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Abs tract

We study clas si cal to po lo gi cal so li tons in non li near sig ma mo dels. 
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So li to nes To po ló gi cos I: Mo de los Sig ma

Re su men

Es tu dia mos so li to nes to po ló gi cos clá si cos en mo de los sig ma no li nea les.

Pa la bras cla ve: So li tón; skyr mión; to po lo gía.

1. In tro duc tion

Non lin ear sci ence has de vel oped
strongly over the past 40 years, touch ing
upon every dis ci pline in both the natu ral and
so cial sci ences. Non lin ear sys tems ap pear in
mathe mat ics, phys ics; chem is try, bi ol ogy,
as tron omy, me tere ol ogy, en gi neer ing, eco -
nom ics and many more (1).

Within the non lin ear phe nom ena we
find the con cept of ‘sol iton’. It has got some
work ing defi ni tions all amount ing to the
picture of a trav el ling wave of semi-
 permanent shape. A soli ton is a non-
 singular so lu tion of a non- linear field equa -
tion whose en ergy den sity has the form of a
lump lo cal ised in space. Al though soli tons
arise from non lin ear wave- like equa tions
they have particle- like prop er ties, hence the
suf fix on to covey a cor pus cu lar pic ture to
the solitary wave. Soli tons ex ist as den sity
waves in spi ral gal ax ies, as lumps in the
ocean, in plas mas, mo lecu lar sys tems, pro -
tein dy nam ics, la ser pulses propa gat ing in
sol ids, liq uid crys tals, ele men tary par ti cles
and nu clear phys ics (2, 3).

Ac cord ing to whether the soli tonic field
equa tions can be solved or not, soli tons are
said to be in te gra ble or non in te gra ble. The
former are gen er ally found only in one di -
men sion; their dy nam ics is quite re stricted
with the lumps mov ing un dis torted in shape 
and, in the event of a col li sion, scat ter ing off
merely un der go ing a phase shift. In higher
di men sions soli tons en joy a richer dy nam ics 
but now we are in the realm of non in te gra ble 
mod els, where ana lyti cal so lu tions are prac -
ti cally lim ited to static con figu ra tions and
Lo rentz trans for ma tions thereof. The time
evo lu tion in these mod els is stud ied with the 
help of nu meri cal simu la tions and other ap -
proxi ma tion tech niques. A trait of non in te -
gra ble soli tons is that they carry a con served 
quan tity of topo logi cal na ture, the topo logi -
cal charge -hence the des ig na tion ‘top olog -
ical soli tons’. En ti ties of this kind ex hibit in -
ter est ing sta bil ity and scat ter ing prop er ties,
in clud ing soli ton an ni hi la tion which can oc -
cur when lumps with op po site topo logi cal
charges (one posi tive, one nega tive) col lide.
For nu clear/par ti cle phys ics such dy nam -
ics is of great rele vance.
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The topo logi cal charge Q may be in ter -
preted in a natu ral way if we imag ine the
soli ton as a suba tomic par ti cle car ry ing Q as 
a con stant of mo tion. Amongst the most
suc cess ful mod els which have made use of
this ap peal ing idea is the (3+1)-d ime nsional
(3 space, 1 time) Skyrme model of had ron
phys ics (4, 5, 6). It deals with an ef fec tive
the ory of pi ons and how to de rive bary ons
and their in ter ac tions within such the ory.
Its soli ton so lu tions, the skyr mi ons, are
thought of as clas si cal pro tons and neu -
trons with the topo logi cal charge be ing the
bar yon number. This model leads to re sults
which are in good quali ta tive agree ment
with ex peri men tal re sults of nu clear phys ics 
(7, 8). It is in ter est ing to high light that soli -
tons in the Skyrme model ap pear di rectly,
by con struc tion, whereas soli tons within the 
frame work of grand uni fied theo ries, for in -
stance, come about as an off shoot: they
emerge as do main walls, cos mic strings and
mono poles through the Kib ble mecha nism.

At first the Skyrme model re ceived
short shrift, partly be cause of the ad vent of
quan tum chro mo dy nam ics (QCD). Nev er -
the less, the Skyrme model ac quired popu -
lar ity to wards the end of the 70s due to
specu la tions that it might serve as a link be -
tween QCD and the fa mil iar old the ory (valid 
in the low- energy re gime) where the inter-
 baryonic forces oc cur via the ex change of
Yu kawa p mes ons. In this low- energy re gime 
QCD en coun ters the dif fi culty of hav ing no
small pa rame ter to de scribe the dy nam ics of 
quarks and glu ons. But in the limit as the
number of col ours N tends to in fin ity, QCD
re duces to a the ory of ef fec tive mes ons with
in ter ac tions of or der 1/N. Amaz ingly, in
such lim it ing case bary ons may be re garded
as soli tons of an ef fec tive meson the ory
wíth out any fur ther ref erente to their quark
con tent (9). In 1983 the model was boosted
fur ther when it was shown that its la -
grangían, sup ple mented with a Wess-
 Zumino term, re pro duces the quantum
num bers of bary ons in QCD (10). Remarka -
bly, this lat ter re sult comes from sim ply

elimi nat ing a cer tain dis crete sym me try y of
the skyr mion la gran gian which is not a sym -
me try of QCD.

The Skyrme sys tem is just one ex am ple 
of a large fam ily of non- linear mod els known
as chi ral or sigma mod els (11, 12) in tro -
duced in the 1960s to de scribe b-d ecay and
strong in ter ac tions where to pol ogy played
no role (13).

In two spa tial di men sions sigma mod -
els bear sev eral prop er ties in com mon with
(3+1)-d ime nsional Yang- Mills gauge field
theo ries of par ti cle phys ics, namely, con for -
mal in vari ance, spon ta ne ous sym me try
break ing, as ymp totic free dom and the ex is -
tente of soli ton so lu tions. Ob tain ing in for -
ma tion about the quan tum field the ory of
gauge sys tems in three- space, start ing from
clas si cal so lu tions of the cor re spond ing
more trac ta ble equa tions of low-
 dimensional ana logues, is one of the ideas
be hind the study of chi ral mod els. These
mod els are in ter est ing by them selves:
known as har monic maps, they rep re sent a
rich in dus try of re search in pure mathe mat -
ics (14).

Our work is split in two pa pers.In the
next sec tion of the pres ent paper we re view in 
some de tail the the ory of soli tons, in clud ing
Der rick’s theo rem and topo logi cal con sid era -
tions. In sec tion 3, 4 and 5 we work out typi -
cal ex am ples in one, two and three spa tial di -
men sions, re spec tively. In the com pan ion
pa per we will fo cus on two spe cific ver sions of 
the CP1 sigma model (origi nal and Skyrme)
in two spa tial di men sions and con sider its
sta bil ity and scat ter ing prop er ties.

2. So li ton theory

Due to the scar city of ana lytic soli ton
so lu tions of our non- linear sys tems which,
in ad di tion, must be re la tiv is ti cally in vari -
ant, in soli ton the ory we ana lyse static
finite- energy con figu ra tions and try to ob -
tain as much in for ma tion as pos si ble with -
out ex plic itly solv ing the field equa tions. In
so do ing, topo logi cal tech niques, a virial- like 
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theo rem and an in gen ious completing- the-
 square pro ce dure (sub sec tion 3.1) are of
enor mous util ity.

2.1. De rrick’s theo rem

Con sider the class of Lorentz- invariant
non- linear sca lar field theo ries in a Min -
kowski space in (D + 1) di men sions (D space,

one time): ( )x x xm
m = 0 2

( )- =å i
D ix1

2
,   

m = 012, , ,...,D. And con sider those sys tems
de scribed by a la gran gian den sity of the stan -
dard rela tiv is tic form

L ( )= -m

m==

mååC a

a

n

a¶ f ¶ f f
11

D

U
r

   ( ) ( ) ( )= × -m mC a a a¶ f ¶ f f
r r r

U , [1]

where ( ){ }
r

Kf fº =m
a x a n; , , ,12  de notes a

vec tor in the in ter nal space of the fields and
the number C is an ad just able con stant. The 
func tion U is non- negative and van ishes
only at its ab so lute minima -set to naught
with out loss of gen er al ity.

We are con cerned with the pos si ble ex -
is tence of non- singular so lu tions whose en -
ergy den sity at a given time is fi nite in some
fi nite re gion of space, and falls to zero at spa -
tial in fin ity suf fi ciently fast as to be in te gra -
ble. Such lo cal ised en ergy den sity has a dis -
tinc tive lump- like pro file usu ally able to
propa gate with out much change in shape.
The en ergy lump it self, or its cor re spond ing
field so lu tion, is known as a soli ton.

The sta tic energy or po ten tial energy is
read- off from [1] as

( ) ( ) ( ) ( )V C d x U d xD D
r r r r
f ¶ f ¶ f fk k= × +ò ò

         ( ) ( )= + =V V k D1 2 1
r r

Kf f , , , , [2]

in ob vi ous no ta tion. A static so lu tion of the
model [1] is an ex tre mum con di tion dV = 0
for [2]. Tak ing C = 1/2 we get

Ñ =2 0
r

r
r

f -
f

d

d
U . [3]

Now let ( )
r
f x  be a so lu tion to [3] and

con sider the one- parameter fam ily of con -
figu ra tions ob tained by re- scaling 

r
a

r
x xg

( ) ( )
r r r r
f f gg x x= 1 [4]

With the help of equa tion [2] we ob tain

( )[ ] ( )[ ] ( )[ ]V x V x V xD D
r r r r r r
f g f g fg 1= +- -2

1 2 1 , [5]

where from

( )[ ] ( ) ( )[ ] ( )[ ]d

d
V x D V x D V xD D

g
f g f g fg

r r r r r r
= - -- - -2 1

1 1
1

2 1
[6]

Since ( )
r r
f1 x  is a lo cal ex tre mal of V, it

must in par ticu lar pro duce 

( )[ ]d

d
V x

g
fg

g

r r

=
=

1
0, i.e.,

( ) ( )[ ] ( )[ ]2 1 1 2- =D V x DV x
r r r r
f f1 . [7]

In as much as both V1 and V2 are non-
 negative, equa tion [7] pre cludes the ex is -
tente of non- trivial static so lu tions for the
class of mod els (1) when D³3 (time-
 dependent so lu tions are not pre cluded).
This is the con tent of the so- called Der rick’s
theo rem (17, 18). It al lows one to tell solely
from the form of the la gran gian and the di -
men sion al ity of space whether a given the -
ory may pos sess soli tons. If we are seek ing
soli tons in D>2 it is nec es sary to some how
mod ify the la gran gian [1].

Re search has there fore been car ried out 
for dif fer ent types of non- linear equa tions
with vari ous pos si ble val ues of D. We are go -
ing to ex am ine some of there mod els be low,
but first let us ac quaint our selves with how
to pol ogy steps into the soli ton scene.

2.2. To po lo gi cal con si de ra tions

One of the ba sic tasks of to pol ogy is to
learn how to dis cern non ho meo mor phic fig -
ures. With this aim one in tro duces a class of
in vari ant quan ti ties which do not change
with ho meo mor phic trans for ma tions of a
given fig ure. The study of topo logi cal spaces
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is con nected with the reso lu tion of ques -
tions like: Can one de scribe a class of in vari -
ants of a given mani fold? Does there ex ist a
set of in te gral in vari ants, fully char ac ter is -
ing a given mani fold? In te gral in vari ants are
in their own way ‘qua ntum num bers’ of a
mani fold (a simi lar prob lem is en vis aged in
phys ics, namely, to char ac ter ise a par ti cle
hav ing given its spe cial pa rame ters, v.gr.,
spin, charge, mass). Among such tasks is
the clas si fi ca tion of n- dimensional sur faces, 
com pact, con nected, ori enta ble and 2-
 dimensional for ex am ple, as those we shall
en coun ter later.

The in te gral de grees of free dom of the
soli ton field give rise to an in te gral space
whose mani fold (the field so lu tions) can de -
fine a non- trivial map ping onto the mani fold
of the ‘phys ical’ D-d ime nsional space. Each
map ping can be char ac ter ised by an in te gral 
number which is a con served quan tity -a ss -
oc iated with the to pol ogy of the so lu tions as
out lined above and with noth ing to do with
No ether’s theo rem.

This type of maps is the sub ject of ho -
mo topy the ory. Con sider two maps f and g
from a mani fold N  to a mani fold 
M: ; N M, ; N Mf ga a . These map pings are
ho mo topic if they can be con tinu ously de -
formed one into the other: F: N M´[ , ]10 a ,
with the con tinu ous con nect ing map F sat -
is fy ing ( ) ( ) ( ) ( )F Fx,0 = =f x x g x, ,1 . That is,
as the con tinu ous vari able t in ( )F x t,  var ies
con tinu ously from 0 to 1 in the in te gral [0,1], 
the func tion ( )f x  is de formed con tinu ously
into ( )g x .

Ho mo topy is an equiva lence re la tion
that par ti tions the mani fold of con tinu ous
maps from N to M into equiva lent classes [ ]f . 

A map from one ho mo topy sec tor can not be
con tinu ously de formed into an other sec tor.
Ho mo topy classes are topo logi cal in vari ants 
of the pair of spaces above, since they are
un changed un der ho meo mor phism of N or
M. This must be so, for ho meo mor phism is a
con tinu ous map it self. We can think of clas -
si cal time evo lu tion as a ho mo topy be tween

ini tial and fi nal state field con figu ra tions,
and visu al ise [ ]f  as the class of fields con -
served as time elapses.

A clas si fi ca tion of topo logi cal spaces
may be achieved by se lect ing a stan dard
‘test body’ N and per mit ting M to vary
through the fam ily of tar get spaces un der
study. The sphere S2 de fined by

( )xk
k

n
2

1

1

=
=

+

å  cons tant,

is a usual choice for N. Here S0 cor re sponds to
just two points (x1 = ± con stant), S1 is a cir cle
or a ring, S2 is a sphere and so on. An other in -
ter est ing choice for N is the two- torus T2.

Ho mo topy classes can be en dowed
with a group struc ture via the op era tion 
[ ] [ ] [ ]f g f g+ = + . By ( )pn M  we de note the
ho mo topy group as so ci ated with the maps 
Sn a M. These groups are gen er ali sa tions of 
the first ho mo topy group or fun da men tal
group ( )p1 M : it con sists of the set of classes
of closed paths on M  which are not ho mo -
topic to one an other. Now, a closed path on
M can be rep re sented as the im age of a fixed
cir cle N= S1. The as so ci ated fun da men tal
group ( )p1 M  is then the set of non ho mo topic
maps S1 a M By re plac ing the cir cle by the
n-sphere we ob tain the higher groups ( )p1 M . 
As an il lus tra tion may serve the fun da men -
tal group ( )p1 2 0S = , which says that on a

spheri cal sur face all closed paths are ho mo -
topic and can be shrunk to a point (sim ple
con nect ed ness). For the two- torus we have 

( )p1 2T Z Z= Ä , sig ni fy ing that there ex ists

an in fi nite number of closed paths which are 
not ho mo topic to one an other. An ar bi trary
closed path on T2 is ho mo topic to a path
pass ing r times along the par al lel of the
torus and s times along its me rid ian, and it
is la belled by the pair of in te gers (r, s). Note
that a path with r = s = 0 is con trac ta ble to a
point. The classes ( )p1 2T  are rele vant, for

in stance, in char ac ter is ing gen eral ring-
 vortex- coipfigurations in both Higgs and
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sigma mod els (19) and in the pe ri odic
CP l model (20).

In the stan dard case when the tar get
mani fold is also a sphere, it can be proven

that (21)

( )pn nS Z= ,

( )pn mS n m= <0,

( )pn S n1 0 1= >, . [8]

The last two ex pres sions in di cate that
the ho mo topy groups in volved are triv ial: all
maps can be de formed one into the other.
The in ter est ing case when the group of ho -
mo topy classes is iso mor phic to the group of
in te gers Z means that each ho mo topy sec tor
can be la belled by an in te ger, the topo logi cal
charge or Brou wer de gree of the map. A the -
ory with non- trivial to pol ogy is said to be
sta ble in the sense that no con figu ra tion can 
evolve out of its origi nal topo logi cal class.

The sce nario for the ex pres sions [8] of -
ten comes about in the sigma mod els from
de mand ing that the en ergy of the fields in -
volved be fi nite at spa tial in fin ity, the lo cal -
ised fields play ing the role of the ho mo topy
maps. When D>1 the fields must tend to the
same value at spa tial in fin ity, re gard less of
di rec tion. Whence, the spa tial de grees of
free dom of the fields may be re garded as a
one- point com pac ti fi ca tion Â { }D DSÈ ¥ @ ,
lead ing to the maps

S SD ma × [9]

The ho mo topy clas si fi ca tion is valid for
any lo cal ised static field con figu ra tion (the
set of which spans the so- called con figu ra -
tion space). The same clas si fi ca tion holds
for lo cal ised so lu tions all right (moduli
space) as they are sub sets of finite- energy
con figu ra tions.

In con nec tion with the O(3) model in
(2+1) di men sions with stan dard and pe ri -
odic bound ary con di tions we shall study in

the com pan ion pa per the cases S S2 2a  and 
T S2 2® , re spec tively.

In any case, the topo logi cal in dex Q can 
be com puted through

( ) ( )Q w= òconstant f*

N
, [10]

where f*w is a suit able volume- form on N.
The map ping f*:M Na  is the pull- back
map in duced by f:N Ma . The con stant in
[10] nor mal ises Q to an in te ger.

A large number of soliton- bearing mod -
els can be con ven iently con sid ered in the
con text where the tar get mani fold has the
struc ture of a co set space (22). The idea is to
find a con tinu ous group G of sym me tries
act ing on the mani fold M in such a way that,
given a point p ÎM the ac tion of G over p pro -
duces the whole of M. This tran si tiv ity prop -
erty is tech ni cally stated as 
" Î $ Î =p p p1 2 2, M, g G gp1 . Given this, a

ho mo mor phism be tween M and G (or some
re lated group) could proba bly be es tab -
lished. How ever, note that the said pro ce -
dure will yield M more than once in gen eral,
the aim be ing to ob tain it only once. The gist
of the mat ter then lies on the ques tion:
When do two ele ments g g1 2, Î G yield the
same point p of M? Ob serv ing that 
g p g p g g p p1 2 2

1
1= ® =- , we re al ise that the

an swer is: When g g2
1

1
-  leaves p un al tered,

i.e.,when ( )h g g H p= Î-
2

1
1 , the isot ropy

group of ( ) { }p H p h Ghp p: = Î = .  But 

h g g g h g= ® =-
2

1
1 2 1, mean ing that two ele -

ments of G op er ate on p to pro duce the same
point of M iff they be long to the same left co -
set of G with re spect to H(p). Now we re call
from group the ory that G may be par ti tioned
into dis joint co sets with the char ac ter is tic
-sui table for our ob jec tive- that every ele -
ment of G be longs to one and only one left co -
set of G with re spect to H(p). This guar an tees 
that M will be ob tained only once when acted 
upon by the co set space G/H(p). The iden ti -
fi ca tion we de sire is then
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( )M = G H p/

   ( ){ }= ÎgH p g G [11]

de scrip tion in de pend ent of the choice of p if,
as usual in phys ics, M is ho mo ge ne ous. The
mani fold M can now be seen to adopt a va ri -
ety of forms. No ta bly (see (11) and ref er ences 
therein):

• Grass man nian sigma- models in 2mn
di men sions: 

( )

( ) ( ) ( )
M =

+

´ ´

SU m n

SU m SU n U 1

    =G m n. [12]

They re quire mn (2mn) com plex (real)
fields. -The case G1.n  is known as the com plex 
pro jec tive space CP n:

( )

( ) ( )
M =

+

´

SU n

SU n U

1
1

    = CP n [13]

• Sn or O(n) sigma- models: The fields
take val ues on the sphere Sn-1 the act -
ing sym me try group be ing SO(n - 1).
Given a point p of the tar get mani fold,
the ro ta tions that leave it in vari ant are
those about the di rec tion of p it self; so
its isot ropy group is SO (n - l). We then
have

( )

( )
M =

-

SO n

SO n 1

   = -Sn 1 [14]

Other than giv ing a sys tematic clas si fi -
ca tion of im por tant soli tonic mod els, the co -
set de scrip tion [11] per mits the cal cu la tion
of the as so ci ated ho mo topy groups in a re -
latively easy fash ion. For ex am ple, us ing the 
re sult ( ) ( )p p2 1G H H/ = , valid when G is
both con nected ( )[ ]p 0 0G =  and sim ply con -

nected ( )[ ]p1 0G = , we ob tain from [13]

( ) ( ) ( )( )p p2 1 1CP SU n Un = ´

             ( )( ) ( )( )= p p1 1 1SU n UÄ

             ( )( )= p1 1U

             ( )[ ]= =Z U S1 1 [15]

a spe cial case of [8]. In par ti cu lar, sin ce CP1

is iso me tric to S2, the abo ve re sult for n = 1
applies to O(3) as well. The se two spe ci fic
mo dels are essen tia lly the same. As a ge ne -
ra li sa tion for ar bi trary n, howe ver, CPn is
more appro pria te than is O(n) by vir tue of
con ti nuing to give to po lo gi cal so li ton so lu -
tions for ar bi trary n in the pla ne. This is not
diffi cult to in fer: in two spa tial di men sions
the case O(n > 3) pro du ces, from ex pres sion
[9] and [14], S Sn2 2a > . Whe reu pon [8] tells
us that the asso cia ted ho mo topy group is
the tri vial ( )p 2 2 0Sn> = , which cannot

accommo da te to po lo gi cal ob jects. On the
other hand, the non- tri vial CPn re sult [15]
holds for all n.

3. So li tons in one di men sion

The sim plest mod els gov erned by [1] in -
volve one sin gle real sca lar field dwell ing in a 
line. An in ter est ing example is the so- called 
f4  the ory (23-25), which plays an im por tant
role in gauge theo ries. It cor re sponds to a
Higgs- like func tion of the form

( )U
m

f
l

f
l

= -
æ

è
çç

ö

ø
÷÷

4
2

2 2

[16]

where l, m are posi tive con stants.

The static equa tion of mo tion for this
sys tem read ily fol lows from in sert ing [16]
into [3]. The re sult ing equa tion is solved by
the ‘kink’

( )f
l

x
m mx

=±
æ

è
ç

ö

ø
÷tanh

2
[17]

Finite- energy so lu tions must obey the

bound ary con di tions: ( )lim x x
m

®±¥ ® ±f
l

the min ima of the po ten tial en ergy.

The kink pro vides an ex am ple of spon -
ta ne ous sym me try break ing: its la gran gian
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is in vari ant un der re flec tions f f® -  (the in -
ter nal de gree of free dom of the sys tem)
whereas the two fun da men tal states 
±m / l are not; rather, they are trans -
formed finto one an other un der re flec tions.
Other sym me tries of [17] are par ity x x® -
and space trans la tions x x x® + 0 .

The ho mo topic maps for this model are
the cor re spon dence be tween the two vac -
uum states (S0) and the points at in fin ity (a
0- sphere as well). We have four topo logi cal
classes, v.gr., the kink sec tor, the anti- kink
sec tor, and the two va cua. These sec tors are
char ac ter ised by the pair of in di ces

( ) ( )[ ]f f
l l l l l l l

-¥ ¥ -
é

ëê
ù

ûú
-

é

ëê
ù

ûú
é

ëê
ù

ûú
- -, : , , , , , , ,

m m m m m m m m

l

é

ëê
ù

ûú

[18]

The topo logi cal in dex can be de fined as
the ‘charge’

( ) ( )Q k x dx k x
m

d

dx
= =

-¥

¥

ò 0 0 2
,

l f
[19]

of the con served ‘cu rrent’

( )k
m

xm
m= Î m =

l
¶ f nn

n

2
0 1, , , , [20]

where Îmn  is the Levi- Civita pseu doten sor.
We see that the topo logi cal charge is ± 1 for
the kink and zero for the min ima ±m / l.
The sys tem pos sesses topo logi cal sta bil ity,
in the sense that a kink will not de cay into
ei ther of the min ima be cause it is not ho mo -
topic to any of them. Also note that [19] is
(con stant) dfò , equa tion [10] with f f*w d=

a one- form.

Even though we might not be able to
ex plic itly cal cu late the evo lu tion of the sys -
tem, of what hap pens af ter, say, a kink and
an anti- kink (the so lu tion with the mi nus
sign in (17) col lide, we know that the re sult -
ing field con figu ra tion will al ways be within
one the four ho mo topy sec tors [18]. For in -
stance, an anti- kink com ing from the far
left and an kink ap proach ing from the far

right be long to the Q= -1+1=0 class, and
there will they re main af ter the im pact.

As it ac tu ally hap pens, ex plicit so lu -
tions of the time- dependent f4  model are not
avail able. Its dy nam ics, stud ied through nu -
meri cal simu la tions, in di cate that the kinks
do not re tain their shapes un der col li sions.
Also, they seem to re pel each other when
started off at rest, a char ac ter is tic pres ent as
well in (2+1) di men sional skyr mi ons.

The particle- like na ture of [17] can be
fur ther sub stan ti ated by de riv ing an Ein -
stein ian mass- energy for mula be tween
static and mov ing kinks. Since the model is
Lorentz- invariant, trav el ling so lu tions can
be ob tained by Lorentz- boosting [17]

f
lv

m m x vt

v
v=±

-

-

æ

è
çç

ö

ø
÷÷ - < <tanh ,

2 1
1 1

2
[21]

(We em pha sise that this so lu tion is not
what we mean by an ex plicit time-
 dependent ob ject de rived from the full equa -
tion of mo tion, mov ing in de pend ently from
other so lu tions). Now, from equa tions [2]
and [17] we get

( )V
m

m
x

dx
m

f
l l

=
æ

è
ç

ö

ø
÷

=
-¥

¥

ò
4

4

31

2

2 2
3

cosh
[22]

The en ergy Vv  for [21] is re lated to ( )V f
by the mass- energy for  mula 

( ) ( )V V vv f f= -/ 1 2 . A sche matic plot of te 

in te grand in [22] gives a lump of mat ter po si -
tioned around x= 0, able to cruise along un -
scathed upon boost ing.

The f4  model also il lus trates what we
men tioned in the pre vi ous chap ter about
soli tons only stem ing from equa tions that
pos sess a spe cial, fine bal ance among their
terms. If, in stead of [16], we take the look-

 alike ( )f af2 4 2
+  say, then no soli ton so lu -

tions are pro duced.

Also wor thy of re mark is the non-
 perturbative char ac ter of the kink: since it is 
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sin gu lar when l ® 0, a per tur ba tion ex pan -
sion in l is no longer fea si ble; the quan tum
the ory of soli tons re sorts to a semi- classical
ex pan sion that quan tises around the clas si -
cal so lu tions.

Amongst other im por tant mod els in
D= 1 ap pear the KdV (28), the O(3) [14] (26,
27), and sine- Gordon (29) sys tems. They are
fully- integrable and have sev eral in ter esting 
prop er ties, v.gr., pos ses sion of an in fi nite
number of con served quan ti ties, pres ence of 
in verse scat ter ing trans form and Back lund
tran for ma tions.

3.1. Bo go mol ny te chni que

Let us now il lus trate a use ful pro ce -
dure (30) for con struct ing static so lu tions.
By com plet ing squares, the static en ergy for
unidi men sional sys tems can be cast into

( ) ( )[ ] ( )V U dx U dxx xf ¶ f f ¶ f f= ±
-¥

¥

-¥

¥

òò
1

2
2 2

2
m

( )[ ] ( )
( )

= ±
-¥

¥

-¥

¥

ò ò
1

2
2 2

2
¶ f f f f

f

f

x U dx U dm . [23]

Where fore the ine qual ity (re ferred to as
the Bo go molny bound)

( ) ( )
( )

( )

V U df f f
f -

f

³
¥

¥

ò 2 , [24]

which im poses a lower limit to the en ergy of
any static con figu ra tion in a given homo
topy sec tor Q. The con di tion for equal ity
mini mises V and oc curs iff

( )¶ f fx U± =2 0 [25]

ex pres sion that is of ten called the Bo go -
molny equa tion. It is of first or der, eas ier to
solve than its par ent sec ond or der equa tion.
Upon in sert ing the quar tic func tion [16] into 
[25] the field [17] read ily fol lows.

So lu tions of the Bo go molny equa tion
auto mati cally sat isfy the origi nal sec ond or -
der equa tion, but the re verse is not gen er ally 
true. But for the kink model the dou ble im -
pli ca tion does hold. The kink, the anti- kink
and the fun da men tal states ‘sat urate’ the

bound [24] and all other Q- sectors are
empty. This fea ture oc curs in all Poin care-
 in vari ant soli ton sys tems in one di men sion
(31).

Fi nally, note that from [6] one de rives:

( )[ ] ( )( ) ( )[ ]d

d
V x D D V xD

2

2 1 1
2 1

g
f g fg

r r r r
= - - -

                         ( ) ( )[ ]+ + - -D D V xD1 2
2 1

g f
r r

 . [26]

Tak ing into ac count that for D = 1 equa -
tion [7] gives ( )[ ] ( )[ ]V x V x1 1 2 1 0

r r r r
f f= > ,

equa tion [26] for D = 1 gives

( )[ ] ( )[ ]d

d
V x V x

2

2 1 2 12 0
g

f fg g

r r
= = > [27]

There fore, g =1 cor re sponds to a mini -
mum of the po ten tial en ergy and hence a
soli ton in D = 1 is sta ble. Its finely- balanced
scal ing be hav iour is brought forth by equa -
tion [5]:

( )[ ] ( )[ ] ( )[ ]V x V x V xf g f
g

fg = +1 1 2 1

1
. [28]

As we shall see in the next sec tion, the
situa tion is en tirely dif fer ent in two spa tial
di men sions.

4. Soli tons in two dimension

Der rick’s theo rem for pla nar sys tems
en tails ( )V2 1 0

r
f = , in which case the la gran -

gian [1] re duces to

( ) ( )L = C ¶ f ¶ fm

r r
× m =m , , , .0 1 2 [29]

An il lus tra tion is pro vided by the O(4)
chi ral model. It con sists of a real vec tor

( )
r
f f f , f , f2 3= 0 1, [30]

re stricted to take val ues on the 3- sphere S3:

r r
f f = f + f f0

2
k k× =1 [31]
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sum ma tion over k=1,2,3 un der stood. The
model is clearly in vari ant un der the O(4) ro -
ta tion group in in ter nal space. The equa tion
of mo tion that stems from [29]-[31] is

( )¶ ¶ f ¶ f¶ f f = 0m
mm

m +
r r r r r

[32]

It is cus tom ary to take as the ba sic field 
the SU(2) qua ter nion

J
i

i

i

i
i k=

+

- +

+

- +

é

ëê
ù

ûú
= +

f f

f f

f f

f f
f t t f

3
k

0 3

2 1

2 1

0
0 0 [33]

where t0  is the 2x2 iden tity ma trix and tk

are the Pauli ma tri ces. La bo ri ous but
straigh for ward ma nipu la tion yields

( ) ( )
( ) ( )¶ ¶

¶ f ¶ f
¶ f ¶ fmJ J =

×
×

é

ë
ê

ù

û
úm - m

m

m
m

1

0

0r r
r r ,

in terms of which the la gran gian den sity [29] 
be comes

( )L =
C
2

Tr J¶ ¶m
m

-J 1 , [34]

with Tr de not ing the trace of the ma trix.

Writ ten in this form the in vari ance of
the model un der the so- called SU (2) x SU(2)
chi ral trans for ma tions is mani fest. Since
the chi ral group and the four- dimensional
ro ta tions have the same Lie al ge bra, the O(4) 
model is equiva lently re ferred to as SU(2)
chi ral. Wor thy of note is that upon-
 expanding [34] around the vac uum t0  one
ob tains a la gran gian of the Klein- Gordon
type - an ef fec tive meson model; re call our
ear lier re mark about skyr mi ons spring ing
from an ef fec tive field the ory of pi ons.
Couched in quan tum ter mi nol ogy, the pi ons 
are rep re sented by the fluc tua tions of the
field J around t0 . The la gran gian [34] is the
start ing point of the Skyrme model.

With re gards to the ho mo topy of fhe
chi ral model in two spa tial di men sions first
note that fi nite ness of the en ergy com pac ti -
fies the plane into the unit 2- sphere as per
[9]. Since the in ter nal mani fold is a 3- sphere 

we then have a triv ial ho mo topy ( )[ ]p 2 3 0S =

wherein no topo logi cal ex tended ob jects can
be ac com mo dated.

Now, the only lo cal ised so lu tions to [34] 
are those cor re spond ing to J be ing an ti her -
mi tian [ ]f0 0= , the O(3) sub space of O(4)

[32]. In this case topo logi cal soli tons do arise 
be cause ( )p 2 2S Z= . Con se quently, one fre -

quently fo cuses on the O(3) model rather
than O(4).

An in ter est ing modi fi ca tion of the chi -
ral sys tem is the Ward model, where we have 
time- dependent lumps which do not lie in
gen eral in an O(3) sub space. This model is
in te gra ble but at the ex pense of de stroy ing
the rela tiv is tic in vari ance of the pure chi ral
scheme. Both triv ial and non- trivial scat ter -
ing have been ob served in the Ward model
[33, 34].

An im por tant ex am ple of a soli ton in
two spa tial di men sions is the vor tex in the
abe lian Higgs model. Vor tices il lus trate the
mecha nism for ob tain ing dual- strings from
gauge theo ries [35] and, upon suit able
change of se man tics, the vor tex sys tem
turns into the Ginzburg- Landau model [36]
in the sta tis ti cal me chan ics of a su per con -
duc tor placed in a mag netic field. Here the
mag netic flux is quan tised by the topo logi cal 
charge.

A pro to type pres en ta tion of the vor tex
la gran gian is (note the quar tic kink- like po -
ten tial):

( ) ( )Lvortex = - + - -
æ

è
ç
ç

ö

ø
÷
÷

1

4 2
2

2
2

F F D D
mab

ab a
af f

h
f

h

*
, [35]

where f is a com plex sca lar field, Fab  is the
fa mil iar elec tro mag netic ten sor, D a  is the co -
vari ant de riva tive and m, h are con stants.
The ‘t -Hooft -Polyakov mo nopole model is a
non- abelian ex ten sion of [35].

The pro ce dure fol lowed to ob tain [27]
can also be ap plied here. One finds
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( )[ ] ( )[ ]d

d
V x V x

2

2 1 2 16 0
g

f fg g

r r r r
= = = [36]

un veil ing the pres ence of zero modes. From
[5] we fur ther ob tain

( )[ ] ( )[ ]V x V x
r r r r
f fg = 1 1 , [37]

con firm ing the scale- free na ture of bi di men -
sional sigma mod els. Where fore, pla nar soli -
tons have no pre ferred scale and at the ex -
pense of no en ergy at all they can al ter their
size un der small per tur ba tions. In this
sense they are un sta ble. In par ticu lar, such
insta bil ity oc curs in the pla nar O(3) model,
but it is cor rected in its Skyrme ver sion.

His tori cally in ter est ing is the fact that
in the 1960s the quan tum ver sion of [29] in -
ter preted f0  as the crea tion op era tor of a
s-pa rt icle and 

r
f des ig nated a pion op era tor.

The name ‘sigma’ was thus coined for most
mod els with struc ture simi lar to [34]. The
no ta tion in terms of sigma and pion fields is
still widely used.

5. So li tons in three di men sions

Ac cord ing to Der rick’s theo rem non-
 trivial static soli tons in three or more spa tial
di men sions can not ex ist for mod els based
upon a la gran gian [1]. Adopt ing a more gen -
eral stand point one can cir cum vent such
limi ta tion, though. For in stance, one can
per mit the in ter ac tion of the sca lar field 

r
f

with gauge fields, idea that leads to mono -
pole theo ries. Or one can stick to sca lar
fields only and add ex tra terms to [1] which
is the pro ce dure im ple mented by Skyrme (6) 
he added an ex tra term to the O(4) model in
four- dimensional space- time. The Skyrme
la gran gian is given by

( ) ( ) ( )Lskyrme = × - × +
é
ëm mC C1 2

2

¶ f ¶ f ¶ f ¶ fm m
r r r r

             ( )( )]¶ f ¶ f ¶ f ¶ f m nm n
m n

r r r r
× × =, , , , , ,0 1 2 3 [38]

where the real vec tor 
r
f is of the form [30].

The con stants C j  are free pa rame ters which
in prin ci ple can be cal cu lated from QCD; in
prac tice their val ues are fit ted by phe nome -
nol ogi cal con sid era tions.

In chi ral no ta tion the above la gran gian
is usu ally writ ten as

( )Lskyrme = - +m
mF

Tr R R
e

p
2

216
1

32

            [ ][ ]( ) ( )Tr R R R R R Jm
m

m m=, , ,n
n ¶ J ^ [39]

where the SU(2) qua ter nion J is the 3-D ana -
logue of [33]

( ) ( ) ( )J x i x= + × =s t t p p p , p , pm m
1 2 30

r r r
, [40]

The uni tar ity of J is guar an teed by the
or di nary liga ture on the fields:

s + p22 1
r

= [41]

The rou tine finite- energy analy sis ex -
acts that lo cal ised lumps must tend to an
ab so lute mini mum of the in te grand of the
po ten tial (us ing a par ticu lar choice of the
pa rame ters in [39]).

( )V Tr R Rskyrme j j= - +
ì
í
î

ò
1
2

1
32

        [ ][ ]( )Tr R R R R d x j kj k j k, , , , , , ,
ü
ý
þ

=3 1 2 3 [42]

at spa tial in fin ity. Elect ing the 2 x 2 iden tity
ma trix as the vac uum, the finite- energy ar -
gu ment trans lates into

( )lim ,r

r

x
J x

®¥
= t0 [43]

ef fec tively com pac ti fy ing Â3 to a three-
 sphere. At any given time, finite- energy
fields are maps J S S: 3 3a  whose as so ci ated 
ho mo topy clas si fi ca tion is dic tated by 

( )p 3 3S Z= .

The topo logi cal in dex for this model is
in ter preted as the bar yon number
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Q B d xskyrme = ò 0 3 ,

          ( )= Îò ò
1

24 2
0 3

p
jkl

j k lTr R R R d x, [44]

of the topo logi cal cur rent (com pare with
[20])

( )B Tr R R Rm = Î
1

24 2p
mnlg

n l g . [45]

Com plet ing the square in [42] we get

[ ]- ± Î
ì
í
î

ü
ý
þ

åò
1
2

1
4

2

Tr R R Rj jkl k l
j

,

   d x Qskyrme
3 212m p , [46]

the Bo go molny bound in the pres ent case
be ing

V Qskyrme skyrme³ 12 2p . [47]

The equal ity in the above ex pres sion
oc curs iff

[ ]R R Rj jkl k l± Î =
1
4

0, [48]

for which no non- trivial ana lytic so lu tions
have been found. Its sim plest nu meri cal so -
lu tion cor re sponds to a qua ter nion of the
form

( ) ( )[ ]
( )[ ]

J x f x i
f x

x
x

r r
r

r
r r

= + ×cos
sin

,t [49]

where the pro file func tion ( )f x
r

 is sub ject to 

( )f 0 = p and ( )f ¥ = 0. It sets the skyr mion
en ergy to the value 1.232 x 12p 2 which ex -
ceeds the mini mal en ergy in [47] (37). Some
schol ars (38, 39) have been able to pro duce
a value of Vskyrme  closer to the mini mal value
by us ing in stan ton holono mies to gen er ate
skyr mion fields. So, the ap proxi mate so lu -
tion [49] is a lo cal mini mum rather than an
ab so lute one.

The first ap pli ca tion of skyr mi ons in
nu clear phys ics was the ex trac tion of a nu -
cle on- nu cleon in ter ac tion en ergy of sepa -

rated Q = 1 lumps (40, 41), idea later ex -
tended to Q = 2. The deu teron for in stance,
be ing the sim plest nu cleus, has been de -
scribed as a quan tised two- skyrmion by a
number of peo ple, us ing very par ticu lar ap -
proxi ma tions (42-45). As men tioned in the
in tro duc tion, the re sults ex tracted from the
Skyrme model are in quali ta tive ac cord with
re al ity (7, 8). Ap proxi mate skyr mi ons on a
cu bic lat tice be long ing to Q=3,4,5,6 have
been re ported in (46). And more re cently,
high- technology multi- skyrmion scat ter ing
has been in ves ti gated us ing an eco nomi cal
ap proxi ma tion based on a so lu tion of the
sine- Gordon type (47).

The prog ress that has been made in de -
riv ing multi- configurations in three spa tial
di men sions bodes well for the lon gev ity of
the model, but still the multi- skyrmion
prob lem is very hard to at tack. Ana lyti cal
so lu tions even for the sim plest single-
 soliton case are not avail able.

Con se quently, one is natu rally led to
in ves ti gate sim pler mod els which still pos -
sess key fea tures of the four di men sional
ones. Through such low- dimensional ana -
logues one hopes that a bet ter un der stand -
ing of the un der ly ing mecha nism of soli ton
dy nam ics will be at tained, thence forth as -
sist ing in the analy sis of the more re al is tic,
but more in volved, (3+1) case. Skyrme him -
self used a (1+1) di men sional model (sine-
 Gordon) as cal is ten ics to his (3+1) in ven tion.

Fi nally, we pres ent a Derrick- like ar gu -
ment in three spa tial di men sions: Un der di -
la tions 

r r
x x® g  the po ten tial [42] goes to

( )[ ] ( )[ ] ( )[ ]V J x V J x V J xD D
skg g g

r r r
= +- -2

1
4 , [50]

where V Vsk1,  de note the first and sec ond
terms is the right- hand- side of [42]. Equa -
tion [50] is the ana logue of equa tions [4]-[5].
Dif er en ti at ing we get

( )[ ] ( ) ( )[ ]d

d
V J x D V J xD

g
g g
r r

= - -2 1
1

                       ( ) ( )[ ]+ - -4 3D V J xD
skg

r
[51]
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Set ting the left hand side equal to zero
for g =1 there fol lows

( ) ( ) ( ) ( )4 2 1- = -D V J D V Jsk , [52]

ac cord ing to which the ex is tence of soli tons
in D = 3 is now licit. Note also that plug ging
the value D = 3 into (50) we find

( )[ ] ( )[ ] ( )[ ]V J x V J x V J xskg g g
r r r

= +-1
1 , [53]

char ac ter is tic of a sta ble lump if we re call
the kink re sult [28].

The whys and where fores of the ad di -
tional Skyrme term in le la gran gian are
clearly to sta bi lise the soli tons. In the pure
chi ral limit [ ]Vsk = 0 , equa tion [53] says that

for any con figu ra tion J the en ergy can al -
ways be de creased by di la tions g >1. In the
limit as the lat ter goes to in fin ity the size of
the lump col lapses to zero. But a non- zero
Skyrme term gives a mini mal value of the
po ten tial en ergy equal to

V V Vskminimal = ×2 1 [54]

There are other im por tant ex am ples of
soli tons in three spa tial di men sions, in clud -
ing Yang- Mills in stan tons, mono poles and
dy ons, this lat ter ob jects be ing car ri ers of
both mag netic and elec tric charge.
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