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Abstract

We continue our study of classical topological solitons in nonlinear sigma models, focusing
on the stability and scattering properties of the CP' model on the plane.
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Solitones topologicos II: modelo-o CP!

Resumen

Continuamos nuestro estudio de solitones topolégicos clasicos en modelos sigma no linea-
les, concentrandonos en las propiedades de estabilidad y dispersion del modelo CP' en el plano.

Palabras claves: solitén, skyrmion, topologia, dispersion.

Introduction

In our previous paper (1) we presented
an overview of topological solitons in one,
two and three spatial dimensions. Based on
that work, the present follow-up article pays
specific attention to the popular nonlinear
CP' sigma model in (2+1) dimension (two
space, one time) both in its pure and Skyrme
versions, and considers its stability and
scattering properties. We limit ourselves to
one and two solitons.

Physical and mathematical systems
defined on the plane are the subject of much
active research, covering topics that include
Heisenberg ferromagnets, the quantum Hall
effect, superconductivity, nematic crystals,
topological fluids, vortices and solitary
waves (2). Most of these systems are non-
linear. One of the simplest models in (2+1)
dimensions which is both Lorentz covariant
and which possesses soliton solutions is the
nonlinear CP' or O(3) sigma model.

Among other things, sigma models are
very useful as low dimensional analogues of
important field theories in higher dimen-
sions. For instance, the planar sigma CP'
model exhibits conformal invariance, spon-
taneous symmetry breaking, asymptotic
freedom and topological solitons, properties
that resemble some of those present in a
number of forefront field theories in (3+1) di-
mensions. An example of the latter is the
Skyrme model of nuclear physics (3). Ini-
tially proposed as a theory of strong interac-
tions between hadrons, it is now regarded as
a low energy limit of quantum chromody-
namics (4). The Skyrme scheme assumes
that its topological solutions (skyrmions)
correspond to ground states of light nuclei
with the topological charge representing the
baryon number. Of course, to compare with
the properties of real nuclei one has to insert
various quantum corrections to the classical
results.
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Planar analogues of the Skyrme model
involve the addition of extra terms to the
original CP' lagrangian in order to stabilise
the field solutions. Without such terms the
invariance of the pure, planar CP'theory un-
der dilations leads to the instability of its
soliton-lumps. In the traditional approach
one adds two terms: a Skyrme-like term
which controls the shrinking of the lumps
and a potential-like term which controls
their expansion. Properly implemented, this
procedure yields stable solitons as con-
firmed by numerical simulations (5).

In the following section we define the
standard planar nonlinear O(3) or CP
model. In section 4 we present our Syrme
version of the theory and in section 5 we lay
out the numerical procedure. After present-
ing some basic results for one and two soli-
tons, sections 6 and 7, respectively, we close
our paper with some concluding remarks.

The O(3) model

One of the simplest Lorentz-invariant
models in (2+1) dimensions is the nonlinear
O(3) sigma model. It involves three real sca-
lar fields ¢(x") = {¢,(x").a = 12,3} with the
constraint that Vx* = (x°,x',x?)=(t,x.y)
[speed of light set equal to unity] the fields lie
on the unit sphere S{.

$-¢=1 (1]

Subject to this constraint the lagran-
gian density reads

3 2
L= D D 0,0.0"0, =%0,4) (") 2]

a=1 u=0

which is invariant under global O(3) rota-
tions in internal space. Through the Euler-
Lagrange equations with multipliers we find
that the dynamics of the O(3) fields is gov-
erned by

39,6 —(§-0,0"9)p =0, 3]

which for the static case reduces to
V’$ —(¢- V2p)p =O. [4]

Were it not for the constraint imposed
on ¢, the second term on the left-hand-side
of the above equations would not be present,
and the static non-singular solutions would
be trivial. The condition [1] leads to finite-
energy non-singular solutions: solitons.
Furthermore, the interaction of the system is
purely geometrical and defined by equation
[1] which determines the curvature of the in-
ternal space . This is a particularity of chiral
or sigma models.

It is straightforward to see that the ki-
netic and potential energies are given by

K =4 [ (,0) - (6,)dxcly. (5]

V= %f(am “(0,9)dxdy i =12]
=1 [ (V¢ - V§)rdrdb, 6]

where V¢ = (0,¢,10,).

The problem is completely specified by
giving the boundary conditions. We take

limg(r,0) = ¢, Vi, (7]

where the unit vector ¢© is independent of

the polar angle 6. This condition ensures a fi-
nite potential energy. In effect, finiteness of
the energy demands

I}EQ (r0,4)* + (9,4)> = O,
[8]

which implies [7].

Itis interesting to note that the classical
vacua ought to be represented by ¢ for all
x = (x,y). Since ¢° can point in any direc-
tion, there is a continuous family of zero-
energy solutions connected by O(3) rotations
in internal space. This is an example of
spontaneous symmetry breaking.
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The boundary condition [7] defines a " = g”yggabc¢aav¢lla§¢c, [12]
one-point compactification of the plane R, ,
allowing us to consider ¢ on the extended where ¢ is the familiar Levi-Civita pseudo-
tensor.

plane %, U{x}, topologically equivalent to
S (the superscript indicating that the
sphere refers to compactified plane). Conse-
quently, the field configurations we want are
maps S}’ - S{" that can be labelled by an
integral topological index Q. As sketched in
(1), an expression for this index is obtained
by pulling back the differential form

w=¢-dsS'"
=(9). ¢y, P5) - (dp, Ay, dps A p,,dp, Adp,) 9]

from the internal sphere to the ‘physical’
sphere. Using coordinates (x, y) in the latter,
expansion of w yields

¢ 0P 9
w =}, 0.9, 9,P,|dxAdy [10]

¢3 ax¢3 ay¢3
Relaxing the wedge notation we get
Q=% mqﬁ (0.4 % 9,0) dxdy [11]

quantity sometimes called the winding
number because it gives the number of
times that ¢ ranges over the internal sphere
as (x, y) ranges over the compactified plane
once. The constant 1/4x normalises Q to an
integer. Note that [9] is nothing but the ele-
ment of area of the unit sphere S ; indeed,
upon expanding o in terms of local space
polar coordinates (&, ¢) in internal space and
parametrising

¢ = (sin dcosep, sind sin ¢, cos ¥),

we find the all familiar w = sinddidp. The
topological charge now stems from

Joppw=0f jpw

hence equation [11]. Note as well that Q may
be considered as the zero component of the
topological current

CP1 formulation

In this formulation the soliton fields
adopt a simpler form involving just one inde-
pendent complex field, W, related to the
fields ¢ via the stereographic projection

¢ t+ip,

W = .
1_¢3

[13]

Introducing complex coordinates z= x+iy
and z = x —iyon the extended plane and us-
ing the handy notation
a,W=W_,_0,0,W)=W,, etc., the equation

of motion [4] becomes

2QWW, W,
W ="y =0 [14]

being W the complex conjugate of W.

In terms of W the potential energy and
the topological index read

2

v =2f o V(V“: W ) [15]
_‘W 2
Q=% Qw\ ) [16]
Clearly
y 219+ 4f o W“gj_ldxdy
aeloolear . WW+ vy
ie.
V = 27(Q|. (17]

The static solitons or instanton solutions
correspond to the equality in [17]: solutions
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with @ > 0O (instantons) and solutions with
Q < 0 (anti-instantons) obey, respectively,

W.=0, W, =0 (18]

which are nothing but the Cauchy-Riemann
conditions for W being an analytic function
of z or z. Therefore, the general static solu-
tion of the planar CP' model is

z

~a,
z—b,;

I
Wi(z) =] | [19]

and its complex conjugate W(z); 1 is a free
parameter and the degree k of the polynomi-
als is numerically equal to \Q\

For k = 1 the potential or static energy
density is

\Ma - b)f
e=2 s [20]
{lz = b +4Plz —a}’

which possesses a bell-like shape whose
maximum value

_ )y

Emax = 21
max u’(a _ b)‘Z [ ]
is positioned at
2
_ai”+b 2]

z =5 . -
max M‘Z +1

In any given topological sector the
static energy is minimised when one of the
Cauchy conditions is satisfied. A solution of
[18] automatically solves the original second
order equation [14] but the converse need
not be true. However, all the static finite-
energy solutions of [14] are exhausted by
equation [18] (6, 7). This is a special asset of
the CP' model on S, which is absent in its
generalisation CP". The latter possesses
static solutions like W(z, z) which are non-
meromorphic and correspond to saddle
points of the energy (8). Furthermore, the
CP' model itself on a torus has solutions to

[14] which disobey [18]. For the model a
torus see (9).

Viewed as an evolving structure the
soliton [19] is unstable under any small per-
turbation, either explicit (e.g., by setting the
soliton into motion) or implicit (as inevitably
introduced by the discretisation procedure).
For fields W = A(z—a),A(z—a)(z—-b), etc,
simpler in form than [19], such behaviour
has been seen both in the full simulation of
the model and in the collective coordinate
approximation (10, 11). The said instability,
which eventually collapses the numerical
procedure by infinitely shrinking or expand-
ing the soliton, is associated with the confor-
mal invariance of the O(3) lagrangian in two
dimensions: the solitons can change their
size at the expense of no energy at all.

As commented earlier on, the instabil-
ity of the discretised O(3) model can be cured
by the addition of two extra terms to the la-
gragian [2]. The first one resembles the term
introduced by Skyrme in his nuclear model
in four dimensional space-time, and the sec-
ond one is a potential-like term. Such modi-
fied ‘baby Skyrme model” possesses stable
lumps which also scatter at 7 / N.

Modified model

Our modified model corresponds to the
lagrangian density

L,=0,— 2191[(3”3’ ~au¢3) - (aﬂq'b ~0V$)(3uq‘> -av¢’>)]

_Zlgz[_zRe(wl —2Im(2)p, + (1 - W)% +(1+ W)QT

where £, is given by equation [2] and
6,,0, ER". The 6-terms break the confor-
mal invariance and their combined effect
stabilises the solitons. If the size of the soli-
tons is appropriately chosen, it is energeti-
cally unfavourable for them to change it.
Also note that the above Lagrangian is no
longer O(3) invariant, but it respects the re-
quirement of relativistic invariance. Both the
kinetic and potential energies can be easily
read-off from [23]. The latter rescales as
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v, = [pr0] = v, [60] + 2V, [00] + 77, [600]. 1241

in obvious notation: V, is the scale free po-
tential [6]; V, is the Skyrme-like term that
prevents the solitons from shrinking
whereas the V, term resembles a potential
that prevents ‘their expansion. Judicious
choices of the 6, term, which unlike the
Skyrme term is nonunique (12), opens up
the possibility of writing different interesting
versions of the baby skyrmion model, a re-
alisation of which is [23].

Through laborious but straightforward
manipulation one can cast [23] into the
more tractable W formulation. We get the
field equation

0=W,-W_ - ) -y -(w) ]+

yy ‘ ‘ +1

(\W\ +1)
M[(Wy) _(Wr)2:| +‘/T/yy|:(wx)2 _(Wy)2i| +W"(‘WY‘2 _“/Vu‘z) +
W (W[ =W, ) + W, (W) =) =W (W, - W) -

W, (Ww, +W,w,) + W, (WW, + W,W,) +

‘WQ‘H[(WW WW) +(ww, WW)] }
40,w - A°

(\W\2 + 1)2

For the static case we drop all time-
dependent terms in [25] and, also ignoring
the anti-soliton terms like W, the above
equation simplifies to

><[71W2 +(1—WZ)W—A} [25]

— 46,/
2 — dv —
—[401(WZ) W, —ezvdww]}w
2 — dv
—[401(WZ) W, —Ozvﬁ] [26]

where v= (W - 1)*. It is directly checked
that the configuration
zZ—Qa

W=/lz_b [27]

{ZW W,W, +2W, W,W, — 2W, W, W, - W, [(Wx)2 +(m,)2]

413
where
s 29%
A= 2 a,b,EC, [28]
a—-b

solves the equation of motion. The field [27]
is the familiar expression for a single cP!
soliton but now with A fixed by [28]. A soliton
with its size thus fixed is sometimes called a
‘baby skyrmion’ [an anti-skyrmion would be
the complex conjugate of [27]]. It is notewor-
thy that theories like the tHP monopoles
have a parameter similar to A, which deter-
mines the size of the monopoles.

The skyrmion’s potential or static en-
ergy density Eis found by inserting [27] into

(\w )
+1) (\W\ +1)

_ W AW

(\W\ + 1) g

29]

whose maximum value is

(a7 +1)°

~ 30
|A(a - b) (301

max) max

E_ .= smax(1+ 0,

max

The position z,_ . is still determined by for-
mula [22]. Observe that in the limit where
the 6’s go to zero we recover the pure O(3)
model.

Putting v = 1in equation [26] gives

0,
o = 2A° +80/A[746,, 4 = 4 =
2 + 8ol {5

which is a peak value located at z_, = a.
This important particular case was tackled
in reference (13) and corresponds to a soli-
ton of the form W = A(z— a).

In order to study processes involving
two skyrmions we are going to consider
fields of the appearance

z—az+c
W=A— 31
z—-bz+d (31]
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which do not satisfy identically the field
equation [26] and hence describe two soli-
tons only in an approximate manner.

Numerical procedure

We treat the fields W as the basic initial
configurations and their analytic values are
used at each lattice site in the discrete ap-
proximation of the model. After Lorentz
boosting W, we pass on to the ¢-formulation
by means of equation [13]. Then ¢ is numeri-

cally evolved according to the full equation
[25], written in terms of ¢.

Itis quite common for ¢, to have values
near to 1, in which case Wbecomes too large
for numerical comfort. So in our simulations
we have preferred, instead of [13], the
stereographic projection

¢ t+ip,
The dynamics of the system is un-
changed because £ (W) = £ (W).

Our simulations employ the fourth-
order Runge-Kutta method and approxi-
mate the spatial derivatives by finite-
differences. The laplacian is evaluated using
the standard nine-point formula. We use
double-precision arithmetics on a 200x200
n, = n, = 200) lattice with spatial and time
steps 0x = dy = 0.02 and 6t = 0.005.

Unavoidable numerical truncation er-
rors introduced at various stages of the cal-
culations gradually shift the fields away
from the unit sphere [1], thereby building-
up numerical inaccuracies in the evolution
equations. So we rescale

¢
¢ b

¢ -

every few iterations. The error associated
with this procedure is of the order of the ac-

curacy of our calculations. Each time, just
before the rescaling operation, we evaluate
the quantity

n=6¢-¢-1

at each lattice point. Treating the maximum
of the absolute value of yu as a measure of the
numerical error, we found that \,u\max ~107°.
This magnitude is useful as a guide to deter-
mine how reliable a given numerical result
is. Usage of an unsound numerical proce-
dure like, say, taking dx < Jt in the Runge-
Kutta evolution, shows itself as a rapid
growth of max \,u; such increase also occurs
when the solitons become exceedingly thin.

We include along the boundary a nar-
row strip to absorb the various radiation
waves, reducing their effect on the skyrmi-
ons via the reflections from the boundary.
The absorption is implemented by setting

at@ - xarﬁ’

where the damping function y has the form

Ljelo.j]
1-L2h
xJj) = J2 —

jeli+1j, -1
Xo’je[jz’nx] (Xo =0'95)
where the absorbing band is no more than
about 10 % of mesh-points. The damping de-
vice is useful when studying soliton stability,
but it is dispensable when considering colli-
sion processes.

For the parameters we have chosen

a=c =075, b =d = 0.05,
6, =0.015006250, 6, = 01250 [33]

The global U(l) symmetry of [27] has been
used to choose 4 real. In our case, from [28]
and [33] it follows that 1 = 1.
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One skyrmion

Let us consider the single-skyrmion
field

_z -075
" z-005

[34]

For an initial velocity equal to naught our
simulations show that the energy density
corresponding to the above soliton evolves
only very slighty and does not change its
shape. At the initial time the amplitude of
the energy density has the numerical value
of = 12847, but it quickly re-adjusts itself
and stabilises around the analytical result
as calculated from equation [30] and [33]:

E_ .. =653+3199+3199=1293

Some radiation waves are emitted by
the soliton-hump as time goes by. They
propagate out to the boundary at the speed
of light leaving the central region of the lat-
tice essentially free of kinetic energy. The
smallness of the kinetic energy density indi-
cates that our soliton is almost perfectly
static; this is in fact numerically observed:
at the initial time the lump of energy is situ-
ated at z,,, =(040,0) and by t=10 it has
slowly shifted to (0.4013,0). Note that the
theoreticalvalue of z___, as per formula [22],
is precisely (0.40,0). The kinetic energy den-
sity decreases as time goes by and fades
away, due to the absorption set-up operat-
ing along a small band near the edges of the
grid (see section 5). A cursory glance at [23]
shows that by setting 6, = 6, = Owe recover
the pure O(3) model:

, lierE o Lay ™ Log) [35]

Upon effectively moving the bounda-
ries to infinity, our simulations for this lim-
iting case show that [34] represents a static
0O(3) solution which, however, is unstable
on the mesh, corroborating the results
found in (10).

It is most interesting that the limit [35]
resembles the BPS limit in the tHP monopole
theory.

Two solitons

We now shift our attention to the two-
soliton configuration

(z-075) (z+075)

W =%-005) (z+005)

[36]

which gives two skyrmion-lumps of equal
size initially well separated from each other
but still far away from the edges of the mesh,
thus avoiding reflections from the bounda-
ries as much as possible. As pointed out at
the end of section 4 the state [36] is not an
exact solution of the model, therefore it
should undergo some evolution even for an
initial speed of zero.

The amplitude starts at a value some-
what bigger than twice the value for a single
soliton. As soon as the evolution commences
the skyrmions shake off some radiation and
alter their size by getting broader. In so doing
they slowly move away from each other, un-
veiling the presence of a repulsive force be-
tween them.

During this process the peak E, .. de-
creases and undergoes damped oscillations
around the canonical value 129.3; by t = 8
the oscillations are quite small and the en-
ergy stabilises near that value. The kind of
weak repulsion just described has also been
observed using a collective coordinate
method (14).

In the limit [35] we have verified that the
repulsion between the lumps disappears
and they remain motionless in their initial
positions throughout the simulation. How-
ever, in this case the solitons are unstable
and their energy density increases non-
stoppingly: their breadth goes down to the
order of the lattice spacing, eventually col-
lapsing the numerics.
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Next we study head-on collisions be-
tween two skyrmions of the form [36]. Upon
boosting the solitons towards each other
there is always an initial burst of radiation
and the lumps re-arrange themselves
around their stable size. At small speeds the
two humps approach each other but the re-
pulsive force between them results in their
motion being reversed.

A qualitatively similar behaviour is ob-
served for speeds up to approximately 0.3.
Forv = 03and higher the skyrmions acquire
enough kinetic energy to overcome their
mutual repulsion; during their collision they
form a complicated ringish state (where they
attain a minimum height and hence maxi-
mum width) and re-emerge at 90° with re-
spect to the original direction of motion in
the centre-of-mass frame. The emerging
skyrmions are initially shrinking but, after
they have travelled some distance, they ex-
pand once more. The final state is achieved
after some oscillations of the energy density.

The existence of a critical velocity above
(below) which the lumps scatter at right an-
gles (backwards) is a major difference be-
tween the pure O(3) model and its modified
Skyrme version: in the limit [35] we have
been able to confirm that this critical veloc-
ity ceases to exist and 90° scattering occurs
as long as v > 0. In the pure model events
unfold very much like before but now the
system in no longer stable. The soliton-
humps continue to grow thin, increasing in
height, eventually breaking down the nu-
merical procedure.

It is noteworthy that a similar scatter-
ing behaviour, and the existence of a critical
velocity as well, are exhibited by other im-
portant soliton models like vortices (15) and
monopoles (16).

For collisions with small but non-zero
impact parameter the results are not at vari-
ance with prognostication: the skyrmion-
lumps scatter either bouncing back or at
nearly right-angles to the initial direction of
motion, depending on the velocity. In gen-

eral, the larger the impact parameter the
smaller the scattering angle, and the more
the lumps conserve their identity during the
process.

Conclusions

Restricting ourselves to solitons with
topological charge Q= 1,2 we have performed
anumerical study of some stability and scat-
tering properties of the CP' model in (2+1) di-
mensions, both in its pure and Skyrme ver-
sions.

We have found that the model is stable
only in its Skyrme version. The so-called
‘baby skyrmions’ possess energy density
profiles that do not change appreciably in
shape, nor they shrink or expand unduly
with the passing of time.

The single-skyrmion case is almost
perfectly static, whereas for Q = 2 there is a
repulsive force between the lumps. This re-
pulsive interaction is responsible for the
skyrmions to scatter back-to-back if the ini-
tial, boosting velocity is smaller than a cer-
tain critical value. Otherwise they scatter at
90°. Our Skyrme version of the model is a
low dimensional analogue of the nuclear
skyrmion theory in four dimensional space-
time.

For pure O(3) solitons, a limiting case of
the Skyrme theory, scattering at 90° takes
place for any non-zero initial velocity, i.e.,
the soliton-lumps no longer repel each other.
This is confirmed in the static Q@ = 2 case
where the bell-shaped quasi-particles keep
still as time goes by, before the instability
breaks down the numerical code. In the pure
scheme the solitons are not stable because
they are invariant under scale transforma-
tions. Any perturbation causes the solitons’
energy density to increase without limit.
When its breadth is comparable to the lattice
spacing the numerical code breaks down. An
explicit perturbation can be introduced into
the system by impinging the solitons with
some initial velocity, but the implicit pertur-
bation inevitably brought about by the dis-
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cretisation procedure suffices to trigger off
the instability.
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