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Abstract

In this paper two theorems on instability and asymptotic instability for the null solution of
the nonautonomous system of difference equations x(n+1) = A(n)x(n) + f(n,x(n)), f(n,0) = 0, are
proven. The main hypotheses are the existence of an (1,k)-dichotomy for the linear system
y (n+1) = A(n)y(n) and a monotone condition for f(n,x). The obtained results cover a class of differ-
ence systems, which unstable properties cannot be deduced from the classical results on insta-
bility of Perron and Coppel.
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Inestabilidad de ecuaciones en diferencias

Resumen

En este artículo se demuestran dos teoremas de inestabilidad e inestabilidad asintótica de
la solución nula del sistema de ecuaciones en diferencias x(n+1) = A(n)x(n) + f(n,x(n)), f(n,0) = 0.
Las hipótesis fundamentales son la existencia de una dicotomía discreta, tipo (1,k), del sistema
y (n+1) = A(n)y(n) y una condición de monotonía sobre la función f(n,x). Los resultados obtenidos
abarcan una clase de sistemas en diferencias, cuyas propiedades de inestabilidad no pueden
ser deducidas de los clásicos teoremas de inestabilidad de Perron y Coppel.

Palabras clave: Ecuaciones en diferencias; dicotomías discretas, inestabilidad.

1. Introduction

Let us consider the nonautonomous
system of differente equations

y n A n y n n N( ) ( ) ( ), { , , , ,... },+ = ∈ =1 0 1 2 3 [1]

for which all matrices A(n) are invertible.
The fundamental matrix Ψ of this system is
defined by

Ψ( ) ( ) ( ) ( ) ( ), ( ) ,n A s A n A A A s I
s

n

s

= = − =
=

−

=

−

∏ ∏1 1 0
0

1

0

1

L

where I denotes the identity matrix. This pa-
per concerns the unstable properties of the

null solution of the nonautonomous differ-
ence equation

x n A n x n f n x n f n( ) ( ) ( ) ( , ( )), ( , ) ,+ = + =1 0 0 [2]

where f is defined on the cylinder
N x x H× <{ :| | }, H ∈ ∞( , ].0 This problem has
been investigated from the beginning of this
century by Perron (1) and Li (2), who estab-
lished the following

Theorem A (3)

Assume that f(n,x) is continuous in the
variable x. Moreover, uniformly with respect
to n ∈ N, let us assume that
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lim
( , )

| |
.

| |x

f n x

x→
=

0
0 [3]

If A(n) = A = constant and the matrix A has at
least one eigenvalue satisfying | | ,µ > 1 then
the solution x = 0 of Eq. [2] is unstable.

This result, an important tool in the re-
search of the nonlinear system [2], was im-
proved by Coppel for nonautonomous ordi-
nary differential equations in the article (4),
which discrete version can be found in (5):

Theorem B (5)

Assume that f(n,x) is continuous in the
variable x and

| ( , )| | |, .f n y y constant≤ =γ γ [4]

Moreover, assume that P, a projection matrix,
P I, satisfies

| ( ) ( )| | ( )( ) ( )|
s n

n

s n

n P s n I P s K
=

−
−

=

∞
−∑ ∑+ + − + ≤

0

1
1 11 1Ψ Ψ Ψ Ψ .

[5]

where K is a constant. IfKγ < 1, then the null
solution of [2] is unstable.

Theorem of Coppel yields a criterion of
instability for the linear system

y n A n B n y n n N( ) [ ( ) ( )] ( ), ,+ = + ∈1

where the Perron’s result turns to be unsuc-
cessful. It is easy to prove that Theorem A
follows from Theorem B.

In applications, despite the impor-
tance of Theorems A and B, the instability of
a large class of system cannot be described
by these theorems. The aim of this paper is
to provide a method of investigation of the
unstable properties of system [2] relying on
the dichotomic properties of the nonautono-
mous system [1]. According to the Coppel’s
result, this idea seems to be plausible: some
king of instability of system [1] must be in-
herited by system [2], under certain condi-

tions for the coefficient f t x( , ). This method-
ology was proposed in (6) for ordinary differ-
ential equations.

In this paper, we will obtain not only
the discrete version of the results exposed in
(7, 8, 6), but we will communicate two re-
sults on the instability of system [2] (Theo-
rem 1 and Theorem 2 of our text) that cannot
be obtained from Theorems A and B.

In order to state our basic results, we
list our main hypotheses:

(M)

There exists a continuous scalar func-
tion ψ( , ),t s t s≥ ≥0 0, , monotone nondecreas-
ing in variable s, for each fixed t, such that

f n x n x( , ) ( , ).≤ ψ

In what follows { ( )}k n will denote a se-
quence of positive numbers.

(D)

System [1] has an ( , )1 k -dichotomy.

By this we mean the existence of a pro-
jection matrix P such that

Ψ Ψ( ) ( ) ,n P m K m n− ≤ ≤ ≤1 0

Ψ Ψ( )( ) ( ) ( ) ( ) , .n I P m Kk n k m n m− ≤ ≤ ≤− −1 1 0

[6]

where K is a constant. In the case k(n)=con-
stant, the dichotomy [6] is commonly called
an ordinary dichotomy.

The sequence { ( )}k n stands in the condi-
tion (D) to characterize an unstable condi-
tion of System [1]. We will use the condition

(UNS) lim ( )
n

k n
→ ∞

= ∞.

The following theorems are the main
results of our paper (the notions of Liapou-
nov instability and asymptotic instability
are made precise in the next section).
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Theorem 1

Let us assume that Eq. [1] has an
( , )1 k -dichotomy, where k satisfies

k m Ck n n m C constant( ) ( ), , ,≤ ≥ = [7]

and f n x( , ) satisfies (M). Moreover, let us as-

sume that there exists a ρ0
such that for 0 < ρ

< ρ0 we have

KC s k s
s n

ψ ρ ρ.
=

∞

∑ <
0

( , ( ) ) [8]

If P I k n n I P≠ −−, { ( ) ( )( ) }1 Ψ is bounded and
condition (UNS) is valid, then the null solution
of Eq. [2] is unstable.

Theorem 2

Let us assume that system [1] has an or-
dinary dichotomy and the nonlinear term
f n x( , )satisfies condition (M). Moreover, let us

assume that there exists aρ0 such that for 0 <
ρ < ρ0 we have

K s
s n

ψ ρ ρ.
=

∞

∑ <
0

( , ) [9]

IfP I≠ , and { ( )( ) }Ψ n I P− is bounded, then the
null solution of equation [2] is asymptotic un-
stable.

These instability results where ob-
tained in (9) for a function f t x( , ) satisfying a
Lipschitz condition and the linear system
[1], possesses an ordinary dichotomy. Un-
der condition (M), the class of system [2]
considered here is more general. Our results
rely on the application of the Schauder fixed
point theorem. Finally, we emphasize that
the obtained results are not covered by the
cited Theorems A and B and therefore they
constitute new results in instability theory.

2. Notations and Preliminaries

For n N0 ∈ , we will denote N n Nn0
= ∈{ :

n n≥ 0 }. In what follows, the sequences

{ ( , )},y n n0 ξ { ( , )},x n n0 ξ respectively stand for
the solutions of system [1] and [2] with ini-
tial condition ξ at the initial time n0. V de-
notes the space Rr or Cr with a fixed norm ⋅ .
In this paper, the term “sequential space”
means a space of sequences which range is
contained in V. For a sequence x N V: ,→ we
will denote x x n n N∞ = ∈sup{ ( ): } and x

k
=

k n x−

∞

1( ) . The space of all sequencesx N V: →

such that x ∞ < ∞ will be denoted by l∞ , and
lk k

x N V x∞ = → < ∞{ : , }. The closed ball in
the space lk

∞ , with center in x = 0 and radius
ρ will be denoted by B x xk k k

[ , ] : }0 ρ ρ= ∈ ≤∞l .

If k n cons t( ) = =tan 1 we will abbreviate
B B1 0 0[ , ] [ , ]ρ ρ= . In the sequel we will use the
following subspaces of initial conditions:

V V n1 = ∈ ∈ ∞{ : ( ) },ξ ξΨ l

V V x n n
n1 0 1 0 0, { : lim ( , , ) }= ∈ =

→ ∞
ξ ξ .

V V k n x n nk = ∈ ∈− ∞{ : { ( ) ( , , )} }.ξ ξ1
0 l

The notions of stability defined in this
paper are the same of (5).

Definition 1

We shall say that the null solution of
system [2] is

Stable: If for each > 0, there exists
δ δ ε= ( , )n0

, such that for any, y0 < δ implies
y n n y n Nn( , , ) .0 0 0

< ∀ ∈ε,

Unestable: If the null Eq. [2] solution is
not stable.

Asymtotically stable: If for any positive
ε there exists a positiveδsuch that for an initial
condition y0 satisfying y0 < δ the solution
y n n y( , , )0 0 is defined on Nn0

, y n y(, , )⋅
∞0 0 < ε

and

lim ( , , ) .
n

y n n y
→ ∞

=0 0 0 [10]

Asymptotically unstable: If the null
solution of Eq. [2] is not asymptotically sta-
ble.
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Definition 2

Let S be a sequential space endowed
with the norm ⋅ .We will call a setΩ ⊂ S equi-
convergent to 0, if only if for every ε > 0, there
exists N N∈ such that for all x S∈ it is satis-
fied x n( ) < ε, for all n N≥ .

In the following we will use criterion of
compactness.

Theorem C

Let S be sequental space. Let Ω be a
bounded, closed and equiconvergent to 0
subset of S, then Ω is compact.

In our paper we will use the following
version of Schauder fixed point theorem
(Theorem 4.4.10 in (10))

Theorem D

Let E be a Banach space with norm ⋅ .
Let be an operator, : Ω Ω→ , where Ω is a
bounded, closed and convex subset of E. If

(Ω) is precompact, and is continuous, then
there exists x ∈ Ω , such that (x) = x.

The proof of the following result can be
found in (11, 12).

Theorem E

Let us assume that system [1] has an
(1,k)-dichotomy with projection P and the se-
quence k satisfies the condition [7], then this
projection can be redefined in order to have
the property

lim ( ) ( ) .
n

k n n P
→ ∞

− =1 0Ψ [11]

Finally, for futher use, we formally de-
fine

( )( ) ( ) ( ) ( , ( ))y n n P s f s y s
s n

n

= +
=

−
−∑ Ψ Ψ

0

1
1 1

− − +
=

∞
−∑ Ψ Ψ

s n

n I P s f s y s( )( ) ( ) ( , ( ))1 1 .

3. Instability

Theorem 3

Let us assume that Eq. [1] has an
(1,k)-dichotomy, where { ( )}k n satisfies [7],
f n x( , ) satisfies (M) and [8] is valid. If V Vk1 ≠ ,

then the null solution of Eq. [2] is unstable.

Proof: Let us assume that the null so-
lution of Eq. [2] is stable. Then for a ε > 0,
there exists aδ > 0 such that y n n y( , , )0 0 < ε if
y0 < δ. Let

ρ δ<
k n( )

.
0

[12]

Since V Vk1 ≠ , then for a small positiveσ
satisfying

σ ψ ρ ρ+ ≤
=

∞

∑KC s k s
s n0

( , ( ) ) ,

we may fix an initial conditionx 0 ∈Ψ ( )[ ]n Vk0

\ Ψ( )[ ]n V0 1
with the property x n n x

k
( , , )0 0 ≤ σ.

Let us consider the equation

y = (y),

where

( )( ) ( , , ) ( )( ).y n x n n x y n= +0 0

We will verify the conditions of Theo-
rem D in the space lk

∞ .

S1: The property : [ , ] [ , ]B Bk k0 0ρ ρ→
follows from [6], [8] and the estimates

k n y n k n x n n x k n y n( ) ( )( ) ( ) ( , ) ( ) ( )( ),
− − −≤ +1 1

0 0
1

≤ +−

=

∞

∑k n x n n x KC s k s
s n

( ) ( , ) ( , ( ) ),
1

0 0

0

ψ ρ

≤ + ≤
=

∞

∑σ ψ ρ ρ.KC s k s
s n 0

( , ( ) )

S2: The operator is continuous: if
{ }ym is a sequence contained in ball Bk [ , ]0 ρ
converging on N to y0 in the norm x

k
, then
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the sequence { ( )}ym
converges to { ( )}y0

in
the norm x

k
. For a given ~ε > 0, we choose a

large N such that

KCk s k s
s N

( ) ( , ( ) )
~

0
4

1−

=

∞

∑ ≤ψ ρ ε

Therefore for all m N∈ and n N≥ , the
condition (M) implies

k n n I P s f s y s f s y s
s N

m( ) ( )( ) ( )[ ( , ( )) ( , ( )]−

=

∞
−∑ − + −1 1 1Ψ Ψ

≤ +−

=

∞

∑K k s f s y s f s y s
s N

m( ) ( ( , ( )) ( , ( ))1

≤ ≤−

=

∞

∑2 0
1
2

1C Kk s k s
s N

( ) ( , ( ) ) ~.φ ρ ε

In a similar manner we obtain

k n n P s f s y s f s y s
s N

n

m( ) ( ) ( )[ ( , ( )) ( , ( ))]−

=

−
−∑ + − ≤1

1
1 1 1Ψ Ψ

2
~.ε

From this last estimates we obtain

k n y n y nm( ) [ ( )( ) ( )( )]− − ≤1

≤ + −−

=

−
−∑k n n P s f s y s f s y s

s n

N

m( ) ( ) ( )[ ( , ( )) ( , ( ))]1
1

1

0

1Ψ Ψ

+ + −−

=

−
−∑k n n P s f s y s f s y s

s N

n

m( ) ( ) ( )[ ( , ( )) ( , ( ))]1
1

1 1Ψ Ψ

+ − + −−

= −

−∑k n n I P s f s y s f s y s
s n

N

m( ) ( )( ) ( )[ ( , ( )) ( , (1

1

1 1Ψ Ψ ))]

+ − + −−

=

∞
−∑k n n I P s f s y s f s y s

s N
m( ) ( )( ) ( )[ ( , ( )) ( , ( ))1 1 1Ψ Ψ ]

≤ + −−

=

−
−∑ Ck n P s f s y s f s y s

s n

N

m( ) ( )[ ( , ( )) ( , ( ))0 11
1

1

0

Ψ( ) Ψ ]
k

+ − + − +
=

−∑C n P s f s y s f s y s
s n

N

m
k

0

1 1Ψ( ) Ι Ψ( ) ( )[ ( , ( )) ( , ( ))] ε.

This last expression implies the con-
vergence of { ( )}ym

to ( )y0
in lk

∞ .

S3: For each sequence { }ym contained
in the ball Bk [ , ]0 ρ the sequence { ( )}ym

has a
subsequence which converges in lk

∞ : From

( ) ( ) ( ) ( , ( ))y n P s f s y sm k
s n

n

m

k

≤ +
=

−
−∑ Ψ Ψ

0

1
1 1

+ − +
=

∞
−∑ Ψ Ψ

s n
m

k

n I P s f s y s( )( ) ( ) ( , ( )) ,1 1

we consider the series

Ψ Ψ
s n

m

k

n I P s f s y s
=

∞
−∑ − +( )( ) ( ) ( , ( ))1 1

≤ + −

=

∞

∑K k s s k s
s n

( ) ( , ( ) )1 1ψ ρ

and Ψ Ψ
s n

m

k

n I P s f s y s
=

∞
−∑ − +( )( ) ( ) ( , ( ))1 1

≤ −

=

∞

∑KCk n s k s
s n

( ) ( , ( ) ).0
1 ψ ρ

The last expression tends to zero as
n → ∞. Therefore, for a large N we have

Ψ Ψ
s n

m

k

n I P s f s y s m n N
=

∞
−∑ − + < ∀ ∀ ≥( )( ) ( ) ( , ( )) , , .1 1 ε

On the other hand

Ψ Ψ
s n

n

m

k

n P s f s y s
=

−
−∑ +

0

1
1 1( ) ( ) ( , ( ))

≤ −

=

−

∑KC n s k s
s n

n

( ) ( , ( ) ).0
1

1

0

ψ ρ

By the dominated convergence theo-
rem (13) and property [11], we obtain

lim ( ) ( ) ( ) ( , ( )) .
n

s

n

mk n n P s f s y s
→ ∞

−

=

−
−∑ + =1

0

1
1 1 0Ψ Ψ

Hence
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k n y n m n Nm( ) ( )( ) , , .− ≤ ∀ ∀ ≥1 ε

Therefore, from Theorem C, the set
( [ , ])Bk 0 ρ is precompact.

From the steps S1-S3 the conditions of
the Theorem D are stisfied, and therefore the
operator has a fixed point y()⋅ in the ball
Bk [ , ]0 ρ . Since k n y( )0

1
0

− < ρ for [12] we obtain

y0 < δ, implying that y()⋅ is a bounded se-
quence.

We will prove the boundedness of the
sequence ( )y . If y Bk∈ [ , ]0 ρ then

( ) ( ) ( ) ( , ( ))y n P s f s y s
s n

n

≤ +
=

−
−∑ Ψ Ψ

0

1
1 1

+ − +
=

∞
−∑ Ψ Ψ

s n

n I P s f s y s( )( ) ( ) ( , ( ))1 1

≤ −

=

−

∑KCk n s k s
s n

n

( ) ( , ( ) )0
1

1

0

ψ ρ

+ −

=

∞

∑KCk n s k s
s n

( ) ( , ( ) )0
1 ψ ρ

≤ −

=

∞

∑KCk n s k s
s n

( ) ( , ( ) ).0
1

0

ψ ρ

The condition (8) implies the bounded-
ness of sequence (y).  Since

y n x n n x y n( ) ( , , ) ( )( ),= +0 0

we obtain that the functionx n x(, , )⋅ +0 0

( )( ),y n must be bounded. But this contra-
dicts the choise of x0.

Proof of Theorem 1: follows from
Theorem 3, since the conditions P I≠ ,
{ ( ) ( )( ) }k n n I P− −1 Ψ is bounded and (UNS) im-
ply V Vk1 ≠ .

4. Asympotic Instability

Theorem 4

Let us assume that system [1] has an or-
dinary dichotomy, f n x( , ) satisfies condition

(M) and [9] is valid. IfV V1 1 0≠ ,
, then the null so-

lution of equation [2] is asymptotic unstable.

Proof: Let us assume that the null so-
lution of equation [2] is asymptotically sta-
ble. This means that for ε = 1 there exists a
positive δ such that y0 < δ implies [10]. Let
0 0< <ρ ρ δ}min{ , , and let σ be a small
number such that

σ ψ ρ ρ+ ≤
=

∞

∑KC s
s n0

( , ) .

For an initial condition x n V0 0 1∉Ψ ( )[ ]\
Ψ( )[ ],n V0 1 0

with x n x(, , )⋅ <0 0 σ, we consider
the operator

( )( ) ( , , ) ( )( ).y n x n n x y n= +0 0

For any y Bk∈ [ , ]0 ρ we have estimate

( )( ) σ ψ ρ ρy n K s
s

≤ + ≤
=

∞

∑
0

( , ) , [13]

implying : , ] [ , ]B B0 0ρ ρ→ . By repeating the
arguments given in the proof of Therorem 1,
we conclude that this operator satisfies the
conditions of Theorem D, and therefore it
has a fixed point y()⋅ in the ball B[ , ]0 ρ ; hence

y x n x y= ⋅ +(, , ) ( ).0 0

From Theorem E, we may assume that
projection P defining the dichotomy [6] satis-
fies the condition [11]. Therefore

y n x n n x o( ) ( , , ) ( ).= +0 0 1 [14]

From [13] the initial condition y n( ) sat-
isfies y( )0 ≤ <ρ δ therefore

lim ( )
n

y n
→ ∞

= 0

Under these circumstances, the iden-
tity [14] is a contradiction.

Proof of Theorem 2: Follows from
Theorem 4, since conditions P I≠ and
{Ψ ( )( )}n I P− imply V V1 1 0≠ ,

.
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5. Examples

Let us consider the difference equation

y n Ay n f n y n( ) ( ) ( , ( )),+ + = +1 [15]

where A is a constant matrix. Let us assume
that the eigenvalues of this matrix positive
satisfying λ = 1 are Jordan simple, that the
Jorden boxes corresponding to these eigen-
values are 1-dimensional. Let us define the
sets σ σs A A( ), ( )0 and σu A( ) of eigenvales of A
satisfying λ λ< =1 1, and λ > 1 respec-
tively. Futher, we assume the condition

f n x n n x( , ( )) ( ) .≤ >γ , αα 0

• If σu A( ) is not empty, α > 1 and the se-
quence { ( )}γ n is bounded, then the null
solution of Eq. [15] is unstable.

This follows from Perron’s theorem.

Let σu A( ) be non empty. Let

1< < ∈R Aumin{ : ( )}λ λ σ

Then system

x n Ax n( ) ( )+ =1

has an ( , )1 Rn -dichotomy. If { ( )}γ n satis-
fies

γ α

s

nn R
=

∞

∑ < ∞
0

( ) ,

then the null solution of system [15] is
unstable.

This result follows from Theorem 3.

• Ifσu A( ) is empty,σ 0 ( )A is not empty and
the sequence { ( )}γ n satisfies

γ
s

n
=

∞

∑ < ∞
0

( ) ,

then the null solution of system [15] is
asymptotically unstable. This result fo-
llows from Theorem 4, sinceV V1 1 0≠ ,

.

As a second example, let us consider
the nonautonomous difference equations

x n a n x n
n

x n
( ) ( ) ( )

( )

( )
+ + =

+
2

1 2

γ
, [16]

where { ( )}a n is a real sequence. In order to
characterize some dichotomic properties of
nonautonomous equation

x n a n x n( ) ( ) ( )+ + =2 0, [17]

let us define the projection P = diag{ , }10 . In
(9), it is proven that

Φ Φ( ) ( )n P m−1

is bounded forn m≥ if

1
2

2
1

g m
g k M n m M

k m

n

( )
( ) , ,

=

−

∏ ≤ ≥ = constant.

[18]

On the other hand, we may write the
estimate

Φ Φ( )( ) ( ) ( ) ( ) ,n I P m Mk n k m m n− ≤ ≥− −1 1 ,

if

1
2 1

2 1
1

1

g n
g k Mk n k m m n

k m

m

( )
( ) ( ) ( ) , ,

+
+ ≥ ≥

=

−
−∏

M= constant. (19)

Uunder condition [18] and [19], the Eq.
[17] has a (1,k)-dichotomy.

If { ( )}k n satisfies the conditions of
Therorem 1, then the null solution of Eq.
[16] is not stable provided the condition

γ( )

( )

n

k nn 1 2
0

+
< ∞

∞

∑

is satisfied

The second example shows that the ob-
tained results of this paper can be applied to
the nonautonomous system [1], which lin-
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ear component [2] does not satisfy consi-
tions [5] of Theorem B.
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