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Two level dipolar system in a heat bath
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Abstract

Using a theory developed by Fulinsky and Kramarcyk, combined with weak coupling limit
asymptotic perturbative expansion we obtain rate equations for the reduced density matrix of a
two level system immersed in a heat bath. PACS: 31.70.Dk; 33.15.Kr
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Sistema dipolar de dos niveles en un bafio térmico

Resumen

Usando una teoria desarrollada por Fulinski y Kramarcyk, combinada con un desarrollo
perturbativo en el limite de acoplamiento débil, obtenemos la ecuacion de evolucion para la ma-
triz densidad reducida de un sistema de dos niveles inmerso en un bano térmico. PACS:

31.70.Dk; 33.15.Kr

Palabras clave: Ecuaciones maestras sin memoria; limite de acoplamiento débil;

sistemas de dos niveles.

Introduction

The study of stochastic effects on the
interaction of light with a two-level system
has attracted considerable interest. Many
experimental as well as theoretical studies
have done in an attempt to quantify the
ubiquitous quantum fluctuations (1-4).
Thus, Mollow (1) carried out fluorescence
experiments and found that the emitted
spectrum was very sensitive to the stochas-
tic fluctuations of the pumping field. Vari-
ous theoretical models have been developed
to account for this effect (2, 3). These include
the so-called phase diffusion model (2), in
which only the field phase fluctuates, the
chaotic field model (3), where the fields am-
plitude was modeled as a two-dimensional

complex Gaussian process, and jump mod-
els (4), where the amplitude phase or fre-
quency of the field is taken as a discontinu-
ous Markov process. In other words, the dy-
namic study of many systems, have been
treated and/or characterized by an interme-
diate mesoscopic description, where the im-
portant quantities are represented by ran-
dom variables. The rate of change of the joint
probability distribution of these variables is
given in terms of the so-called master equa-
tion (ME).

The master equation (ME) technique is
a time honored technique to obtain reduced
and/or decoupled dynamic equations for
complex or large systems. In (5) and (6) the
reader can find considerable description of
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the original work and ideas. One interesting
line of research was initiated in (7)-(8) and
applied to the simple Friedrichs model in
quantum field theory, which consists of a
procedure to obtain memoryless ME, that is,
reduced equations in which the rate terms
do not depend on the previous history of the
system. In (9) this line of work was suple-
mented with perturbative expansion te-
chiques and asymptotic limits of the weak
coupling type, and it was shown that some
of the typical ME models can be so obtained.
The theory of limits of the weak coupling
type was well developed by then, see
(10)-(11) for example.

These reduced density matrix equa-
tions, are very important in quantum optics,
when is necessary the optics response of a
molecular system, interacting with a thermal
bath and radiation field. Cases of ME as the
Nakajima-Swanzig equations, have been em-
ployed in the literature for the dynamic study
of the reduce density matrix. In this case, is
very important the memory kernel associ-
ated to the system-bath correlation, and the
information term. We should mention that a
Hamiltonian similar to [2] appear as reduced
Hamiltonian to describe tunneling in a
double-well potential, when the system is
coupled to dissipative environment, and
when transitions to and from higher energy
states can be neglected. A comprehensive re-
view of this problem appears in chapter 18 of
reference (12), but the techniques described
there are quite different from ours.

The asymptotic limit of the
reduced equations

Consider to begin with a two-level sys-
tem with Hamiltonian operator

H=EN+E,2(2+m-H (1]

describing a simple system interacting with
adipole. If a usual, we orient the z-axis along
the polarization field H and denote the com-
ponents of m, by u, the Hamiltonian be-
comes

H=E,+ E,[2@+ o{n@ + [2)(1} (2]

where 0= u,H=u, H represents the
strength of the dipole coupling, say. Also,
E,=E, +u,,Hand E, = E, + u,,H repre-
sent the shifted energies of the two levels of
interest. It is an elementary exercise in ma-
trix diagonalization, to see that the eigenval-
ues of H are given by

E,+E, [, owe
=2 (A +06%)77,
B (w4 o)
_E +E,

€o

e + (A2 +62)?

(3]

E
where A = % and the new basis vec-

tors are

_ 0
(0> +(a-0)

A-©
(0> +(a-0)

‘0> )1/2 ‘1>+ )1/2 ‘2>

[4]
and

__ 0
(0> +(a+0)
[5]

A+0O

» (5 +(a+0Y

)1/2 ‘]‘>+ )1/2 ‘2>

where © = (A% +06%) "

Now we want to study the effect of a
heat bath on this system. In the basis in
which the Hamiltonian of the system is di-
agonal, the full Hamiltonian of the system
plus heat bath will be

H=H,+H, =¢,[0)(0]+¢,[1)(1+

%:‘wNXwN‘ + g:VM((i +1),, 0, o,

+i, 0, )@, (i +1), ) (6]

where (i +1), denotes sum modulo 2, and of
course, since our system is composite sys-
tem, to be proper we should have written

£0l0)O R & 11| = (£,0)0]+ &DA) & Y |0, ), |
= EN (80‘0’ wn ><O’ C()n + gl‘ 1’ wn ><1’ a)n D [7]
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and similarly for the other term in H,. The
evolution equation for the density matrix p(t)
of this system is the standard

L~ 1p =[] i8]

Mathematically speaking, our problem
consists of finding an evolution equation for
p )= P, (t), where PA is the projection op-
erator on the “relevant” or “diagonal” part of
A. That is if then

A= zi'nAivj:n,m i’wn ><wm ’J‘

LOVEDWILRIE Ztr(m(j\AD\i)(j\ (9]

or perhaps a bit more explicitly
A = ZNA If we denote by U(t) = e™

i.j i,jin.n*
the propagator or time evolution operator as-
sociated with [8], it was proved in (2) or (6)

that p, (t) satisfies the equation

dpq(1)

4= = R()p,,(0) + R(t)p,,(1 [10]

where  R{t)= N¢)N¢)™' and where
N(t) = Q+PU(t)— I) which is invertible, and
Q=1-P. If we write H= H, + AH,, we can
obtain a perturbative expansion for
G(t) = PR({t)P = R{t)P of the form

G(t) = PL,P + AG,(0) + AG, (+... [11]

where L, = [HO;] and L, = [Hl,-] with
G,(t)= PL,P, and

G,(t) = PL,Q [ U,(SIQL,PU,(-s)ds.
0]

and more elaborate expressions for the fol-
lowing terms of the expansion. There
U,t)= e™ isthe evolution operator induced

by L,. The theory of weak coupling limits
(see (10)-(11)) asserts that small A and ap-
propriately stretched out time scale, the as-
ymptotic behavior of p , (t) happens to be de-
termined by the averaged Liouville (or Ha-
miltonian) operator

L = PL,P+ APL,P [12]

and now we can stop referring to the pertur-
bative constant 1. After some simple, but
somewhat tedious computations we obtain

PLB = P[Hy o] = 2 (& —¢,)p 00| 18]

i,j=0

with the understanding that as operator on
the product space, the right hand side must
be multiplied by the identity operator

Zn\wnan \ Also

PL,Fp = P[Hl’ Pp] = Eivj‘}i(Z)[i+1)2,_j‘i><j‘_:2)i.j

_Zi,_;‘}i(ﬁf"
After equating coefficients of the same

basis vectors, we obtain the following system
of equations for the density matrix p

(i+1,)(7])
1) [14]

J><(l + 1)2 ‘_ﬁj.(iJrl]z

P o -w w 0 \Pw
idﬁd =ig Por _ -w -A 0 W | P zm
dt dt| p, W 0 -A -W|p, d
Pu o w -w 0 \py

[15]
where A=¢, —¢, and W=V, +V,, and of
course V, = 2 V, .. To integrate this system
it is easier to begin by finding its eigenvalues
and eigenvectors. The eigenvalues are
A ==Nvy,=a,;A;=a_; 1, =0

A_1
where a, = —§$§(A2 +16W2)1/2 and the

corresponding un-normalized (transposed)
eigenvectors are

a, a, 1)
2w’ 2w )

v, =(0110); v, = (—L

_( 1 & 4
Vs T\ Tt ow T ow

1); v,(1,0,0,).
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which can easily seen to be orthogonal. After
normalization, the p,(t) can be explicitly
computed once initial data is supplied.

With this information relative to the re-
duced density matrix, it is possible the de-
termination of important fundamental
properties. For this, we have considered a
macroscopic system, consisting of N non-
intereacting dipoles, immersed in the heat
bath, and under the action of the same po-
larization field, where the average moment is
given by Mi(t) = Ntr(m ,p(t)). Notice that the
trace being basis independent can be com-
puted in any basis. Thus in order to com-
pute M(9), once [15] is integrated, we can ei-

ther express El 4 Oug\i)( j\ in terms of the
i, j=

(normalized) basis v, displayed above, or
write that basis, and the matrix p ; in terms
of the \i)( Jl, and carry out the computation. In
the present model, the intensity of any non-
linear signal in the local approximation is
related to the quantity M, given by I < M(t)>.

Final comments

The model developed in the present
study represents an alternative of the con-
ventional local models proposed to date in
the literature. The explicit inclusion of nonz-
ero molecular dipole moments in the pres-
ent model is a necessary and sufficient con-
dition for the generation of nonlinear optical
signals. Details concerning the modification
of the response by including propagation of
the field in a medium material, and inclu-
sion of the fields with temporal dependence,
are to be published elsewhere.
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