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Abstract

Computer simulations of plasmas are relevant nowadays, because it helps us understand
physical processes taking place in the sun and other stellar objects. We developed a program,
called XPCell, which is intended for displaying the evolution of the magnetic field in a 2D con-
vective plasma cell with perfect conducting walls for different stationary plasma velocity fields.
Applications of this program are presented. This software works interactively with the mouse
via a graphical user interface. XPCell graphical user interface was generated with XForms. For
displaying the simulations, XPCell uses free version of OpenGL, which is available for all com-
puter systems. This software allows the user to create movies in MPEG and AVI format.
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Visualización de celdas de plasma convectivo en 2D

Resumen

Las simulaciones por ordenador de los plasmas son relevantes hoy en día, porque nos
ayudan a comprender los procesos físicos que tienen lugar en el sol y otros objetos estelares.
Hemos desarrollado un programa, llamado XPCell, que está diseñado para mostrar la evolución
del campo magnético en una celda convectiva del plasma en 2D con paredes perfectamente
conductoras para diferentes campos de velocidades estacionarios del plasma. Las aplicaciones
de este programa se presentan en este artículo. Este software funciona interactivamente con el
ratón a través de una interfaz gráfica de usuario. La interfaz gráfica de usuario XPCell se ha
generado con XForms. Para visualizar las simulaciones, XPCell utiliza la versión gratuita de
OpenGL, que está disponible para todos los sistemas operativos. Este software permite al
usuario crear películas en formato MPEG y AVI.

Palabras clave: física de plasmas, simulaciones por computadora, visualización científica.

1. Introduction

The great advance in computer tech-
nology makes possible to simulate and visu-
alize complex physical phenomena taking
place in stellar objects, for instance, the
convective cells on the sun.

Over the past 50 years, important de-
velopment have occurred in the intriguing

field of magnetohydrodynamics, which de-
scribes the generation and persistence of
magnetic fields in cosmic sources that take
their energy from fluid mechanical energy.
Currently, the magnetic field intensity of
most celestial bodies and regions of the uni-
verse are known; they range from 10–9 G in
the intergalactic plasma to 1012 G at the sur-
face of neutron stars (1).
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The approach most researchers use to
understand this dynamo mechanism is to
consider a cosmic plasma with a stationary
motion, which leads to an induction prob-
lem where the goal is to find stationary
states as solutions of the induction equa-
tion. Nowadays, this kind of equation is eas-
ily solved via computer. W. M. Elssaser,
N. O. Weiss, and E. N. Parker performed the
first two-dimensional simulations (2-4).
More recent simulations by Weiss (1975),
P. A. Galloway include dynamical effects
and are generalized to three dimensions for
the kinematic case (5-7). In recent years dy-
namo models have been improved by con-
sidering fully dynamical solutions of the in-
duction equation taking into account the
coupled mass, momentum and energy rela-
tions for the plasma. Recently P. D. Mininni
et al. have considered the Hall current into
the dynamo model (8).

We can simulate convection cells by
choosing convective velocity fields, which in
turn help us understand the behavior of
granules, mesogranules in the photosphere,
supergranules in the photosphere and chro-
mosphere, and laboratory plasmas. We also
can investigate the not-well-understood
phenomena of reconnection in this way (9).

The XPCell program helps visualize
the magnetic field’s evolution in different
convective plasmas. We wrote the program
in C. The graphical user interface was de-
signed using XFORMS (toolkit) and
OpenGL (graphic library). The user can cre-
ate movies with XPCell. This program runs
on Linux or Unix. To get the program, the
interested user may visit our website:
http://www.cinespa.ucr.ac.cr/soft-
ware/xpcell/index.html

Pcell (10, 11), the old version is still
available. In PCell, the simulation is dis-
played with GNUPLOT, which is common in
all Linux operating systems. The capability
to create movies in MPEG format is possible
with PCell. The graphical user interface of
both programs is basically the same.

2. The Induction Equation

2.1. Conditions

We can obtained the induction equa-
tion under certain special conditions:

– The plasma is assumed to be an iso-
tropic, homogeneous medium of con-
stant conductivity �.

– The effects produced by temperature
gradient and density fluctuations of
charged particles are neglected.

– The velocity of the charged particles
(mechanical velocities) are considered
much slower than the electromagnetic
field velocity, meaning the relativistic
effects are not present.

– The magnetic energy dominates over
the electric energy, which means that
the force is mainly magnetic.

– The ratio of the convection current or
displacement current to the conduc-
tion current is very small.

2.2. Deduction of the induction
equation

Maxwell’s Equations determine elec-
tromagnetic fields behavior in a cosmic fluid
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where � is the medium electric permittivity,
µ is the medium magnetic permeability, �E
is the charged particles density and J is the
current density. The effects produced by the
temperature gradient and charged particles
density fluctuations had been neglected.

The general expression for the current
density J in an isotropic homogeneous me-
dium is:
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J E v B v� � 	 �� �[ ] E , [2]

where the right-hand-side terms are the
conduction, induction and convection cur-
rents respectively. The conductivity � is con-
sidered constant in the whole plasma and v
is the velocity field that describes the
plasma motion.

We can simplify the above equations by
comparing the orders of magnitude of the
quantities involved. We represent orders of
magnitude with square brackets. In cosmic
plasmas the velocity of the charged particles
(mechanical velocities) are much slower
than the electromagnetic field velocity
(speed of light). Therefore, we have:

v
c
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which implies that the orders higher than �
can be neglected (non relativistic plasma).

From the Faraday equation (second
equation of [1]), we can obtain an quantity
with dimensions of velocity:

[ ] [ ]E Bel� v , [4]

which is the velocity associated to the elec-
tromagnetic processes and satisfies the con-
dition:

[ ] [ ]v vel � . [5]

The last two equations combined give
us an estimation of the rate of the electric
energy to the magnetic energy:
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If equation [5] is fulfil, the electric com-
ponent �E E of the magnetic force that exerts
the magnetic field over the plasma is negligi-
ble compared with the magnetic component
J×B.

The displacement current in the
Ampère-Maxwell equation (last equation of
[1]) is negligible when is compared to the
conduction current. The rate of both is given
by �:
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where �el is the electromagnetic frequency.
Taking L as a characteristic length of the
electromagnetic and mechanical phenom-
ena (2), we have

[ ] [ ]v � L � , [8]

and from [7] we obtain

[ ] [ ]� �el � . [9]

For the Earth’s core � � �10 18 and for
stars � ��1 (1). The rate of the convection
current to the conduction current has the
same value �. From the Gauss law for the
electric field (first equation of [1]) we have
that [ ] [ / ]� �E E L� , therefore
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According to equations [7] and [10],
equation [2] simplifies to

J E v B� � 	�[ ] . [11]

Thus, the fourth equation of [1] can be
written as

�	 � � � � � 	B J E v B�[ ] . [12]

To eliminate E, we apply the curl to
equation [12] and make the substitution of
Faraday’s law, yielding
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t
( ) . [13]
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Finally, if we change the second term of
the right side with the help of the well known
vector identity and use the magnetic Gauss
law (third equation of [1]) we arrive to the in-
duction equation
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B
v B B

t
� �	 	 � �( ) 2 , [14]

where � �� �1/ is the magnetic viscosity.

3. Behavior of the induction
equation

The rate of the first term on the right
side of the induction equation to the second

one is given by R
L

m �
v
�

, where the adimen-

sional quantity is called the magnetic Rey-
nolds number, in analogy to the Reynolds
number for non conducting fluids. The big-
ger the plasma characteristic lengths is, the
bigger the magnetic Reynolds number.

If the first term is much bigger than the
second, equation [14] can be written as

�
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B
B

t
� �2 . [15]

This is the diffusion equation, which
describes the magnetic field decay in a diffu-
sion characteristic time
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for a plasma with spherical symmetry. It is
of the order of one second for a one centime-
ter radii copper sphere, 104 years for the
Earth’s nucleus and 1010 years for the Sun.

The order of the magnetic Reynolds
number can be written as

[ ]Rm
el
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where �0 is the time associated to plasma
mechanical motion. Therefore, for times
much slower than the diffusion time the
equation simplifies to

�

�

B
v B

t
� �	 	( ) , [18]

which states that the magnetic flux through
any closed curve that moves with the local
velocity of the plasma remains constant in
time, i.e., the magnetic field lines are
dragged by the fluid (frozen field lines).

When Rm ��1the transport of the field
lines by the plasma dominates over the dif-
fusion, but if Rm ��1 the field decays very
fast and the dynamo effect cannot take
place. The behavior generated from the in-
terplay of both terms for magnetic Reynolds
number values between these limits is very
interesting and to explore this is the aim of
our work.

4. The induction vector potential

The induction equation [14] can be
simplified for the two dimensional case if it is
written as a function of the vector potential.
We take the magnetic field and the velocity
field limited to the xy plane, then the mag-
netic field is obtained from the one compo-
nent vector potential A=Ak as follows

B A� �	 � 
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after the substitution, equation [14] yields

�

�
�

A

t
A A�
 �� � �v 2 . [20]

We define the position and velocity vari-
ables as function of the characteristic pa-
rameters (maximum velocity V and maxi-
mum length L) as follows

v v V� " � ", x x L [21]

���������� �	
��� ��	� ��� ����������� ���
�� 	� ���������
�� ��� ����������� �� �
�� �	
�� �� �� �� ���
��� !���� "#��

�������� 	
 ��� ������������� �
 � ������� ���
 ��� �� � ������  � � !  '



with the analogous definition for the y coor-
dinate. The spatial derivatives are given by
(similar expressions for the y component)
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After the substitution of these relations
and defining the characteristic time of the

mechanical motion �0 �
L

V
(which measures

the time it takes the plasma to go from the
bottom to the top of the cell), with t t� "�0,
we obtain

�

�

A

t
A

R
A

m

�
 �� � �v
1 2 , [24]

where the primes have been removed for
clarity.

This is the equation we solve under the
kinematic condition, i.e., there is no reac-
tion of the magnetic field on the plasma,
leaving the velocity field time independent.
This approach is valid if the magnetic energy
is small compared with the kinetic energy of
the plasma, that is

B
E

2
2

8
1
2�
�

�
�� v . [25]

5. The visualization programs

5.1. Description of the program

We solve equation [24] by using an al-
ternating method in a fourth-order differ-
ence schema in a two dimensional cell with
perfect conducting upper and lower walls
(the magnetic field lines remain always tide
to them) and periodic conditions at the lat-
eral walls, i.e., each cell is surrounded by
similar cells. The initial magnetic field is ho-

mogeneous and points in the y-axis direc-
tion.

The velocity field is taken to be incom-
pressible, which allow us to define a stream
function from which it can be obtained. We
chose the following stream function (fig-
ure 1) shown in the figure 1
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with (0�x�1, 0�y�1), m is an adjustable
parameter (0�m�1) that allow us to select
different velocity fields. When m=1 it de-
scribes a single eddy, as m decreases two
new symmetrical eddies emerge from each
side compressing the original eddie. At one
point, there are three eddies, but as m gets
closer to zero, the central eddy disappears
and just two eddies remain, rotating in same
directions (figure 1a).

Time is measure in �0 �
L

V
units; where

V and L are the characteristic plasma veloc-
ity and the characteristic length of the cell.
For granules, mesogranules and supergran-
ules the values V=900, 60 and 400 m/s and
L=1.4×103, 7×103 and 3×103 km, respec-
tively, yields �0 values of 26 minutes, 1.35
days and 0.87 days (12, 13).

The magnetic Reynolds number is
given as an input parameter. For laboratory
plasmas is low due to small scales and slow
plasma velocities. To study supergranules
the highest Reynolds number allows by the
program should be used (Rm �1000).

5.2. PCell and XPCell

The user, who desires to run the PCell
and XPCell under Linux, needs the following
free programs:

– XFORMS
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Figure 1. The stream function for m=0.005 (a) and the corresponding time evolution of the magnetic

field with R
�
� 500 (b-h) at different times. At the beginning the magnetic field is oriented on

the y axis. In this case, the steady state is reached quickly (c-h).



– GNUPLOT

– OpenGL

These programs are available for all-
most all computer systems. The XFORMS li-
brary was used to design the control panel.
Both programs use the same control panel.
The data generated by PCell is processed by
GNUPLOT to produce the simulation. The
user can create movies with both versions.
With PCell the movie format is MPEG.

The new version, XPCell uses OpenGL
for the visualization, so the visualization is
displayed in a square window, while the one
provided by GNUPLOT in PCell is not. For
more information about the program, the in-
terested user may visit the website, we men-
tioned above.

XPCell uses CONREC, a contouring
program written by Paul D. Bourke. For
more information about this routine, the in-
terested reader may consult following Web-
page: http://local.wasp.uwa.edu.au/
pbourke/papers/conrec/

5.2.1. The control panel

When the program starts, it creates a
window: the Plasma Cell Control Panel. The
user can control all items on it interactively
with the mouse. The control panel has the
following items (figure 2):

– The velocity field parameter input: The
user chooses the velocity field selecting
a value of the m parameter (0�m�1).

– The magnetic Reynolds number input:
The user enters the magnetic Reynolds
number ( )0 1000� �Rm .

– The running time input: The user en-

ters this time in units of �0 �
L

V
. The

values of V and L are chosen equal to
one, thus the magnetic Reynolds

number R
LV

m �
�

equals the reciprocal

viscosity. At this time, the program
stops.

– Initial MF (Magnetic Field) Configura-
tion: Not yet implemented.

– The Draw button: This button starts
the program that calculates the mag-
netic field at each time interval (these
data is stored in the files pcell1.dat,
pcell2.dat and so on) and after a
short time, when the generation of data
is finished, the display window opens
(figure 3).

– The Redraw Button: To display the
simulation of previously obtained data,
to avoid repeating an already existing
calculation. It applies only for pcell.

– The Stream button: Displays the me-
chanical motion of plasma (figure 1a).
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Figure 2. PCell and XPCell Control Panel.
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Figure 3. The stream function for m=0.15 (a) and the corresponding time evolution of the magnetic field

with R
�
� 500 (b-h) at different times. At the beginning the magnetic field is oriented on the y

axis. In this case, the steady state is reached quickly (f-h).



– The Movie button: The users can create
their own movies and display them
with a MPEG player. The name of the
created movie is convection.mpg for
pcell and convection.avi for
xpcell.

– The Help button: Not yet implemented.

– The Exit button: To leave the session. If
the user wants to remove all
pcell*.dat then type rm -rf pcell*

.dat on the prompt (it applies only for
pcell).

The magnetic Reynolds number, the
running time, and the velocity field parame-
ter inputs can be used in any order, but the
user should enter values before any other
item of the program (Draw, Redraw, Stream,
Movie). The evolution of the magnetic field
lines are displayed on a new window
(GNUPLOT or OpenGL). When a given veloc-
ity field is selected it is shown here too. For
for XPCell an OpenGL Window appears im-
mediately. For PCell the GNUPLOT windows
appears but after all data file were created.

6. Applications

There are some interesting applica-
tions that the user can explore. Among these
are (figures 1 and 3):

– The evolution of the magnetic field lines
as function of the magnetic Reynolds
number.

– The mechanism of magnetic field dissi-
pation and the reconnection phenom-
ena.

– The evolution of the averaged magnetic
density as function of the magnetic
Reynolds number.

– The maximum averaged magnetic den-
sity as function of the magnetic Rey-
nolds number.

– The stationary state of the averaged
magnetic density and the way it is

reached as function of the magnetic
Reynolds number.

– The time it takes to reach the maxi-
mum and the stationary state of the av-
eraged magnetic density as function of
the magnetic Reynolds number.

6.1. Evolution of the magnetic field

The stream function and the magnetic
field twist evolution can be visualized easily
with PCell and XPCell. In figures 1 and 3-7
illustrations of this evolution can be seen.

Magnetic reconnection of the magnetic
field lines is one of the mechanisms respon-
sible for solar flares and other plasma phe-
nomena. These magnetic reconnections ap-
pear in figure 4-7.

6.2. Analysis of the magnetic field
evolution

For high Reynolds numbers the con-
vection generates a magnetic field compo-
nent parallel to the plasma motion. The field
begins to amplify itself, becoming stronger
at the lateral borders of the cell (figure 3-4,
and 6-7). As this happens the spatial scale,
where the variation of the field occurs, de-
creases linearly, producing an increase of
the diffusion. When this resistive term be-
comes of the same order as the convective
term the amplification of the field stops.
Therefore, the averaged magnetic density
reaches a maximum (figure 8). The twisting
of the field produces regions of high mag-
netic density at the same time that the diffu-
sive term becomes bigger and reconnection
of the magnetic filed lines occur expelling
the field from the central region of the eddy,
reaching the magnetic density a stationary
value (figure 1 and 3). This stationary value
is independent of the velocity field but the
way it is reached depends on the velocity
field (figure 8).

For velocity fields dominated by one
eddy the magnetic energy in the central part
of the cell is very small compared with the
density at the borders, as the field is ex-
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Figure 4. The stream function for m=0.5 (a) and the corresponding time evolution of the magnetic field

with R
�
� 500 (b-f) at different times. Magnetic reconnections appear in (c-h). At the begin-

ning the magnetic field is oriented on the y axis.
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Figure 5. Time evolution of the magnetic field for R
�
�1000 (a-h) at different times. At the beginning

the magnetic field is oriented on the y axis (a). The stream function (m=0.005) appears in frame

(a) of figure 2. Magnetic reconnections appears in frames (d-f).
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Figure 6. The time evolution of the magnetic field for R
�
�1000 (a-h) at different times. At the begin-

ning the magnetic field is oriented on the y axis (a). The stream function (m=0.15) appears in

frame (a) of figure 3. Magnetic reconnections appear in frames (d-e).
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Figure 7. The time evolution of the magnetic field with R
�
�1000 (a-h) at times. At the beginning the

magnetic field is oriented on the y axis (a). The stream function (m=0.5) appears in frame (a) of

figure 4. Magnetic reconnections appear in frames (d-h).



pelled from the central part by the diffusion
the magnetic density does not change much
so the stationary value comes from the field
located at the borders. For velocity fields
with a strong influence of lateral eddies an
additional region of high magnetic density
appears in the middle of the cell, where the
central eddy is located (figure 6). The inten-
sity of the field is of the same order as the
one at the borders; the twisting of the field as
it disappears on both sides of the central re-
gion of high density makes the average mag-
netic density oscillate until it reaches the
stationary value. When the velocity fields
are practically two eddies (small m) the mag-
netic field at the borders is not very strong
and the generation of the central high den-
sity zone helps to reach the maximum value,
which is the same as the stationary one (fig-
ure 8).

It is importance that the average life-
time of the granules and mesogranules are
very small compare to the characteristic
time (~ .031 0� and ~ .007 0� , respectively).

Therefore, for these motions the behavior
shown would not evolve because the struc-
tures have disappeared long before. On the
other hand, in supergranules (~ 23 0� ) the
stationary state is reached.

According to the above description for
single eddies, a simple expression for the
maximum averaged energy density and the
Reynolds number can be obtained:
B R Bmax

/2 2 3
0
2� , where B 0 is the initial aver-

aged magnetic field (2, 8). In figure 9a it can
be seen that this behavior is still valid for
plasmas with interacting eddies. The Rey-
nolds number exponents obtained for the
values of m=1.0, 0.7, 0.3, 0.1 are respec-
tively 0.59, 0.55, 0.54, 0.67. In the same
way a relation between the stationary aver-
aged energy density is obtained (2, 8):
B R Bst

2 1 2
0
2� / . Figure 9b shows the result of

the simulations which agree very well with
this relation even for interacting eddies. The
Reynolds number exponents obtained in
this case are 0.42, 0.42, 0.43, 0.48 in the
same order as above.
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Figure 8. Square of magnetic field as a function of time for different m values.



7. Conclusions and future work

The kinematical dynamo model pre-
sented here produces intensification of the
magnetic field by the induction of plasma
trying to move across field lines in regions of
small eddies between big convective zones,
in addition to the usual one accumulated on
the regions between cells. Although this
model does not include the feedback of the
force on the inducting motion and has no ro-
tation profile, the generation of a toroidal
field is clear. Similar oscillatory behavior of

the magnetic field for bands of asymmetrical
eddies has been found for groups of four-cell
convections by Zegeling (14) working on the
same principle here described.

The model could be implemented to
solve the full dynamo problem, which in-
volves the simultaneous solution of the in-
duction equation, along with the equations
of motion, continuity and thermodynamics.
The inclusion of the term produces the
freezing of the magnetic field to the electron
flow instead to the bulk velocity field (8).
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Figure 9. Stationary (a) and maximum magnetic energy density (b) as function of the magnetic

Reynolds number for different m values.



Implementations of the numerical
methods will allow us to expand the study,
including the effects of nonlinearity and
chaotic motion at Reynolds numbers typical
of astrophysical problems, where self or-
ganization emerges (15, 16).

New approaches have been developed
to calculate in a more efficient way convec-
tive cells. One strategy is the adaptive grid
method, which based on a coordinate trans-
formations between physical and computa-
tion coordinates, automatically track and
spatially resolve nonlinear structures (17).

As a didactical tool, a program to visu-
alize the magnetic field in a plasma confined
to a cell is very useful, especially if the user
can create movies by changing the parame-
ters involved in the induction equation. The
versatile program we have described func-
tions quickly and interactively with the key-
board and the mouse, but there is room for
improvement.

Future work

The program can be improved in the
following way:

– Including more velocity fields.

– Adding the magnetic density averaged
over the cell, represented as function of
time.

– Expanding to three dimensional cells
and using other shapes like hexagonal
cells (this shape appears as stable pat-
terns in some fluids).

– Considering mechanical-electro-
magnetic interaction between the
plasma and the field.

– Exploring more complex behaviors
such as Chaos.
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