CIENCIA 15(2), 242 - 247, 2007
Maracaibo, Venezuela

Montecarlo DLA type simulation of non-wetting
(Drainage) stable displacement in porous media*

Rafael Rangel** and Sergio Rojas
Departamento de Fisica, Universidad Simon Bolivar, Apdo. 89000,
Caracas 1080 A. Venezuela.

Recibido: 30-11-05 Aceptado: 10-04-06

Abstract

We study immiscible fluid-fluid displacement in a porous media in a regime where the dis-
placed fluid has negligible viscosity. In our model we consider the interplay between viscosity
forces and capillary forces; the ratio is denoted by the parameter r, the inverse of the capillary
number. We use a DLA type algorithm and consider a boundary condition at the interface of the
two liquids, which takes into account the viscous, and the capillary pressure drop at the interfa-
ce. This boundary condition makes the problem nonlinear. We make computer simulations and
generate patterns of displacement. The roughness exponent a and the dynamic exponent  are
calculated for each interface of the pattern obtained. We find that the roughness exponent de-
pends on r and ranges from a value around 0.5 for small r to a saturation value 0.8 for large r.
We also find strong fluctuations of these values during the simulations because of cascade simi-
lar processes at the interface. Our results compare well with the experiments of Pon-zeng Wong
et. al. We further extend our model and introduce a parameter, which considers the relative pre-
ference of the wetting properties of the two liquids to the porous media. We find that this para-
meter controls the amount of trapped liquid behind the front.
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Simulaciones Monte Carlo tipo DLA del desplazamiento
de un fluido por otro en medios porosos CFara el caso
estable y cuando el fluido desplazado moja
preferentemente al medio poroso (Drainage)

Resumen

Estudiamos el desplazamiento inmiscible fluido-fluido en medios porosos, en el régimen
donde el fluido desplazado tiene viscosidad insignificante. En nuestro modelo consideramos la
interaccion entre las fuerzas de la viscosidad y las fuerzas capilares, cuyo cociente es denotado
en las simulaciones por el parametro r y representa el inverso del nimero capilar. Utilizamos
un algoritmo tipo DLA y consideramos una condicion de borde en la interface de los dos fluidos
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(donde se toma en cuenta la viscosidad) y la caida de presion capilar en la interface. Esta
condicién de borde hace que el problema sea no lineal. Los patrones de desplazamiento se
generan via simulaciones en computador. Se usa la técnica de caminar por la interface cuyas
fluctuaciones son medidas por medio del coeficiente de rugosidad (alpha) y el exponente
dinamico (beta). Ambos se calculan en cada interface de los patrones de desplazamiento
obtenidos. Encontramos que el exponente de rugosidad depende de r, variando desde 0.5 para
valores pequenos de r hasta un valor de saturacion de 0.8 para grandes valores de r. También
encontramos fuertes fluctuaciones de esos valores por efecto de procesos tipo cascada en la
interface. Los resultados se comparan con resultados experimentales reportados por Pon-zeng
Wong y colaboradores. Extendemos nuestro modelo e introducimos un parametro que
considera la preferencia relativa de adherencia o mojabilidad de los dos fluidos respecto al
medio poroso. Encontramos que este parametro controla la cantidad de fluido atrapado detras

del frente.

Palabras clave: Desplazamiento de fluidos; medios porosos.

Introduction

Basic research in displacement pro-
cesses in porous media has attracted a
number of relevant work recently in part be-
cause of the importance in the development
of simulators for oil wells. In this work we in-
vestigate ideas concerning stable displace-
ment. Stable immiscible fluid —fluid dis-
placement occurs when a fluid of finite vis-
cosity inside a porous media displaces an-
other fluid of negligible viscosity. From an
experimental point of view there are mainly
two parameters, which govern the dynamics
of the displacement: the capillary forces at
the through level, and the viscous pressure
drop on the displacing fluid. One important
experiment, done by the group of Wong and
coworkers (1) consisted in water displacing
air in a porous media made of glass beads
inside a Hele-Shaw cell. In that case the po-
rous media was homogenously disordered.
In a previous work we have considered the
case of unstable displacement in porous
media (2,4,5), i.e., where the displacing fluid
has negligible viscosity. We constructed a
model using a DLA (Diffusion limited aggre-
gation) type model, which considers random
capillary forces. Cooperative effects due to
inter-porous surface tension were neglected
as well as the effects due to preference wet-
ting properties of the liquids. They were con-

sidered later in an attempt to explains the re-
sults of Stokes et.al. (4). We extend here our
model developed in [4] for the case of stable
displacement. First we develop the model in
all its generality, however we show results
only for the case where inter-porous surface
tension or cooperative effects is negligible.

These effects are discussed for the case
of unstable displacement in detail in other
work.

Model

In experiments, one considers the in-
jection of a fluid of viscosity x, through a po-
rous media filled with another fluid of negli-
gible viscosity u,. Under suitable conditions
the pressure drop is given by Darcy’s equa-
tion:

v, = -k V [1]

where:

v,= Fluids velocities. k,= relative per-
meability. k, = k / u,,k = permeability of po-
rous media.

u,= viscosities. V = pressure gradient.

The fluids are incompressible, such
that:
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V2p =0 2]

The last relation is Laplace’s Equation
which crucial for the development of the
Montecarlo scheme. Now, in the diffusion
limited aggregation process the random
walk is given by the diffusion equation, the
density of random walkers is given by:

aC(r, 1)
at

= DV C(r,1) (3]

D = (Diffusion constant)

The steady state situation is given by:

aC
— =0 (4]
at

V?C=0, i.e., the Laplace equation.

The model consists of Laplacian growth
combined with a boundary condition at the
interface. Laplacian growth is realized
through a DLA type algorithm which incor-
porates through the interface boundary
condition the pressure drop at the frontline.
This drop is produced by the random capil-
lary pressure drop in the throats which is
represented by random numbers p(r), where
r defines a site at the interface and by z(r)k(r).
Here 7(r) is the random inter-porous surface
tension and k(r) is the curvature (3). There
are two types of random walkers. Those
which are released from the boundary far
from the interface at the injection place and
those which are released from the two kind
of interfaces which develop due to the im-
miscibility of the fluids during the process of
invasion. The front interface which sepa-
rates the invading fluid from the displaced
one and the interface behind the front which
separates the invading fluid from the
trapped fluid.

We define:
p=p+rti,, +Ap/2 (5]

where p is the pressure with V?p =0, and
p = p, is the injection pressure at the the

bottom of the cell, therefore V’p' = 0 and by
definition positive every where, V°p / 2is the
half width of the dispersion of the p(r) num-
bers which are distributed between —Ap / 2
and Ap /2, tk,,,, is the maximum value of
the product of the surface tension and the
maximum value of the local curvature at r.
The curvature is k=—-(AmAL)/a,. Here
Am = x1if a site is added or removed and
AL = *1is the increment in the length of the
interface boundary when a site is added or
removed respectively (3). On the viscous side
of the interface, i.e., on the invading fluid,
one has:

p =1k, +7(r)k(r)+ AD / 2+ B(r) (6]

because p = ©(r)k(r) + p(r), we take p = 0 on
the nonviscous side. In this way there is a
jump in the pressure given by (7) as we go
from the defennding fluid to the displacing
one. The ratio of the probabilities for releas-
ing walkers from the interface boundary to
the bottom boundary is given by:

p(r) _ PB,(r) _ Ap / 2+ p.(r) + tk,,, T(r)k(r)

= 7
P+ AD/2+ Tk, 7]

’
p bottom P, bottom

In order to avoid unnecessary random
walking one releases the walkers from a line
in principle but not necessarily just behind
the front at a distance lfar from the injection
bottom. This probability is given by

aD
P =—2P

1 Protom - One obtains from Equation

[8] in the limit when in principle the bottom
of injection is far away from the front, letting

= «, p, = w«but keeping the ratio p % finite
to ensure the displacing process at all:

By(r) _ _2p(r) t(r)k(r)
Rl L R | I

max

max

Ap/2
and where q = p/
a, <Vp> Tk, ..

where: r =

In the limit when q >1 equation [9] re-
duces to :
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P, 2

F_r [1+ 2"(”} 9]

— AF

Here rmeasures the relative strength of
the capillary forces to the viscous forces. Us-
ing Darci’s law (equation [1]), the capillary
number which is defined in experiments as

Ap%

a({Vp)

U

Ca =
TO

, where Uis the velocity of in-

jection, w is the viscosity of the displacing
fluid and 7, is the bare surface tension. One
obtains:
r=Ca’

We first make simulations with the re-
lation (10) when cooperative effects due to
inter-porous surface tension are neglected.
We use lattices LxL with L= 1024 sites to
generate aggregates. Immiscibility requires
that random walkers who would break the
interface boundaries are not allowed. Figure
1 shows an aggregate for =1000. One sees
two important distinct features. The front
interface boundary shows roughness at cer-
tain scales and there is trapped fluid behind
the front. Once the cluster has reached
around 70% we trace the front interface with
an algorithm that walks along it and calcu-
late its mean value and the fluctuations over
this mean also called roughness

We carry out this procedure for a given
length scale .

1 &
o(l,) = <[12(Y1 — Y)2)1/2> [10]

0 i=1

Although there are overhangs, they
make negligible contribution, such that
Jo(l,) represents indeed the front interface

width W. We make the standard log-log pro-
cedure to find possible scaling relations. In
Figure 2 we plot logol(l,) versus log(l,) for
some values of . One observes that there is a
range of values [, below which there is scal-
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Figure 1. Typical cluster for immiscible stable
displacement for L =1000 and r =1000.
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Figure 2. logo(/,) versus log (/,) for different
values of inverse capillary number r.

ing. i.e., alinear dependence whose slope in-
creases with r. This slope is named the Hurst
exponent H or roughness exponent «. The
dependence of H with rdescribes well the ex-
periment of Wong and collaborators, see Fig-
ure 3(d) of (1). Figure 3 shows H(r) for some
values of r. This function is well fitted by
H(r)=a+b *In(r)for r>1. For smallr H = 05
and appears to saturate to H = 0.8 for larger
values of 1.
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Figure 3. The Hurst exponent H as a function of
the inverse capillary number r.
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Figure 4. logW(l,,L(t)) versus L(t) for distinct
values of r.

We also study the dynamic exponent j3.
For this purpose we study the temporal evo-
lution of the width W(l,, L(t)) from initial flat
boundary conditions. Here t is a pseudo
time which is measured as the mean height
value of the aggregate L(t). Figure 4 shows
how this width grows for distinct values of r
for a given lengthscale l,. Once notice the
existence of two regimes of growth. One re-

gime of rapid growth with § = 282+ 006 and
another one following the first of rather slow
growth with = 033+002.

After this second regime of growth,
saturation sets in and the stationary value of
the width W for this particular r is reached.
However, one sees from Fig.4, that the width
fluctuates. The nature of these fluctuations
appears to be related with cascade similar
processes or intrinsic metastabilities of the
front interface. Fluctuations in the width
and therefore in the roughness exponent is
also observed in (1), Figure 3b.

Conclusions

Our results show that the dependence of
the roughness coefficient ¢ on the capillary
number r~' for negligible inter-porous sur-
face tension explains well the experiments of
Wong et.al.. There are also strong fluctua-
tions in this number because the existence of
cascade similar processes at the front inter-
face. We also found two regimes of growth
with marked distinct values of . This is a pre-
diction for the experiments as Wong did not
measure dynamic growth properties of clus-
ters [6]. Furthermore our model contains
more physics to be analyzed when inter-
porous surface tension (cooperative effects in
wetting displacement) can be relevant or rela-
tive wetting properties of the fluids can play
an important role. Also the fluctuations in the
width due to cascade similar processes are
currently under investigation (7).
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