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Abstract

In this paper we give a method for computing the solutions of the equations with advance
y n A n y n B n y n( ) ( ) ( ) ( ) ( )1 2 , belonging to a specific sequential space.
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Soluciones aproximadas de sistemas diferenciales
con argumentos avanzados

Resumen

En este artículo suministramos un método computacional para las soluciones de las
ecuaciones con avance y n A n y n B n y n( ) ( ) ( ) ( ) ( )1 2 , que pertenecen a una secuencia espacial
especifica.

Palabras clave: Ecuaciones diferenciales con avanzada; soluciones aproximadas.

1. Introduction

Recently, differential equations with
advanced arguments have attracted the at-
tention of applied mathematicians by their
possible applications to industrial problems
(1, 2) and engineering design of automatic
mechanisms.

From the theoretical point of view,
these equations present serious obstacles of
research, among them, perhaps the most
important, those concerning the existence
and uniqueness of the solution of the initial
value problem (3). Essentially this is due to
the absence of a theory of differential ine-
qualities with advanced arguments. Never-
theless, there exists an increasing amount
of published papers in this field, a fact that
reveals the interest in these equations. This

paper continues the study accomplished in
(4-9), where the research of these equations
is accomplished in specific sequential
spaces that are apriori determined. Con-
cretely, in (4) the authors study the differ-
ence equations

y n A n y n B n y g n( ) ( ) ( ) ( ) ( ( ))1 , [1]

where the sequence of advanced times { ( )}g n
satisfies g n n( ) 1. In this paper we will limit
our attention to the particular case
g n n( ) 2.

We will refer to three theorems of exis-
tence and uniqueness proven in (4). Previ-
ously, we introduce some notations: In what
follows V will denote the scalar field R or C.
x will be used to denote any convenient vec-
tor norm in Vr; for an r x r matrix A , A will
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denote the corresponding matrix norm. the
following sequential spaces are used in our
paper

¥ ¥

{ : : }, sup{ ( ):f N V f f f n nr ,

and

1 1 1

0=

¥

{ : , }, ( )f N V f f f nr

n

.

For a sequence { ( )}F n of invertible
matrices we will define

¥ - ¥
¥ ¥

-F f N V F f f F fr

F
{ : : },1 1

¥ -
-F f N V F f f F fr

F
{ : : },1 1 1 1

1 .

Finally, for integers m n, we will
denote m n k m k n, { : }.

Let denote the fundamental matrix
of the equation

x n A n x n( ) ( ) ( )1 , [2]

where { ( )}A n is a sequence of r x r invertible
matrices.

Theorem A. If

(C1) ( ) ( ) ,n m M n
m

n
-

=

1

0

and M B n{ ( )}
¥

1 hold, then for each initial

condition Vr the initial condition problem

y n A n y n B n y n

y

( ) ( ) ( ) ( ) ( )

( )

1 2

0
[3]

has a unique solution in the sequential space
¥ .

Theorem B. If

(C2) ( ) ( ) ( ) ) ,n m K n m n m- -1 1 ,

where { ( )}n is a sequence of positive num-
bers, and

K m m B m
m=

¥

-2 1 1
0

1 ( ) [4]

hold, then for each initial condition Vr the
initial condition problem [3] has a unique so-
lution in the sequential space

a

¥ .

Theorem C. If

(C3) -

=

¥

1

0

1 1( ) ( )m B m m
m

holds, then for each initial condition Vr the
initial value problem (3) has a unique solution
in the sequential space

F

¥ .

Each of these theorems imply that , the
generating matrix of solutions of Equation
[1], exists in the respective sequential space
and a method of an asymptotic decomposi-
tion of can be developed (4). Nevertheless,
the asymptotic of obtained seems to be more
useful in theoretical questions (4, 5) rather
than in concrete approximations of solu-
tions of Equation (1).

In this paper we are concerned with the
approximate computation of the solutions of
[3] given by the above theorems. We will
show that we can calculate the solutions of
[3] by fixed points of finite dimensional op-
erators.

2. Approximation of solutions
in

a

¥

In this section we will solve the follow-
ing problem: Given , a positive number,
find an interval of integers o N, and a func-
tion w

N
: o N Vr, such that w

N ( )0 and

n n n, ( ) , , ,
N

0

where ( , )n is the solution of [3] in the space
¥ . We will abbreviate E m m B m( ) ( ) ( )-1 1 .

Let us consider the operator

where
T :S(N,V) S(N,V),

S(N,V N V
N

r) : , ,0
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and
N

is defined by

N
( )( ) ( ) ( ) ( ),n n n E m m

n N
m

n

=

-

0

1

2

0 1

and

N
( )( ) ( ) ( ) ( )

( ) ( ).

n n E m m

B N
m

n

=

-

0

2

2

1 1

If we endow the finite dimensional space
S N V( , ) with the norm

N j j Nmax{ ( ):0 ,

then from (C1) we obtain the estimate

N
( ) ( ) { ( ) .1 2 1 2N N N

M B n g4

If M B n{ ( )}
¥

1, then the operator
N

has a unique fixed point inS N V( , ) we will de-
note by

N
. Furthermore by using the condi-

tion (C1) we estimate
N N

.

Therefore

N N

M

M B n
¥

1 { ( )}
. [5]

We recall from (4) that under condition
(C1), the solution is the fixed point of the op-
erator

( ) ( ( ) ( )n n) n E m m
m

n

=

-

0

1

2

in the space ¥ . From (C1) and { ( )}B n
¥

1 we

obtain the following estimate

(., )
{ ( )}

.
¥

¥

M

M B n1
[6]

In what follows we will assume that is
imbedded in ¥ : the sequence S N V( , ) is
identified with ¥ defined by

( )
( ),

,
.n

n n N

n N

0

0

According to definitions of T and
N

, if
w S N V( , ), them

N
( )( ) ( )( ) ,n n if n N0 1 1,

and

N
( )( ) ( )( ) ( ) ( ).n N B N 1 1

From here we obtain

max )( ) ( )( ) ( ) .
0

1
£ £n N N NT n T n B N

Applying this estimate to and using [5]
we obtain:

max )( ) ( )
{ ( )}

( )
0 1

1
£ £

¥n N NT n n
M

M B n
B N

N

.

[7]

Let us consider the problem (3) in the
case:

lim ( ) .B n
n®¥

0 [8]

Then

max ( , ) ( )

max ( )( ) ( )

max

0

0

0

£ £

£ £

£

n N N

n N N N

n n

T n n

n N NT n T n

M

M B n
N

M B

£

¥

( ))( ) ( )( )

{ ( )}
( ) .

{ (

1
1B

n n n

B N

n N N

N N

)} max ( )

( .,

¥

£ £

¥

0

1

Using [6] obtain

max ( , ) ( )
{ ( )}

( )

{ ( )}
ma

0 1
1

£ £

¥

¥

n N
Nn n

M

M B n
N

M B n

B

x
( )

{ ( )}
( )

.0

2

1
1

¥

n N n n

M

MM B n
N

N

B
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This inequality implies

max
( , ) ( )

( { ( )} )

( )
.

0
3

1

1

2
¥n N

n n
M

M B n

N

N

B

This estimate proves the following

Theorem 1. If conditions (C1), [8] and

M B n{ ( )}
¥

1 are satisfied, then for a given

posit ive number , there exists an
N N N( ) such that for every n N0, we

have ( , ) ( )n n
N

.

According to the definition of the opera-
tor N , the equation N ( is equivalent to
the following nonhomogeneous linear sys-
tem:

( ) ( ) ( )

( ) ( ) ( )

1 0 0

2 1 1 3

A B

A B

( )

( )

2

1 1

N N

N N 1 1 .

This system can be solved, approxi-
mately, by the iterative scheme:
x x T xk N k0 10

-
, ( ) converging with speed

( { ( )} )M B n k¥

, that is

max ( ) ( ) { ( )}

{ ( )}
{ ( )}

0

1

£ £

¥

¥

n N k N

k

N N
x n n M B n

M B n
B n

¥

k

.

3. Approximation of solution
in a

¥

In this section, we will endow the space
S N V, with the norm

aN n n n N, max ( ) ( ) : .-1 0

We will consider n, , the solution of
problem [3] given by Theorem B. We recall
that under condition (C2), this solution is a

fixed point of operator acting from
a
¥ into

itself. In order to use condition (C2), we will
impose the condition

-1

=

¥

K m m B m
m

( ) ( )2 1
0

. [9]

Let us contemplate the operator

N S N V S N V: ( , ) ( , )

defined by

N
m

n

n n n n E m m

n N

( )( ) ( ) ( ) ( ) ( ),

,
=

-

0

1

2

0 1

and

N
M

N

N N m m( )( ) ( ) ( )

)
=

-

2
0

2

-1( ) ( ) ( )N B N1 2 1

.

We have the following property of N:

N N N
( ) ( ) .

,a1 2

Since 1, then the operator N has a
unique fixed point S N V( , ) in that we will de-
note by N . Moreover, we point out the fol-
lowing estimate

a
N N

K
, 1

. [10]

We recall the following estimate for
n, , the fixed point of operator in the

space
a

¥ :

a

(., )
¥ K

1
.

According to the definitions of and

N, for S N V( , ) we have the property

( )( ) ( )( ) ,n n if n NN 0 0 1

and

( )( ) ( )
( )

( )
( ) ( ) ( ) ( )n N

N
N N B NN

-

1
1 2 11 .

From here we obtain S N V( . ) for
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max ( ) ( ( )( ) ( )( ))

( )

( )
(

0

1

1
2

£ £

-

n N
Nn n n

K N

N
B N ) ,aN

.

From this estimate and [10] we may
write

max ( ) ( ) ( )
( )

( ) )
(

0

1
2

1£ £

-

n N
n n

K N
B N

N N
2).

[11]

From [10] and [11] we obtain

max ( ) ( ( , ) ( ))

max ( ) (
0

1

0

1

£ £

-

£ £

-

n N

n N

n n n

n

N

))( )

( )
( )

( )

max ( )

N

n N

n

K N

N
B N

n
£ £

2

0

1 1
2

-

¥

1

1
1

1

( ( , ) ( ))

( )
( )

( )

( )
( )

(

a

n n

K B N

B

N

N
N

2 12) [ ].
,aN

From [10] we obtain

max ( ) ( ( , ) ( ))

( )
( )
(

0

1

2

2

2
1

2
1

£ £

-

n N
n n n

K m

m

N

)
( ). .

m N

N

B m
= -

-

2

1

This last estimate and condition [9] im-
ply, for a positive , the existence of an
N such that

max ( ) ( ( ., ) ( )) .
0

1

£ £

-

n N Nn n n

This estimate proves the following

Theorem 2. If conditions (C2), [8] 1 and are

satisfied, then for a given positive number , there

exists an N N ( ) such that

( ) ( ( ., ) ( ))n n n-1
N

for everyn N0, .

Now, the equation n ( ) is equiva-
lent to the algebraic system of equations

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 0 0

2 1 1 3

A B

A B

( )

( )
(

2

1 1

N N

N
N )

( )
( ) ( ) ( ) .

1
2 1N E N

This system can be solved by the itera-
tive sequence x x xk N k0 0 1, ( ). The
speed of the convergence of this scheme is
given by the estimate

max ( ) ( ) ( )
,0

1

1£ £

-

n N k N
k

N N

kn x n n
a

.

4. Approximation of solutions
in

F

¥

Let us denote

-

=

¥

1

0

1 2( ) ( ) ( ).m B m m
m

We recall from(4) that under condition
(C3), the unique solution y n., of problem
[3] in the space

F

¥ can be written in the form

y n n n( ., ) ( ) ( ., ), [13]

where n., is a fixed point of the operator

=

-

( )( ) ( ) ( ) ( ) ( )n m B m m m
m

n

1 2 2
0

1

.

For a fixed N , let us consider the
operator

N: ( , ) ( , )S N V S N V

defined by

=

-

( )( ) ( ) ( ) ( ) ( ),n m B m m m

n N
m

n

1 2 2

0 1
0

1

and
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N NN N

N B N N

-( )( ) ( )( )

( ) ( ) ) ( )

1

1 1 1

1

.

From

N N N N
( ) ( ) ,

11 2 2

and the condition 1, we obtain that the
operator N has a unique fixed point in
S N V( , ) we will denote by . For the norm

N N

we write the following estimate:

N N 1
. [14]

From the definition of operator y
N

we have

( )( ) ,N n if n N0 0 1,

and

( )( ) ( )( ) ( ) ( ) ( )N w N N B N NN
-1 1 1 .

From here we obtain

max ( ( )( ) ( ) ( ) ( )
0

1 1 1
£ £

-

n N
N N Nn n N B N N .

Applying this estimate to N and using
[14] we may write:

max ( ( ) ( ) ( )
0

1

1
1 1

£ £

-

n N
Nn N B N N .

In a similar form as [12] was obained,
we have

max )( ) ( ) ( ) ( )
0 2

13

1
1

£ £

-

n N
Nn n n N B N [15]

from the convergence of the series given con-
dition (C3) we conclude from [15] the follow-
ing

Theorem 3. If condition (C3) is satis-
fied, then for a given positive number , there
exists an N N( ) such that

max ( , ) ( )
0£ £n N Nn n

for every n N0, . In addition, if we assume
condition

( ) ,n K n 0,

there we obtain

max ( , ) ( ) ( )
0£ £n N Ny n n n K .

The equation is equivalent to the
system of equations

( ) ( ) ( ) ) ( )

( ) ( )

1 1 0 2

2 1

1-

-1

B

B ( )

..............................

( )

3

1 N 2 1 2

1 1

) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

-1

-1

N B N N N

N N N B N ( ) ( ) .N 1 1

This algebraic system can be approxi-
mately solved by the iterative scheme:
x x xk N k0 0 1= -,

converging with a speed

given by the estimate:

max ( ) ( )
0 1£ £n N k N

k
N N

kx n n .

5. More general systems

The previous method can be applied to
the more general equation with advanced
argument [1]. The following theorem was
proved in (4).

Theorem D. If condition (C1), g n n( ) 1

and M B n{ ( )}
¥

1are satisfied, then for every

Vr the initial value problem

y n A n y n B n y g n

y

( ) ( ) ( ) ( ) ( )

( )

1

0
, [16]

has a unique solution in the space ¥ .

In order to approximate this solution, let
us consider the operator

N g S N V S N V, : ( , ) ( , ),

defined by
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N g
m

n

n n n E m g m n N, ( ) ( ) ( ) ( ) ,
=

-

0

1

0 1,

and

N g
m

N

j

N n E m g m

g

, ( )( ) ( ) ( ) ( )

(

=

-

=

1

1

0

2

0

g

N j j
( )

) ) ( ) ( )
1 2

1 1
-

-1

,

Under conditions of Theorem D, the op-
eratorTN g, is a contraction with a unique fixed
point in S N V( , ). If condition [8] is assumed,
then this fixed point will approximate the so-
lution of the initial value problem [16]. The
proof of these details is similar to those of
Theorem 1.
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