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Abstract

We study classical topological solitons in nonlinear sigma models.
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Solitones Topologicos I: Modelos Sigma

Resumen

Estudiamos solitones topolégicos clasicos en modelos sigma no lineales.
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1. Introduction

Nonlinear science has developed
strongly over the past 40 years, touching
upon every discipline in both the natural and
social sciences. Nonlinear systems appear in
mathematics, physics; chemistry, biology,
astronomy, metereology, engineering, eco-
nomics and many more (1).

Within the nonlinear phenomena we
find the concept of ‘soliton’. It has got some
working definitions all amounting to the
picture of a travelling wave of semi-
permanent shape. A soliton is a non-
singular solution of a non-linear field equa-
tion whose energy density has the form of a
lump localised in space. Although solitons
arise from nonlinear wave-like equations
they have particle-like properties, hence the
suffix on to covey a corpuscular picture to
the solitary wave. Solitons exist as density
waves in spiral galaxies, as lumps in the
ocean, in plasmas, molecular systems, pro-
tein dynamics, laser pulses propagating in
solids, liquid crystals, elementary particles
and nuclear physics (2, 3).

According to whether the solitonic field
equations can be solved or not, solitons are
said to be integrable or nonintegrable. The
former are generally found only in one di-
mension; their dynamics is quite restricted
with the lumps moving undistorted in shape
and, in the event of a collision, scattering off
merely undergoing a phase shift. In higher
dimensions solitons enjoy a richer dynamics
but now we are in the realm of nonintegrable
models, where analytical solutions are prac-
tically limited to static configurations and
Lorentz transformations thereof. The time
evolution in these models is studied with the
help of numerical simulations and other ap-
proximation techniques. A trait of noninte-
grable solitons is that they carry a conserved
quantity of topological nature, the topologi-
cal charge -hence the designation ‘topolog-
ical solitons’. Entities of this kind exhibit in-
teresting stability and scattering properties,
including soliton annihilation which can oc-
cur when lumps with opposite topological
charges (one positive, one negative) collide.
For nuclear/particle physics such dynam-
ics is of great relevance.
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The topological charge Q may be inter-
preted in a natural way if we imagine the
soliton as a subatomic particle carrying Q as
a constant of motion. Amongst the most
successful models which have made use of
this appealing idea is the (3+1)-dimensional
(3 space, 1 time) Skyrme model of hadron
physics (4, 5, 6). It deals with an effective
theory of pions and how to derive baryons
and their interactions within such theory.
Its soliton solutions, the skyrmions, are
thought of as classical protons and neu-
trons with the topological charge being the
baryon number. This model leads to results
which are in good qualitative agreement
with experimental results of nuclear physics
(7, 8). It is interesting to highlight that soli-
tons in the Skyrme model appear directly,
by construction, whereas solitons within the
framework of grand unified theories, for in-
stance, come about as an offshoot: they
emerge as domain walls, cosmic strings and
monopoles through the Kibble mechanism.

At first the Skyrme model received
short shrift, partly because of the advent of
quantum chromodynamics (QCD). Never-
theless, the Skyrme model acquired popu-
larity towards the end of the 70s due to
speculations that it might serve as a link be-
tween QCD and the familiar old theory (valid
in the low-energy regime) where the inter-
baryonic forces occur via the exchange of
Yukawa 7 mesons. In this low-energy regime
QCD encounters the difficulty of having no
small parameter to describe the dynamics of
quarks and gluons. But in the limit as the
number of colours N tends to infinity, QCD
reduces to a theory of effective mesons with
interactions of order 1/N. Amazingly, in
such limiting case baryons may be regarded
as solitons of an effective meson theory
without any further referente to their quark
content (9). In 1983 the model was boosted
further when it was shown that its la-
grangian, supplemented with a Wess-
Zumino term, reproduces the quantum
numbers of baryons in QCD (10). Remarka-
bly, this latter result comes from simply

eliminating a certain discrete symmetry y of
the skyrmion lagrangian which is not a sym-
metry of QCD.

The Skyrme system is just one example
of a large family of non-linear models known
as chiral or sigma models (11, 12) intro-
duced in the 1960s to describe -decay and
strong interactions where topology played
no role (13).

In two spatial dimensions sigma mod-
els bear several properties in common with
(3+1)-dimensional Yang-Mills gauge field
theories of particle physics, namely, confor-
mal invariance, spontaneous symmetry
breaking, asymptotic freedom and the exis-
tente of soliton solutions. Obtaining infor-
mation about the quantum field theory of
gauge systems in three-space, starting from
classical solutions of the corresponding
more tractable equations of low-
dimensional analogues, is one of the ideas
behind the study of chiral models. These
models are interesting by themselves:
known as harmonic maps, they represent a
rich industry of research in pure mathemat-
ics (14).

Our work is split in two papers.In the
next section of the present paper we review in
some detail the theory of solitons, including
Derrick’s theorem and topological considera-
tions. In section 3, 4 and 5 we work out typi-
cal examples in one, two and three spatial di-
mensions, respectively. In the companion
paper we will focus on two specific versions of
the CP1 sigma model (original and Skyrme)
in two spatial dimensions and consider its
stability and scattering properties.

2. Soliton theory

Due to the scarcity of analytic soliton
solutions of our non-linear systems which,
in addition, must be relativistically invari-
ant, in soliton theory we analyse static
finite-energy configurations and try to ob-
tain as much information as possible with-
out explicitly solving the field equations. In
so doing, topological techniques, a virial-like
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theorem and an ingenious completing-the-
square procedure (subsection 3.1) are of
enormous utility.

2.1. Derrick’s theorem

Consider the class of Lorentz-invariant
non-linear scalar field theories in a Min-
kowski space in (D + 1) dimensions (D space,

one time):x, x" = (Xo)2_2 iil(xi)2,
w=012,...,D. And consider those systems

described by a lagrangian density of the stan-
dard relativistic form

L=c§: Na.p.00,-U(9)

a=1 u=1

=c(o,6.)(5,6.) -U(5.). (1]

where ¢ = {q)a(x”);a = 1,2,...,n} denotes a

vector in the internal space of the fields and
the number C is an adjustable constant. The
function U is non-negative and vanishes
only at its absolute minima -set to naught
without loss of generality.

We are concerned with the possible ex-
istence of non-singular solutions whose en-
ergy density at a given time is finite in some
finite region of space, and falls to zero at spa-
tial infinity sufficiently fast as to be integra-
ble. Such localised energy density has a dis-
tinctive lump-like profile usually able to
propagate without much change in shape.
The energy lump itself, or its corresponding
field solution, is known as a soliton.

The static energy or potential energy is
read-off from [1] as

v(#) =cf (5.6) - (4,9) d”x+ [U($) dx
=V, ($)+V,(§), k=1...D, 2]

in obvious notation. A static solution of the
model [1] is an extremum condition 6V =0
for [2]. Taking C = 1/2 we get
- d 6

Vip ——U =0. 3
® a (3]

Now let ¢(x) be a solution to [3] and
consider the one-parameter family of con-

figurations obtained by re-scaling x — yx
$,(%) = ¢, (y%) [4]

With the help of equation [2] we obtain
vl 0] =rvils 0] +r v (60 B
wherefrom

IV[5. @] @-py v, [5,(]-pr v 5 (9]

Since él(fc) is a local extremal of V, it

must in particular produce
d_r- /-

@V[¢Y(X)]y:1 = O, i.e.,

(2_D)Vl [&51(;5)] =DV, [&51(2)] [7]

Inasmuch as both V, and V, are non-
negative, equation [7] precludes the exis-
tente of non-trivial static solutions for the
class of models (1) when D=3 (time-
dependent solutions are not precluded).
This is the content of the so-called Derrick’s
theorem (17, 18). It allows one to tell solely
from the form of the lagrangian and the di-
mensionality of space whether a given the-
ory may possess solitons. If we are seeking
solitons in D>2 it is necessary to somehow
modify the lagrangian [1].

Research has therefore been carried out
for different types of non-linear equations
with various possible values of D. We are go-
ing to examine some of there models below,
but first let us acquaint ourselves with how
topology steps into the soliton scene.

2.2. Topological considerations

One of the basic tasks of topology is to
learn how to discern non homeomorphic fig-
ures. With this aim one introduces a class of
invariant quantities which do not change
with homeomorphic transformations of a
given figure. The study of topological spaces
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is connected with the resolution of ques-
tions like: Can one describe a class of invari-
ants of a given manifold? Does there exist a
set of integral invariants, fully characteris-
ing a given manifold? Integral invariants are
in their own way ‘quantum numbers’ of a
manifold (a similar problem is envisaged in
physics, namely, to characterise a particle
having given its special parameters, v.gr,
spin, charge, mass). Among such tasks is
the classification of n-dimensional surfaces,
compact, connected, orientable and 2-
dimensional for example, as those we shall
encounter later.

The integral degrees of freedom of the
soliton field give rise to an integral space
whose manifold (the field solutions) can de-
fine a non-trivial mapping onto the manifold
of the ‘physical’ D-dimensional space. Each
mapping can be characterised by an integral
number which is a conserved quantity -ass-
ociated with the topology of the solutions as
outlined above and with nothing to do with
Noether’s theorem.

This type of maps is the subject of ho-
motopy theory. Consider two maps fand g
from a manifold & to a manifold
M:A; N > M g; N +— M. These mappings are
homotopic if they can be continuously de-
formed one into the other: #: ¥ X[10] — M,
with the continuous connecting map ¥ sat-
isfying 7(x,0) = f(x), #(x,1) = g(x). That is,
as the continuous variable t in #(x,t) varies
continuously from O to 1 in the integral [0, 1],
the function f(x) is deformed continuously
into g(x).

Homotopy is an equivalence relation
that partitions the manifold of continuous
maps from #to M into equivalent classes [ f].

A map from one homotopy sector cannot be
continuously deformed into another sector.
Homotopy classes are topological invariants
of the pair of spaces above, since they are
unchanged under homeomorphism of & or
M. This must be so, for homeomorphism s a
continuous map itself. We can think of clas-
sical time evolution as a homotopy between

initial and final state field configurations,
and visualise [ f] as the class of fields con-
served as time elapses.

A classification of topological spaces
may be achieved by selecting a standard
‘test body’ & and permitting & to vary
through the family of target spaces under
study. The sphere S, defined by

n+1

2 (xk)2 = constant,
k=1

is a usual choice for &. Here S, corresponds to
just two points (x; = = constant), S, is a circle
or aring, S, is a sphere and so on. Another in-
teresting choice for #is the two-torus T,.

Homotopy classes can be endowed
with a group structure via the operation
[f+gl=[r1+lg]l By =, () we denote the
homotopy group associated with the maps
S, — M. These groups are generalisations of
the first homotopy group or fundamental
group ,(M): it consists of the set of classes
of closed paths on % which are not homo-
topic to one another. Now, a closed path on
M can be represented as the image of a fixed
circle A= S,. The associated fundamental
group 7, (M) is then the set of nonhomotopic
maps S, — M By replacing the circle by the
n-sphere we obtain the higher groups 7, (#).
As an illustration may serve the fundamen-
tal group ﬂl(Sz) = 0, which says that on a

spherical surface all closed paths are homo-
topic and can be shrunk to a point (simple
connectedness). For the two-torus we have
nl(Tz) = Z ® Z, signifying that there exists

an infinite number of closed paths which are
not homotopic to one another. An arbitrary
closed path on T, is homotopic to a path
passing r times along the parallel of the
torus and s times along its meridian, and it
is labelled by the pair of integers (r; s). Note
that a path with r= s = 0 is contractable to a
point. The classes ”1(T2) are relevant, for

instance, in characterising general ring-
vortex-coipfigurations in both Higgs and
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sigma models (19) and in the periodic
CP'model (20).

In the standard case when the target
manifold is also a sphere, it can be proven

that (21)

nn(sn) =Z’
nn(Sm) =0, n<m
7,(S)=0n>1 (8]

The last two expressions indicate that
the homotopy groups involved are trivial: all
maps can be deformed one into the other.
The interesting case when the group of ho-
motopy classes is isomorphic to the group of
integers Zmeans that each homotopy sector
can be labelled by an integer, the topological
charge or Brouwer degree of the map. A the-
ory with non-trivial topology is said to be
stable in the sense that no configuration can
evolve out of its original topological class.

The scenario for the expressions [8] of-
ten comes about in the sigma models from
demanding that the energy of the fields in-
volved be finite at spatial infinity, the local-
ised fields playing the role of the homotopy
maps. When D>1 the fields must tend to the
same value at spatial infinity, regardless of
direction. Whence, the spatial degrees of
freedom of the fields may be regarded as a
one-point compactification R ,U{e} =S,
leading to the maps

S, — S, [9]

The homotopy classification is valid for
any localised static field configuration (the
set of which spans the so-called configura-
tion space). The same classification holds
for localised solutions all right (moduli
space) as they are subsets of finite-energy
configurations.

In connection with the O(3) model in
(2+1) dimensions with standard and peri-
odic boundary conditions we shall study in

the companion paper the cases S, — S, and
T, = S,, respectively.

In any case, the topological index Q can
be computed through

Q= (constant)fw(q}*w), [10]

where ¢‘w is a suitable volume-form on .

The mapping ¢": M — N is the pull-back
map induced by ¢: & — M. The constant in
[10] normalises @Q to an integer.

Alarge number of soliton-bearing mod-
els can be conveniently considered in the
context where the target manifold has the
structure of a coset space (22). The idea is to
find a continuous group G of symmetries
acting on the manifold % in such a way that,
given a point p € ¢ the action of G over p pro-
duces the whole of . This transitivity prop-
erty is technically stated as
Vp,.p, EM3 geG‘ gp, = p,. Given this, a

homomorphism between % and G (or some
related group) could probably be estab-
lished. However, note that the said proce-
dure will yield % more than once in general,
the aim being to obtain it only once. The gist
of the matter then lies on the question:
When do two elements g,,g, € G yield the
same point p of M? Observing that
g,p=9,P ~> g,'g,p = p, we realise that the
answer is: When g;'g, leaves p unaltered,
i.e.,when h=g,'g, € H(p). the isotropy
group of pH(p)= {h EGhp = p}. But
h=g,'9, = g,h = g,, meaning that two ele-
ments of G operate on p to produce the same
point of w iff they belong to the same left co-
set of G with respect to H(p). Now we recall
from group theory that G may be partitioned
into disjoint cosets with the characteristic
-suitable for our objective- that every ele-
ment of G belongs to one and only oneleft co-
set of Gwith respect to H(p). This guarantees
that s will be obtained only once when acted
upon by the coset space G/H(p). The identi-
fication we desire is then
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M =G/ H(p) = 7,(UQ)
={gH(p) g €G} [11] =z[uw=s] [15]

description independent of the choice of pif,
as usual in physics, ¥ is homogeneous. The
manifold % can now be seen to adopt a vari-
ety of forms. Notably (see (11) and references
therein):

¢ Grassmannian sigma-models in 2mn
dimensions:

3 SuU(m+n)

- SU(m)x SU(n)x U(1)

=Gmn [12]

They require mn (2mn) complex (real)
fields. -The case g, , is known as the complex
projective space CP™:

_ Su(n+1)
" su(n)x UQ)
=CP" [13]

e Sn or O(n) sigma-models: The fields
take values on the sphere S, _, the act-
ing symmetry group being SO(n - 1).
Given a point p of the target manifold,
the rotations that leave it invariant are
those about the direction of p itself; so
its isotropy group is SO (n - 1). We then
have

_So(n)
~ so(n -1)
= Sn—l [14]

Other than giving a systematic classifi-
cation of important solitonic models, the co-
set description [11] permits the calculation
of the associated homotopy groups in a re-
latively easy fashion. For example, using the
result 7,(G/ H) = x,(H), valid when G is
both connected [n (G) O] and simply con-

nected [nl(G) = 0], we obtain from [13]

7,(CP") = 7,(SU() x UQ)
=,(SU(n)) ® =, (UW)

a special case of [8]. In particular, since CP!
is isometric to S,, the above result for n = 1
applies to O(3) as well. These two specific
models are essentially the same. As a gene-
ralisation for arbitrary n, however, CP" is
more appropriate than is O(n) by virtue of
continuing to give topological soliton solu-
tions for arbitrary n in the plane. This is not
difficult to infer: in two spatial dimensions
the case O(n > 3) produces, from expression
[9] and [14], S, — S,.,. Whereupon [8] tells
us that the assomated homotopy group is
the trivial = (S ) =0, which cannot

accommodate topological objects. On the
other hand, the non-trivial CP" result [15]
holds for all n.

n>2

3. Solitons in one dimension

The simplest models governed by [1] in-
volve one single real scalar field dwelling in a
line. An interesting example is the so-called
¢* theory (23-25), which plays an important
role in gauge theories. It corresponds to a
Higgs-like function of the form

U(g) = i(# - ";) [16]

where 1, m are positive constants.

The static equation of motion for this
system readily follows from inserting [16]
into [3]. The resulting equation is solved by
the ‘kink’

p(x) = =77 tanh( f) [17]

Finite-energy solutions must obey the

boundary conditions: lim ., ¢(x) - + M

I

the minima of the potential energy.

The kink provides an example of spon-
taneous symmetry breaking: its lagrangian
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is invariant under reflections ¢ - —¢ (the in-
ternal degree of freedom of the system)
whereas the two fundamental states
+m /A are not; rather, they are trans-
formed finto one another under reflections.
Other symmetries of [17] are parity x - —x
and space translations x = x + x,.

The homotopic maps for this model are
the correspondence between the two vac-
uum states (S)) and the points at infinity (a
O-sphere as well). We have four topological
classes, v.gr, the kink sector, the anti-kink
sector, and the two vacua. These sectors are
characterised by the pair of indices

e 2505 252
[18]

The topological index can be defined as
the ‘charge’

[ _Yidp
Q = [ ky(x)dx. k,(x)= o [19]

of the conserved ‘current’

A
k" = % €, Ip(x). uv=0,1 [20]

where €, is the Levi-Civita pseudotensor.
We see that the topological charge is + 1 for
the kink and zero for the minima +m / JA.

The system possesses topological stability,
in the sense that a kink will not decay into
either of the minima because it is not homo-
topic to any of them. Also note that [19] is
(constant) f dg, equation [10] with ¢ w = d¢

a one-form.

Even though we might not be able to
explicitly calculate the evolution of the sys-
tem, of what happens after, say, a kink and
an anti-kink (the solution with the minus
sign in (17) collide, we know that the result-
ing field configuration will always be within
one the four homotopy sectors [18]. For in-
stance, an anti-kink coming from the far
left and an kink approaching from the far

right belong to the Q= -1+1=0 class, and
there will they remain after the impact.

As it actually happens, explicit solu-
tions of the time-dependent ¢* model are not
available. Its dynamics, studied through nu-
merical simulations, indicate that the kinks
do not retain their shapes under collisions.
Also, they seem to repel each other when
started off at rest, a characteristic present as
well in (2+1) dimensional skyrmions.

The particle-like nature of [17] can be
further substantiated by deriving an Ein-
steinian mass-energy formula between
static and moving kinks. Since the model is
Lorentz-invariant, travelling solutions can
be obtained by Lorentz-boosting [17]

. =imtanh(mx_vt), “1<v<l  [21]
Ji V2 {1-v?

(We emphasise that this solution is not
what we mean by an explicit time-
dependent object derived from the full equa-
tion of motion, moving independently from
other solutions). Now, from equations [2]
and [17] we get

3
1 — dx = 22m [22]
4 ML
cosh ( o x)

The energy V, for [21] is related to V()
by the mass-energy formula
V,(¢) = V(¢) / V1—0v>. A schematic plot of te
integrand in [22] gives a lump of matter posi-

tioned around x= 0, able to cruise along un-
scathed upon boosting.

vp) =T f

The ¢* model also illustrates what we
mentioned in the previous chapter about
solitons only steming from equations that
possess a special, fine balance among their
terms. If, instead of [16], we take the look-

alike (¢2 + a¢4)2 say, then no soliton solu-

tions are produced.

Also worthy of remark is the non-
perturbative character of the kink: since it is
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singular when A - 0, a perturbation expan-
sion in 4 is no longer feasible; the quantum
theory of solitons resorts to a semi-classical
expansion that quantises around the classi-
cal solutions.

Amongst other important models in
D= 1 appear the KdV (28), the O(3) [14] (26,
27), and sine-Gordon (29) systems. They are
fully-integrable and have several interesting
properties, v.gr., possession of an infinite
number of conserved quantities, presence of
inverse scattering transform and Backlund
tranformations.

3.1. Bogomolny technique

Let us now illustrate a useful proce-
dure (30) for constructing static solutions.
By completing squares, the static energy for
unidimensional systems can be cast into

V()= L J [o.0% 20| ax7 [ o, 0, (20(p)ax
- %f: 0.0+ 20(0)] ax=[""_ [20(p)dp. (23]

Wherefore the inequality (referred to as
the Bogomolny bound)

vip)= |77 Jau(p) s [24]

which imposes a lower limit to the energy of
any static configuration in a given homo
topy sector Q. The condition for equality
minimises V and occurs iff

a9 = 20(p) =0 [25]

expression that is often called the Bogo-
molny equation. It is of first order, easier to
solve than its parent second order equation.
Upon inserting the quartic function [16] into
[25] the field [17] readily follows.

Solutions of the Bogomolny equation
automatically satisfy the original second or-
der equation, but the reverse is not generally
true. But for the kink model the double im-
plication does hold. The kink, the anti-kink
and the fundamental states ‘saturate’ the

bound [24] and all other Q-sectors are
empty. This feature occurs in all Poincare-
invariant soliton systems in one dimension
(31).

Finally, note that from [6] one derives:
sVl @] =@-pxi-py v [5,(9)
+D(D + 1) 27"V, [$,(¥)] - [26]

Taking into account that for D=1 equa-
tion [7] gives V,[¢,(¥)]=V,[4,(®)]>0,
equation [26] for D = 1 gives

;—2 V[(Z)V(x)]

a=2V,[6,(x)] >0 [27]

Therefore, y = 1 corresponds to a mini-
mum of the potential energy and hence a
soliton in D = 1 is stable. Its finely-balanced
scaling behaviour is brought forth by equa-
tion [5]:

Vg, (0] = yvi [, )] + gvz [5,(x)]. 28]

As we shall see in the next section, the
situation is entirely different in two spatial
dimensions.

4. Solitons in two dimension

Derrick’s theorem for planar systems
entails V, ((?)1 ) = 0, in which case the lagran-

gian [1] reduces to
£=0(0,6) (5,6)., u=012 [29]

An illustration is provided by the O(4)
chiral model. It consists of a real vector

¢ = (0. 0,6, 0,) [30]

restricted to take values on the 3-sphere S;:

b p=0pi+¢p. =1 [31]
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summation over k=1,2,3 understood. The
model is clearly invariant under the O(4) ro-
tation group in internal space. The equation
of motion that stems from [29]-[31] is

09,6+ (0,$96)$ =0 [32]

It is customary to take as the basic field
the SU(2) quaternion
_ Potips Py, TP _ .
J= [—¢2 Fip, gy + i¢j “faroringe 59
where 7, is the 2x2 identity matrix and 7,
are the Pauli matrices. Laborious but
straighforward manipulation yields

(5,6) - (")
0

9 Ja'Jt =

(aﬁ))(') (8"«%)}’

in terms of which the lagrangian density [29]
becomes

- %Tr(aﬂJ 9'J), [34]

with Tr denoting the trace of the matrix.

Written in this form the invariance of
the model under the so-called SU (2) x SU(2)
chiral transformations is manifest. Since
the chiral group and the four-dimensional
rotations have the same Lie algebra, the O(4)
model is equivalently referred to as SU(2)
chiral. Worthy of note is that upon-
expanding [34] around the vacuum 7, one
obtains a lagrangian of the Klein-Gordon
type - an effective meson model; recall our
earlier remark about skyrmions springing
from an effective field theory of pions.
Couched in quantum terminology, the pions
are represented by the fluctuations of the
field J around 7. The lagrangian [34] is the
starting point of the Skyrme model.

With regards to the homotopy of fhe
chiral model in two spatial dimensions first
note that finiteness of the energy compacti-
fies the plane into the unit 2-sphere as per
[9]. Since the internal manifold is a 3-sphere

we then have a trivial homotopy[n 5 (S3 ) = 0]

wherein no topological extended objects can
be accommodated.

Now, the only localised solutions to [34]
are those corresponding to J being antiher-
mitian [¢0 = O], the O(3) subspace of O(4)

[32]. In this case topological solitons do arise
because 7, (Sz) = Z. Consequently, one fre-

quently focuses on the O(3) model rather
than O(4).

An interesting modification of the chi-
ral system is the Ward model, where we have
time-dependent lumps which do not lie in
general in an O(3) subspace. This model is
integrable but at the expense of destroying
the relativistic invariance of the pure chiral
scheme. Both trivial and non-trivial scatter-
ing have been observed in the Ward model
[33, 34].

An important example of a soliton in
two spatial dimensions is the vortex in the
abelian Higgs model. Vortices illustrate the
mechanism for obtaining dual-strings from
gauge theories [35] and, upon suitable
change of semantics, the vortex system
turns into the Ginzburg-Landau model [36]
in the statistical mechanics of a supercon-
ductor placed in a magnetic field. Here the
magnetic flux is quantised by the topological
charge.

A prototype presentation of the vortex
lagrangian is (note the quartic kink-like po-
tential):

1 * (e 2 2\*
Lo == F7Fy +(D.9) (D) —%(\zp\ —’”7) ., [35]

where ¢ is a complex scalar field, Faﬂ is the
familiar electromagnetic tensor, D, is the co-
variant derivative and m, n are constants.
The ‘t-Hooft-Polyakov monopole model is a
non-abelian extension of [35].

The procedure followed to obtain [27]
can also be applied here. One finds
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y=1= 6V, [&1(-’—‘)] =0 [36]

jy—ZV[q“sy(x)]

unveiling the presence of zero modes. From
[5] we further obtain

V[a)v(;()] =V, [3’1()?)], [37]

confirming the scale-free nature of bidimen-
sional sigma models. Wherefore, planar soli-
tons have no preferred scale and at the ex-
pense of no energy at all they can alter their
size under small perturbations. In this
sense they are unstable. In particular, such
instability occurs in the planar O(3) model,
but it is corrected in its Skyrme version.

Historically interesting is the fact that
in the 1960s the quantum version of [29] in-
terpreted ¢, as the creation operator of a
o-particle and ¢ designated a pion operator.

The name ‘sigma’ was thus coined for most
models with structure similar to [34]. The
notation in terms of sigma and pion fields is
still widely used.

5. Solitons in three dimensions

According to Derrick’s theorem non-
trivial static solitons in three or more spatial
dimensions cannot exist for models based
upon a lagrangian [1]. Adopting a more gen-
eral standpoint one can circumvent such
limitation, though. For instance, one can
permit the interaction of the scalar field ¢

with gauge fields, idea that leads to mono-
pole theories. Or one can stick to scalar
fields only and add extra terms to [1] which
is the procedure implemented by Skyrme (6)
he added an extra term to the O(4) model in
four-dimensional space-time. The Skyrme
lagrangian is given by

Lyme = C, (aﬂé) (94) -, |:(a”¢3 - a%)2 +
(0.,6-0.6) @9 74)] wr =012 18]

where the real vector 6& is of the form [30].
The constants C, are free parameters which
in principle can be calculated from QCD; in
practice their values are fitted by phenome-
nological considerations.

In chiral notation the above lagrangian
is usually written as

Logme = — I;; (R R") + 3;22

(R, R JR"R1). R, = (3,0)0" 139

where the SU(2) quaterniond is the 3-D ana-
logue of [33]

J = a(x")ro +it- J"t(x“), T = (JII,JIZ,JI3) [40]

The unitarity of J is guaranteed by the
ordinary ligature on the fields:

o+t =1 [41]

The routine finite-energy analysis ex-
acts that localised lumps must tend to an
absolute minimum of the integrand of the
potential (using a particular choice of the
parameters in [39]).

Vigme = — {% (R R,) + 3—12
(R, R ][R j,Rk])}dsx, Johe =123, [42]

at spatial infinity. Electing the 2 x 2 identity
matrix as the vacuum, the finite-energy ar-
gument translates into

‘l_im J(X) =1,, [43]
effectively compactifying R; to a three-
sphere. At any given time, finite-energy
fields are maps J:S, — S, whose associated
homotopy classification is dictated by
Ty (SS) =Z.

The topological index for this model is
interpreted as the baryon number
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styrme = f Bodsx'

=J 241312f e Tr(Rij Rl)ds x, [44]

of the topological current (compare with
[20])

1
B = €™ (R, R, R)). [45]

Completing the square in [42] we get

1 1 ?
—§f’1‘rz {Rj £ € [Rk,Rl]}
J

3 - 2
d®x T 127°Qeymes

[46]

the Bogomolny bound in the present case
being

V. > 1272

skyrme

Q skyrme|* [47]
The equality in the above expression
occurs iff

1
Rjiz

€u [ReR]=0 [48]
for which no non-trivial analytic solutions
have been found. Its simplest numerical so-
lution corresponds to a quaternion of the
form

sin[ F(X)]

i X, [49]
X

J(%) = cos[ ()] +

where the profile function f(|X]) is subject to

f(0) = 7 and f(w) = 0. It sets the skyrmion
energy to the value 1.232 x 127> which ex-
ceeds the minimal energy in [47] (37). Some
scholars (38, 39) have been able to produce
avalueofV,, _ closer to the minimal value
by using instanton holonomies to generate
skyrmion fields. So, the approximate solu-
tion [49] is a local minimum rather than an
absolute one.

The first application of skyrmions in
nuclear physics was the extraction of a nu-
cleon-nucleon interaction energy of sepa-

rated @ = 1 lumps (40, 41), idea later ex-
tended to @ = 2. The deuteron for instance,
being the simplest nucleus, has been de-
scribed as a quantised two-skyrmion by a
number of people, using very particular ap-
proximations (42-45). As mentioned in the
introduction, the results extracted from the
Skyrme model are in qualitative accord with
reality (7, 8). Approximate skyrmions on a
cubic lattice belonging to 9=3,4,5,6 have
been reported in (46). And more recently,
high-technology multi-skyrmion scattering
has been investigated using an economical
approximation based on a solution of the
sine-Gordon type (47).

The progress that has been made in de-
riving multi-configurations in three spatial
dimensions bodes well for the longevity of
the model, but still the multi-skyrmion
problem is very hard to attack. Analytical
solutions even for the simplest single-
soliton case are not available.

Consequently, one is naturally led to
investigate simpler models which still pos-
sess key features of the four dimensional
ones. Through such low-dimensional ana-
logues one hopes that a better understand-
ing of the underlying mechanism of soliton
dynamics will be attained, thenceforth as-
sisting in the analysis of the more realistic,
but more involved, (3+1) case. Skyrme him-
self used a (1+1) dimensional model (sine-
Gordon) as calistenics to his (3+1) invention.

Finally, we present a Derrick-like argu-
ment in three spatial dimensions: Under di-
lations x - yx the potential [42] goes to

v[u(R)] =y ov o)) + v, o) 1501

where V|,V denote the first and second
terms is the right-hand-side of [42]. Equa-
tion [50] is the analogue of equations [4]-[5].
Diferentiating we get

%V[J(y;c)] = @- D)y [u()]

+4 - Dy* v, [J(%)] [51]
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Setting the left hand side equal to zero
for y = 1 there follows

(4 -DV,(J) =(D-2V,(J), [52]

according to which the existence of solitons
in D = 3 is now licit. Note also that plugging
the value D = 3 into (50) we find

v[u(R)] =y o]+ pv, [, (53]

characteristic of a stable lump if we recall
the kink result [28].

The whys and wherefores of the addi-
tional Skyrme term in le lagrangian are
clearly to stabilise the solitons. In the pure
chiral limit [Vsk = O], equation [53] says that

for any configuration J the energy can al-
ways be decreased by dilations y > 1. In the
limit as the latter goes to infinity the size of
the lump collapses to zero. But a non-zero
Skyrme term gives a minimal value of the
potential energy equal to

Vrm‘m‘mal = 2V VskVI ' [54]

There are other important examples of
solitons in three spatial dimensions, includ-
ing Yang-Mills instantons, monopoles and
dyons, this latter objects being carriers of
both magnetic and electric charge.

References

1. LUILAM (editor) Nonlinear Physics for Be-
ginners, World scientific 1998.

2. LAKSHMANAN M. (editor) Solitons: Intro-
duction and Applications Springer-Verlag
1988. Proceedings of the Winter School on
Solitons January 5-17 1987, Bharathi-
dasan University, Tiruchirapalli, India.

3. PIETTE B., ZAKRZEWSKI W. Solitons and
JSractals 5: 249, 1995.

4. SKYRME T.H.R. Proc R Soc A260: 127,
1961.

5. PERRING J.K. SKYRME T.H.R. Nucl Phys
31: 550, 1962.

10.
11.

12.

13.

14.

15.

16.

17.
18.
19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

SKYRME T.H.R. Nucl Phys 31: 556, 1962.

HOLZWARTH G.,SCHWESINGER B. Rep
Prog Phys 49: 825 1986.

BRAATEN E., CARSON L. Phys Rev D39:
838, 1989.

WITTEN E. Nucl Phys B160: 57, 1979.
WITTEN E., Nucl Phys 2: 422 1983.

ZAKRZEWSKI W.J. Low dimensional
sigma models Adam Hilger 1989.

PERELOMOV A.M. Phys Rep D4: 135,
1987.

GELL-MANN M., LEVY M. Nuovo Cimento
16: 705, 1960.

EELLS J., WOOD J.C. Topology 15: 263,
1976.

DZYALOSHINSKII I. et al. Phys Lett A127:
112, 1988.

GREEN A.G. et al. Phys Rev 1353: 11, 53,
1996.

HOBARTR. Proc Phys Soc 82: 201, 1963.
DERRICK G.H. J Math Phys 5: 1252, 1964.

HECTORJ. DE VEGA, Phys Rev Lett 18: 8,
1978.

COVA RJ. ZAKRZEWSKI W.J. Nonlineal-
ity 10: 1305, 1997.

STEENROD N. The Topology of fiber bun-
dles, Princeton Univ. Press 1951.

GODDARD P., MANSFIELD P. Rep Prog
Phys 49: 725, 1986.

POLYAKOV A.M. JETP lett 20: 194, 1974.

DASHEN R.F. et al. Phys Rev D10: 4130,
1974.

GOLDSTONEJ., JACKIW R. Phys RevD11,
1486, 1975.

POLHMEYER K. Comm Math Phys 46:
207, 1976.

LUSCHER M., POHLMEYER K. Nucl Phys
13137: 46, 1978.

KORTEWEG D.J., DE VRIES G. Philos
Mag Ser 5: 39, 422, 1895.

BARONE A. et al. Riv Nuovo Cimento 1:
227, 1971.

Scientific Journal from the Experimental Faculty of Sciences,
at La Universidad del Zulia Volume 14 N° 3, July-September 2006



346 Topological Solitons: I Sigma Models
30. BOGOMOLNY E.B. Sov J Nucl Phys 24: 39. ESCOLA K.S., KAJANTIE K. Z Phys 44:

449, 1976. 347, 1989.
31. SPEIGHT J.M. On the dynamics of topo- 40. JACKSON A. et al. Nucl Phys A432: 567,

logical solutions, Ph. D. thesis Durham 1985.

1995. 41. VINH MAU R. et. al. Phys Lett B150: 259
32. BORCHERS M.S., GARBER W.D. Comm 1985.

Math Phys 72: 77, 1980. 42. KOPELIOVIH V.K., SHTERN B.E. Sov Phys
33. WARD R.S. J Math Phys 29: 386, 1988. JETP Lett 45: 203, 1987.
34. WARD R.S. Phys Lett A208: 203, 1995. 43. VERBAARSCHOT J.J.M. et. al. Nucl Phys
35. MELSEN H.B., OLESEN P., Nucl Phys B61: A468: 520, 1987.

45, 1973. 44. SCHRAMM A.J. et. al. Phys Lett B205:
36. GINZBURG V.L., LANDAU L.K. Sh Eksp 151, 1988.

Teor Piz 20: 1064, 1950. 45. LEESE R.A. et. al. Nucl Phys B442: 228,
37. ADKINS G. et al. Nucl Phys B228: 552, 1995.

1983. 46. BRAATEN E., TOWNSEND S. Phys Lett
38. ATIYAH M.F., MANTON N.S. Phys Lett B235, 147, 1990.

B222: 438, 1989. 47. BATTYE R.A., SUTCLIFFE P.M. Phys Lett

B391: 150, 1997.

Scientific Journal from the Experimental Faculty of Sciences,
at La Universidad del Zulia Volume 14 N° 3, July-September 2006



	Topological Solitons I: Sigma Models
	UJ Cova* 334
	Solitones Topológicos I: Modelos Sigma



