 0.54312 0.54392 

U 0.62868 0.63108 0.63028 

1.12944 1.12944 1.12784 

1.14700 1.14780 1.14700 

0.49276 0.48636 0.48716 

0.60952 0.60872 0.61032 
T 

0.64868 0.66548 O. 66468 

O. 73904 0.72624 0.72624 

0.54956 0.53916 0.53916 

0.61912 0.62392 0.62392 
W 

0.63588 0.64868 0.64868 

0.77184 O. 76384 O. 76304 

0.51356 0.51356 0.51356 

0.52472 0.51356 0.512312 
N 

0.96788 0.98388 0.98468 

1.0262 1 .O094 1.01024 

- The OPW number in the wave function Figure 1-a shows the (001) section of 
- The Ugvaiues or the crystalline potentiai 
- Whether the spin-orbit interaction is 

considered or not. 

Also, the presence of impunties intro- 
duces changes in the host matrix, conse- 
quently changing the FS and the electronic 
structure: examples of these changes are 
presented in Table 2, where we show the 
electronic energy calculated in the relativis- 
tic approach at points of high symmetry in 
the first Bnllouin zone. 

the FS of indium for kZ = 0.00, using the 
non-relativistic and the relativistic ap- 
proaches. I t  is interesting to notice the 
strong difference in area topology shown by 
each caiculation approach. Figure lb  pres- 
ents contour curves for a third-zone electron 
arm of the FS calculated in the relativistic 
approach. The effect of impurities on the 
second-zone hole in the relativistic ap- 
proach is small, but it is remarkable in the 
third-zone electron; these effects are shown 
in Figure 1 -b for In-Pb alloy, which are com- 
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Figure 1-a. (001) section of second-hole zone of the Fermi surface of pure indium using different approa- 
ches: - - Non-relativistic approach (Set of parameters in Table 1). - Non-relativistic 
approach (Second set of parameters of references (9,ll)). - - - Relativistic approach (Set of para- 
meters in Table 1). 

Figure 1-b.Comparison of third zone contour curves of the Fermi surface of pure indium and indium al- 
loys.1.kz=0.62au2.kz=0.64au3.kz=0.66au4.kz=0.70au5.kz=0.72au.---Orbitsofpurein- 
dium. - Orbits of h-0.522% at. Pb. 
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pared with indium. We remark that, as  ref- 
erenced by other authors (20.2 l), the pure 
indium p-arm Fermi surface defines a ring 
around the X syrnmetry point: however 
when we include the impunties for the 8 
OPW model considered in this work, slight 
changes are observed, the nng not always 
being closed. 

Correlated parameters 
The correlated parameters with the FS 

are mainly the electronic velocity and the 
wave function coefficients and must be 
evaluated in each point of the selected gnd 
for each FS used. 

Wave function coefficients: We 
transform our hamiltonian formulation 
given by equations [13-221 and [7] as a ho- 
mogeneous equation system whose solu- 
tion. other than the trivial one, is obtained 
redefining the unknowns, ai ,  as the ratio 
between a fixed coefficient and ail others, 
our system of equations thus remaining as 
one of an order immediately inferior to the 
original system and soluble by the tradi- 
tional methods. The normalization condi- 
tion af a, = 1 allows us to identi@ each co- 
eficient. For the non relativistic Fermi sur- 
face this method permits a complete evaiua- 
tion of the eight wave function coefficients 
for each k considered, while for the Fermi 
surface calculated through the relativistic 
approach there will be two associated coefi- 
cients for each ¿j vector, one for each spin 
value. In this case our method permits us 
only to determine the absolute value of the 
coefficients associated with each ¿j vector. 
Due to the similarity between the absolute 
value of the non-relativistic and relativistic 
coefficients, the sign of the relativistic ones 
is taken as  equal to the sign of non- 
relativistic coefficients. 

Figure 2 shows the contour curves of 
some wave function coefficients projected 
on a (001) section of the plane containing a 
1/8 of the maximum orbits of the second- 
zone hole FS, also shown in the figure. The ai 

coefficients (i = 1 and 2) for pure indium (Fig- 
ure 2-a and b) and indium-thallium alloys 
(Figure 2-c and d) calculated on the FS in the 
relativistic approach are shown. We can no- 
tice in this approach the presence of contour 
lines not present in the previous surface. 
The effect of the FS and its anisotropy over 
the wave function can also be inferred from 
these figures. 

Figure 3 shows the behavior of some 
wave function coeficients projected over the 
maximum orbit of the third zone in the plane 
containing the X point of the first Brillouin 
zone. Figures 3-a through 3-c correspond to 
the ai coefficients (i = 5 , 7  and 8) using the FS 
of pure indium calculated in the relativistic 
approach, while Figures 3-d through 3-f cor- 
respond to the same coefficients using the 
FS of indium-lead alloy. Again. in these fig- 
ures the effect of the FS on the wave func- 
tions is obvious. 

Electronic velocity: Assurning energy 
as  a k~ function, ~ ( k )  is derived from the ex- 
pression, 

where the square modules of 4 coefficients 
were previously evaluated, and the differ- 
ences obtained for each FS considered are di- 
rectly transrnitted to the velocity vector. Fig- 
ure 4 shows a (001) section of the projection 
of the velocity module for the Ferrni surface 
portion plotted in Figure 2, corresponding to 
the non-relativjstic approach for the FS of 
pure indium, the velocity band remaining de- 
fined by contour lines partitioned by the 
(1 10) plane with rninimum values of velocity - 
for k vectors close to a symmetry line or point 
in the first Brillouin zone. The behavior of the 
velociíy for other approaches of the FS is 
similar to the one obtained through the non- 
relativistic approximation. In Figure 5 the ve- 
locity module projected on the third zone, as  
in Figure 3, is presented. In Figure 5-a, 5-b. 
5-c and 5-d we use the FS of pure indium in 
the non-relativistic and relativistic ap- 
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Figure 2. Wave function coefficients projected on a (001) section of the maxirnum orbit of the second 
zone (shown in gross line) for: a) al: Fermi surface of pure indium in the relativistic approach. 
b) a2: Fermi surface of pure indium in the relativistic approach. c) al: Fermi surface of an 
indium-thallium alloy in the relativistic approach. d) a2: Fermi surface of an indium-thallium 
alloy in the relativistic approach. 

proaches, and the FS of In-Pb and In-Tl ai- with high precision and it is necessaq to 
loys respectively. Again, the effect of the elec- find a numerical method where we can opti- 
tronic structure on this parameter is obvi- mally combine the precision and the time of 
ous. caiculation, which is achieved by means of 

Integral evaluation: A(;') and p(c) are the finite element method (22). The holes 

integrais defined on the Fermi surface. and electrons Fermi surfaces are covered 
These surfaces are numericaily attajnable geornetncai1y defined whose 

nodes are end points of k vectors and where 
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Figure 3. Wave function coefficients projected on the maximum section of a third electron zone arm 
(shown in gross line) for: a) as: Fermi surface of pure indium in the relativistic approach. b) a7: 
Fermi surface of pure indium in the relativistic approach. c) ag: Fermi surface of pure indium 
in the relativistic approach. d) as: Fermi surface of an indium-lead alloy in the relativistic ap- 
proach. e) a7: Fermi surface of an indium-lead alloy in the relativistic approach. f )  as: Fermi 
surface of an indium-lead alloy in the relativistic approach. 
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Figure 3. Wave function coefficients projected on the maxirnum section of a third electron zone arm 
(shown in gross line) for: a) as: Fermi surface of pure indium in the relativistic approach. b) a7: 
Fermi surface of pure indium in the relativistic approach. c) as: Fermi surface of pure indium 
in the relativistic approach. d) a5: Fermi surface of an indium-lead alloy in the relativistic ap- 
proach. e) a7: Fermi surface of an indium-lead alloy in the relativistic approach. f) as: Fermi 
surface of an indium-lead alloy in the relativistic approach. 
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al1 correlated pararneters are known. We se- 
lect triangular elements of three nodes and 
project each element upon a single reference 
triangle. The one to one condition to make 
the transformation possible is checked by 
means of the non-singularity of the Jaco- 

1 ' - [IOO]  N 

Figure 4. Velocity module projected on a (001) 
section of the maximum orbit of the 
second zone (shown in gross line) 
Fermi surface of pure indium in the 
non-relativistic approach. 

bian matrix. The utilization of 3-node trian- 
gular elements render the Jacobian inde- 
pendent of the transformation coordinates. 
so that the integration process is reduced to 
a n  analytical calculation on the diferential 
surface element of a triangle. added to al1 tri- 
angles of the integration grid. One triangu- 
larization algorithm was performed perrnit- 
ting u s  to control the number, size and di- 
rection of the node path in each triangle. The 
effect of the number of points and triangles 
in the integration grid was checked by 
means of the relaxation time integral, using 
12.000, 6.000 and 3.000 nodes covered by 
20.000, 10.000 and 5.000 triangles, thus 
obtaining a reduction in calculation time of 
2% and 6% respectively relative to the first 
case, but  the gain in machine time is nearly 
60%. In this work we use grids of 3.000 
nodes and estimate a global error of 10%. 

Results and discussion 

Relaxation time and electronic mean 
free path 

The electronic mean free path, h. given 
by equation [3] and its first iteration given by 

Figure 5. Velocity module projected on the maximum orbit of an arm of the third electron zone (shown 
in gross line) for: a) Fermi surface of pure indium in the non-relativistic approach. b) Fermi 
surface of pure indium in the relativistic approach. c) Fermi surface of an indium-lead alloy in 
the relativistic approach. d) Fermi surface of an indium-thallium alloy in the relativistic ap- 
proach. 
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equation [8 1 are integrated over al1 the scat- - 
tered k' vectors falling upon the Fenni sur- 
face. The relaxation time, z, is obtained frorn 
equation [5]. Each parameter is evaluated 
for thailiurn and lead using the FS of the 
studied ailoy a s  well as  the FS of pure in- 
diurn calculated in the non-relativistic and 
in the relativistic approaches. Figure 6 de- 

picts the relaxation time of indium-lead al- 
loy projected on the second (Figure 6-a) and 
third (Figure 6-b) zones of the FS of pure in- 
diurn in the nonrelativistic approach. The 
results reported by others authors (3) are 
confirmed in these figures. 

To ease the cornparison of results the 
converging iteration for hX and .cX, for the 
outermost orbits in the second and third 
zones of the Fermi surface are plotted and 
identified with the subscnpts "0" and "$" re- 
spectively, the orbits of the Fermi surfaces 
being shown in both cases. Figure 7 repre- 
sents our results for the In-Pb alloy. corre- 
sponding to the relativistic Fermi surface of 
pure indium. Relaxation time and electronic 
rnean free path also have been calculated 
using non-relativistic FS of pure indiurn and 
relativistic Fermi surface of In-Pb alloy, 
showing results qualitatively differents of 
these shown in Figure 7. We can infer frorn 
these curves the nearly free character of the 
electrons in great part of the second zone as 
evidenced by the alrnost constant values of r 
and h. This constant nature is lost at  the 
high symmetry points of the first Brillouin 
zone, where the Fermi surface presents a 
curvature change. The parallelism between 
Üi and ii is also irnpaired at  those points. by 

nearly a maxirnurn of 25", deviation which 
reaches 50" in the third zone. 

Figure 6. Relaxation time projected on a (001) 
section of the maximum orbit of: a) 
Second-hole zone (shown in gross 
line) of pure indium in the non- 
relativistic approach. b) Third- 
electron zone (shown in gross line) of 
pure indium in the non-relativistic 
approach. 

The relaxation time anisotropy was es- 
timated to be of a factor of 2.5, 3.2 and 3.2 
for each of the Ferrni surfaces considered, 
which can be attributed essentially to the s- 
type character of the electrons connecting 
k-states and generating a strong dispersive 
power in the third zone, while the electrons 
connecting k-states in the second zone are 
rnainly of type p and have less dispersive 
power. We can particularly point out that, in 
indiurn, the non-relativistic FS reinforces 
the nearly free character of the electrons, 
behavior less evident in the FS of either pure 
indiurn or alloy -speciaily in the third zone- 
obtained by means of the relativistic ap- 
proach. A higher resolution of the parame- 
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Figure 7. Relaxation time and free path mean of an indium-lead alloy calculated on the maximum orbit 
of the Fermi surface of pure indium in the relativistic approach. a) Relaxation time for the itera- 
tion + = 3 in the second-hole zone shown in 7-d). b) Relaxation time for the Ziman approach 
(+=O) in the second-hole zone shown in 7-d). c) Free path mean for the iteration + = 3 in the 
second-hole zone shown in 7-d). d) Maximurn orbit of Fermi surface's second-hole zone. e) Re- 
laxation time for the iteration + = 3 in the third-electron zone shown in 7-h). f )  Relaxation time 
for the Ziman approach (+=O) in the third-electron zone shown in 7-h). g) Free path mean for 
the iteration 3 in the third-electron zone shown in 7-h). h) Maximum orbit of the Fermi sur- 
face's third-electron zone. 
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ters obtained by the non-relativistic meth- 
ods is also evident, a s  the routine requires 
only a maximum of three iterations to rearch 
the condition for a vaiid convergence. On the 
other hand, surfaces relativistically ob- 
tained required up to ten iterative proce- 
dures to reach the condition necessary for a 
valid convergence, increasing the size of 
their hamiltonian matrices and decreasing 
the resolution of the studied parameters. 

The effect of the dispersive potentiai is 
not shown but when we use the Aschroft po- 
tentiai, the relaxation time does not present 
quaiitatively important changes compared 
with the HAA scattenng pseudopotential, 
though the relaxation time may differ up ti11 
one order of magnitude, which evidences the 
importante of the Fermi surface in this cai- 
culation. 

Figure 8 shows our results for the In-T1 
alloy, corresponding to the non-relativistic 
FS of pure indium. The effect of another 
Fermi sufaces also was calculated but not 
shown. The behaviors of r k  and hk are sirni- 
lar to those obtained for In-Pb, though with 
a more accentuated parailelism between Ük 
and i*. which reaches a maximum of 35" in 

the second zone and a maximum of 60" in 
the third zone, despite the fact that the Tm-- 

m- : T m i n h m  ratio, which defines the ani- 
sotropy factor, is maintained at  2.8. 4.0 and 
3.5 for each Fermi surface used. Also the ho- 
movalent character and the tetraghonai 
crystailine structure of thailium and in- 
dium, contribute to such a large anisotropy. 

The observations for the In-Pb alloy are 
equally valid for In-TI ailoy. 

Electrical resistivity 

The results in this section are obtained - 
integrating equation [ 1) over ail k vectors in- 
cident upon the Fermi surface. Tables 3 and 
4 show our results for In-Pb and In-T1 ailoys 
respectively. In these tables, in addition to 
the resistivities in the plane, pa, and perpen- 
dicular to that plane. pz, we show the aver- 

age resistivities obtained in light of 
1 

(p) = (2p, + p ,). and the pj+e resistivity as- 

sociated with the average relaxation time for 
electrons and holes evaluated by means of 
the free electron model, where the electron 
and hole numbers by surface unity are 
taken directly from the triangles over the 
Fermi surface used to caiculate the proper- 
ties. For In-Pb we deduce the dominant ef- 
fect of the second zone over the inverse re- 
laxation time. The resistivities seem overes- 
timed when the non relativistic Ferrni sur- 
face is used with the Ziman approach; how- 
ever, in the iterative caiculation, pz shows a 
monotonous decrease which ends at  4 = 3, 
the contribution parallel to the plane rea- 
maining aimost constant. We do not have a 
precise explanation for that variation, but 
the iterative process most likely prompts the 
participation of factors not present in the Zi- 
man approach. The iterated (p) vaiue is in 
agreement with the reported value (3). A fac- 
tor of 3 separates the behavior of the resis- 
tivity of free electrons from the one calcu- 
lated when the full Fermi surface is consid- 
ered, deviation which can be associated with 
three causes: 

1. An overestimation of nh and ne in the 
direct caiculation of pj-ee. 

2. An underestimation of the average re- 
laxation time in the second and third 
zone of the Ferrni surface. 

3. The separation of the real Fermi surfa- 
ce from the sphencai surface where the 
calculation of pfie is performed. 

The relativistic Fermi surface of pure 
indium diminishes the anisoptropy, the re- 
sults being in perfect agreement with the ex- 
perience after three iterative steps. A factor 
smailer than 2 separates the behavior of 
(p) and pfiee this possibly being due to the 

consideration of the spin-orbit interaction in 
the FS evaiuation. 

The results obtained using the Fermi 
surface of In-Pb alloys are aiso adequate 
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Figure 8. Relaxation time and free path mean of an indium-thallium alloy calculated on the maximum 
orbit of the Fermi surface of pure indium in the nonrelativistic approach. Same legend as that 

of Figure 7. The I$ value is 3. 
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Table 3 
Anisotropic residual resistivities (pOcm/at%) and average inverse relaxation time (S-') in the second 

and third zones of the Fermi surface for an In-Pb alloy 

FS N" (.s~s- 1 (ze)Y1 Pz P a (P) Pfree published 
data 

PINR O 3 .50~110 '~  0 .82~10 '~  1.44 0.65 1.18 0.31 0.51-0.60~ 

4 1 .90~ 1013 0 .75~10 '~  0.28 0.73 0.59 0.18 

PIR O 3 . 7 0 ~  loi3 1 .10~10 '~  0.48 0.68 0.62 0.38 0.44~ 

3 . 5 5 ~  loi3 0 . 9 9 ~ 1 0 ' ~  0.42 0.63 0.56 0.36 

Ailoy O 2 .96~  loi3 1 . 0 7 ~ 1 0 ~ ~  0.31 0.320 0.34 0.34 

4 . 8 1 ~  10l3 0 .95~10 '~  0.39 0.53 0.48 0.59 

'Reference (3,24). bReference (23). 

Table 4 
Anisotropic residual resistivities (pQcm/at%) and average inverse relax-ation time (S-') in the second 

and third zones of the Fermi surface for an In-TI alloy 

FS N" (m.)- l (~e).'  Pz Pa (P) Pfree published 
data 

PINR O 0 .39~10 '~  0 .16~10 '~  0.14 0.38 0.30 0.10 0. 18-0.21a 

PIR O 0.33x1013 0 .07~10 '~  0.15 0.23 0.2 1 O. 14 0 .08~  

Ailoy O 0 .24~10 '~  0 .11~10 '~  0.12 0.13 0.12 0.09 

0 .25~10 '~  0 .18~10 '~  0.15 0.20 0.19 O. 13 

'Reference (3). bReference (23). 

though slightly lower than those calculated theoretical range reported by Ruiter et al. 
using the Ferrni surface of pure indium, the (3). The results with the relativistic Fermi 
pfiee being very simjilar to that of (p). Again, surface for pure indiurn and the alloy are in 

the explanation of this fact must be found in agreement with the experiments (23,24). 

a combination of the factors previously men- 
tioned. Conclusions 

In Table 4, the (p) value for In-TI is cal- The residual electncal resictivities of 
culated with the non-relativistic Fermi sur- the In-Pb and In-Ti alloys have been calcu- 
face yielded once more an overestimated re- lated using the 8-OPW scheme. The effect of 

sistivity; however, the pfiee vaiue was in the different approaches for the calculation of a 
real Fermi surface and correlated parame- 
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t e r ~  on these surfaces has been tested, ve- 
n@ng that: 

1. Different Fermi surface approaches 
produce topological changes capable of 
introducing important variations of the 
correlated parameters which affect the 
properties associated with them. 

The transport coefficients are very sen- 
sitive to the scattenng potential the bi 
parameters of equation [ 1 O] being 
equal to (1.0.1.0, 0.75) and (1.0. 1.0, 
0.88) for In-Pb and In-TI alloys respec- 
tively. The potentials of the core model 
of Aschroft (9) for both alloys were tes- 
ted generating results of up ti11 one or- 
der of magnitude lower than those ob- 
tained with the HAA potential. 

3. For a sarne scattenng potential (HAA) 
the Fermi surface calculated in the non 
relativistic approach over-estimates 
the residual resistivity value. This 
behavior can possibly be associated 
with the presence of a-arms in the third 
zone of the Fermi surface. arms which 
are not considered in this calculation, 
while the calculations in the relativistic 
scheme for both alloys generate results 
in agreement with the experience. 

4. As a zero order approach, the Ziman 
approximation yields results which, 
even for this tetraghonal structure, are 
very close to those reported expenmen- 
tally (23.24). 
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