https://doi.org/10.52973/rcfcv-e34487
Received: 11/07/2024 Accepted: 09/09/2024 Published: 10/12/2024
1 of 6
Revista Científica, FCV-LUZ / Vol. XXXIV, rcfcv-e34487
ABSTRACT
Generally, peanut (Arachis hypogaea, L.) products have been used
as alternative feed additives in trout farming due to their nutritional
properties. The maceration process ensures that fat–soluble
substances pass into the oil more. It was thought that the application
with enriched oil will give different results. Two experimental diets,
macerated oil of peanut (MOP) and pressed peanut oil (POP) were
used under high stocking density. The trial was studied on antioxidant
parameters, hematological parameters, nitro blue tetrazolium (NBT)
activity and proximate composition of rainbow trout (Oncorhynchus
mykiss) for 21 days. It was determined that the highest dry matter
content (22.33%) and moisture content (77.79%), it was the lowest
ash content (1.17%) and relatively low fat content (5.01%) in POP group.
This suggested that the POP group had a higher concentration of dry
matter, potentially indicating a higher overall nutrient density. In blood
parameters, it was determined that mean corpuscular volume (MCV)
(121.54 ± 4.30), platelet (PLT) (25.33 ± 3.68), NBT (1.407 ± 0.382) and
lymphocyte (LYM) (93.66 ± 1.17) levels of the MOP group and granulocyte
(GRAN) (2.15 ± 0.13) level of the POP group were different compared
to the control group (P<0.05). In terms of antioxidant parameters,
glutathione peroxidase (GPx) (15.585 ± 2.236), superoxide dismutase
(SOD) (17.691 ± 2.250) and catalase (CAT) (12.874 ± 0.620) activities
of the POP group and malondialdehyde (MDA) (9.169 ± 0.238) level
and glutathione reductase (GR) (12.085 ± 1.034) activity of the MOP
group were determined to be different compared to the control
group (P<0.05). The results reveals that use of antioxidants (MOP)
is an effective way of getting the best result in terms of the lipid
peroxidation mechanism and blood production in rainbow trout under
high stocking density. It was thought that the amount of oil–soluble
antioxidant substances may increase with the maceration method
and have a higher effect on the parameters.
Key words: seed oil; fish physiology; alternative herb oils;
physiological stress
RESUMEN
Generalmente, el aceite o la pulpa de maní (Arachis hypogaea, L.) se
han utilizado como un buen solvente y aditivo alimentario alternativo.
El proceso de maceración consigue que las sustancias liposolubles
pasen más al aceite. Se pensaba que la aplicación con aceite
enriquecido daría resultados diferentes. Se utilizaron dos dietas
experimentales, aceite de maní macerado (MOP) y aceite de maní
prensado (POP), en condiciones de alta densidad de población. El
ensayo se estudió sobre parámetros antioxidantes, parámetros
hematológicos, actividad del nitro azul tetrazolio (NBT) y composición
próximal de la trucha arco iris (Oncorhynchus mykiss) durante 21 días.
Se determinó que el mayor contenido de materia seca (22,33%) y
de humedad (77,79%), y que fue el menor contenido de cenizas
(1,17%) y contenido relativamente bajo contenido de grasa (5,01%)
fue parael grupo POP. Esto sugirió que el grupo de POP tuvo una
mayorconcentración de materia seca, lo que potencialmente indica
una mayor densidad general de nutrientes. En los parámetros
sanguíneos se determinó que los niveles medios de volumen
corpuscular (MCV) (121,54 ± 4,30), plaquetas (PLT) (25,33 ± 3,68), NBT
(1,407 ± 0,382), niveles de linfocitos (LYM) (93,66 ± 1,17) del grupo MOP
granulocitos (GRAN) (2,15 ± 0,13) del grupo POP fueron diferentes
en comparación con el grupo de control (P<0,05). En cuanto a los
parámetros antioxidantes, se destacan las actividades glutatión
peroxidasa (GPx) (15,585 ± 2,236), superóxido dismutasa (SOD)
(17,691 ± 2,250) y catalasa (CAT) (12,874 ± 0,620) del grupo POP y
malondialdehído (MDA) (9,169± 0,238) y se determinó que la actividad
de glutatión reductasa (GR) (12,085 ± 1,034) del grupo MOP era diferente
en comparación con el grupo de control (P<0,05). El resultado revela

mejor resultado en términos del mecanismo de peroxidación lipídica
y la producción de sangre en la trucha arco iris bajo una alta densidad
de población. Se pensó que la cantidad de sustancias antioxidantes
solubles en aceite podría aumentar con el método de maceración y
tener un mayor efecto sobre los parámetros.
Palabras clave: 


(L.)

()

Malatya Turgut Ozal University, Agriculture Faculty, Fisheries Department, Battalgazi, Malatya, Türkiye.
Corresponding author: basar.altinterim@ozal.edu.tr
The different effects of macerated peanut oils on rainbow trout health / Altinterim _________________________________________________
2 of 6
INTRODUCTION
In the production of herbal essential oil, water vapor distillation
methods or solvent extraction method in solvents such as alcohol,
benzene and hexane are preferred [1, 2, 3]. Pure essential oil obtained
by water vapor distillation is both costly and may have side effects
for oral use, causing irritation and allergies. Solvent residues in the
method using solvent can cause neurological damage [4].
The pressing method is preferred in the production of oils from
materials such as almond (Prunus amygdalus), peanut (Arachis
hypogaea), black cumin (Nigella sativa L.) and linseed (Linum
usitatissimum). In the pressing method, the transfer of fat–soluble
antioxidant and stimulant substances into the oil occurs in very low
amounts [5, 6, 7]. Peanut oil is an important antioxidant with its
polyphenols and high vitamin E content [8]. Due to its high oil content,
peanuts are easily oxidized during storage and transportation, and
this affects the nutritional and agricultural values of peanuts [9].
Macerated oils do not carry these or similar risks and are not treated
with any solvents or chemicals. In addition, since it is kept in oil, more
oil–soluble substances pass through [10].
Various researches were being carried out on alternative feed
additives in international production platforms where the tendency
towards alternative herbal resources was increasing. Rising costs
due to adverse conditions such as covid and global warming also
cause a decrease in the feed and pharmaceutical raw materials used
in farming [11]. Due to these properties, peanut oil is preferred as an
studies [12].
In the literature, moisture content of trout was determined as
65–75%, protein content as 11–25%, ash as 0.6–1.5% and fat as 3–10%
[13, 14, 15, 16]. Studies that parallel the proximal composition results
of the study were found. There are numerous studies involving the
addition of pressed peanut oil to rainbow trout feed. However, no
studies using macerate oil have been found [17].
There are feeding studies on trouts prepared by adding peanut

oil as a carrier in the applications of active ingredients. To give an
example of a few of these: Some studies have been reported on
Clarias
gariepinus) and carp (Cyprinus carpio) [18, 19]. In another study, peanut
oil was preferred as a carrier oil because it has no side effects and
is safe. Pure peanut oil was used as a control in the study of the
EROD–inducing β 
proliferator (PP) 2,4–dichlorophenoxyacetic acid model dissolved in
20]. In another study conducted to
determine the possible roles of arylhydrocarbon receptor agonists
and oxidative stress, peanut oil was used as a carrier oil instead
21]. Dernekbasi et al. [15]
investigated the effects of diets containing different proportions
of peanut oil on the growth performance, biochemical and fatty acid
compositions of juvenile European sea bass (Dicentrarchus labrax)
and stated that the use of peanut oil in different proportions in the
diets did not have a negative effect on the growth and approximate
composition of 
Hematological studies have been conducted on different macerated
oils. One of these is a study investigating the effects of macerated
tomato (Lycopersicon esculentum) and carrot (Daucus carota) oils
on the hematological parameters of densely stocked trout; it was

hemoglobin (MCH), red blood cell (RBC), Hgb, Hct, LYM and NBT values
[22]. In another macerated oil study, the effects of macerated and
pressed wheat germ (Triticum vulgare) oils added to feed at different
rates on the NBT and hematological values of rainbow trout were

was obtained in RBC, Hgb, Hct, WBC, PLT values; it was observed that
levels [23].
et al. [24] of soybean oil in Huso huso

They also determined a decrease in the Hct and Hgb values of the
POP group in the study. Demir et al. [25] observed that there was an
increase in the Hct, Hgb, MCV, MCH, MCHC values of tilapia to which
they applied press peanut oil.
In this study, the effects of macerated and pressed peanut oils
on the proximate composition, hematological parameters and
antioxidant parameters of rainbow trout were investigated.
MATERIALS AND METHODS


Turgut Ozal University. Macerated oil of peanut (MOP) and pressed
peanut oil (POP) were purchased from a local spice store (Kirkambar
Co., Elazig, Turkey). MOP and POP were mixed into trout feed at a rate
of 2% of the total weight of the feed (Gumusdoga brand with 45%
Oncorhynchus mykiss) were fed


acclimation for two weeks.


The experiment was executed following a completely randomized
design comprising two treatments, each replicated twice control


in the experiment was weighted as 54.70 ± 2.01 g. with TEM scales,
Ns6200, Turkey.

At the end of the experiments, blood was collected from the caudal

–1
water) and transferred to the tubes with ethylenediaminetetraacetic
acid (EDTA) [22]. Nitro blue tetrazolium (NBT) activity of blood samples
was determined spectrophotometrically to detect the total oxidative
radical level of neutrophils. The mixture was incubated (ILDAM, ILD–
EKH, TÜRKAK 17025, Turkey) at room temperature for 30 min, and
0.05 mL of the NBT–blood cell suspension was removed and added
to a glass tube containing 1.0 mL of N,N dimethyl formamide. After
centrifugation (Elektromag M 2815 PR, Turkey), the sample absorbance

cuvette [26
Hematology Analyzer (PROCAN PE–6800VET, China). The blood samples
were stored (Arcelik, 270482–MI, Turley) one day at 4°C and then for
plasma, samples were centrifuged at 1000 G for 15 min. The plasma


(MDA) level were measured by commercial kits (SunLong Biotech Co.,
Dry matter Moisture Ash Fat Protein
0
20
40
60
80
100
Proximate composition
Control POP MOP
22.33
1.44
77.79
5.14
16.44
FIGURE 1. Proximate compositions of the muscle in rainbow trout Control and
experimental groups. POP: Pressed peanut oil, MOP: macerated oil of peanut
TABLE I
Hematological parameters and NBT value (Mean ± Standard Deviation)
Parameters
Groups
Control POP MOP
WBC (10
3
·µL
-1
) 57.48 ± 7.62
a
51.55 ± 6.04
a
54.06 ± 7.02
a
LYM (%) 91.89 ± 0.97
a
93.22 ± 1.11
ab
93.66 ± 1.17
b
MID (%) 5.14 ± 0.31
a
4.63 ± 0.12
a
4.45 ± 1.30
a
GRAN (%) 3.13 ± 0.23
a
2.15 ± 0.13
b
2.28 ± 0.33
ab
RBC (10
6
·µL
-1
) 1.75 ± 0.33
a
1.80 ± 0.34
a
2.06 ± 0.42
a
Hgb (g·dL
-1
) 9.12 ± 1.56
a
8.88 ± 1.28
a
10.44 ± 1.99
a
Hct (%) 22.90 ± 3.69
a
20.97 ± 3.11
a
24.89 ± 4.39
a
MCV (fL) 131.83 ± 6.66
a
118.09 ± 5.18
b
121.54 ± 4.30
b
MCH (pg) 50.51 ± 4.88
a
49.66 ± 2.67
a
50.73 ± 1.59
a
MCHC (g·dL
-1
) 39.72 ± 1.73
a
42.17 ± 1.21
a
41.83 ± 0.90
a
PLT (fL) 11.8 ± 1.46
a
24.4 ± 4.88
b
25.33 ± 3.68
b
MPV (%) 13.15 ± 0.67
a
12.35 ± 0.51
a
13.07 ± 0.63
a
PDW (%) 13.31 ± 6.32
a
21.53 ± 1.40
a
19.23 ± 5.44
a
P–LCR (%) 41.66 ± 3.43
a
36.70 ± 3.63
a
43.05 ± 3.79
a
NBT 0.779 ± 0.072
a
1.256 ± 0.256
b
1.407 ± 0.382
b
POP: Pressed oil of peanut, MOP: macerated oil of peanut, WBC: White blood cell,
LYM: Lymphocyte, RBC: Red blood cell, Hgb: hemoglobin, Hct: hematocrit, MCV: Mean
corpuscular volume, MCH: Mean corpuscular hemoglobin, MCHC: Mean corpuscular
hemoglobin concentration, PLT: Platelet, MPV: Mean platelet volume, PDW: Platelet
distribution width, PLCR: Platelet–large cell ratio, LYM: lymphocyte, MID: Monocyte,
GRAN: Granulocyte, NBT: Nitro blue tetrazolium
TABLE II
The values of GPx, CAT, GR, SOD activities and MDA level of experimental
groups and control group (Mean ± Standard Deviation)
Parameters Control POP MOP
GPx (units·mg
-1
protein) 11.418 ± 0.904
a
15.585 ± 2.236
b
13.667 ± 1.692
ab
CAT (units·mg
-1
protein) 12.249 ± 1.301
a
12.874 ± 0.620
a
13.228 ± 1.426
a
GR (units·mg
-1
protein) 15.251 ± 2.513
a
15.485 ± 2.019
a
12.085 ± 1.034
b
SOD (units·mg
-1
protein) 12.845 ± 1.879
a
17.691 ± 2.250
b
14.566 ± 0.631
ab
MDA (nmol·mg
-1
protein) 11.287 ± 0.447
a
11.876 ± 0.441
a
9.169 ± 0.238
b
POP: Pressed oil of peanut, MOP: macerated oil of peanut, GPx: Glutathione
peroxidase, CAT: Catalase, GR: Glutathione reductase, SOD: Superoxide dismutase,
MDA: Malondialdehyde
_____________________________________________________________________________Revista Cientifica, FCV-LUZ / Vol. XXXIV, rcfcv-e34487
3 of 6
LTD, China). Plasma homogenates were analyzed according to the
kit instructions, and the absorbance values were read at 450 nm in a
microplate reader (DR–200Bc Microplate Reader. Prokan Electronics,
China, Shanghai YL), respectively, and the results were calculated
according to the formula provided in the instructions.

Moisture content, regarding dry matter, fat, total proteins and

measured by using a gravimetric method by drying the sample (3 g)
at 105°C until it reached constant weight. Crude protein content was

Turkey) Crude protein content was calculated by Micro Kjeldahl
27]. The amount of
total lipid wasobtained by extracting (Soxhlet system) with light
petroleum ether, and the solvent was removed by distillation. Ash

at 550°C for around 20 hours [28].

The data obtained were statistically tested using the SPSS

variance (ANOVA) (P<0.05). The mean values were given in the results
as mean ± standard error of means. All results were analyzed by the
SPSS 24.0 Package Program.
RESULTS AND DISCUSSION

When the proximate analysis were examined in the study, it was
not found any statistical difference between the control group and
the other experimental groups (P>0.05) (


NBT values of bothgroups, lymphocyte (LYM) of the MOP group and
granulocyte (GRAN) level of the POP group were found statistically
different in the durations (P<0.05) (TABLE I).
Antioxidant parameters, it was found that glutathione peroxidase
(GPx), glutathione reductase (GR), superoxide dismutase (SOD
activities of POP group) and, catalase (CAT) and malondialdehyde
(MDA) level of MOP group were found statistically different in the
durations (P<0.05) (TABLE II).
The different effects of macerated peanut oils on rainbow trout health / Altinterim _________________________________________________
4 of 6

In trial, peanut oil administration was shown that GPx, CAT, SOD
activities of all groups were increased and MDA level, GR activity of
POP group were increased but MDA level and GR activity of MOP group
were decreased than control group.
A study was conducted on the evaluation of pressed peanut (Arachis
hypogaeaLarmichthys crocea)
feed, and it was observed that similar results were obtained to the
17]. In another study, it was stated that all proximal
composition values except moisture value were not affected in
the application of pressed peanut oil [29]. Sun et al. found in their
experiments that the proximal composition levels of black carp fry
(Mylopharyngodon piceus) were not affected by pressed peanut oil
added to the diet at different rates [30]. In another study, it was

31]. Acar
and Turker [32
peanut oil.
The fact that LYM increased in both the macerated oil and pressed
oil groups showed that the acquired immune system was stimulated in
both groups. White blood cell (WBC), monocyte (MID) and GRAN values
were low in both groups, suggesting that there was no effect on innate
immune system markers in general. However, despite the decrease in
hemoglobin (Hgb) and hematocrit (Hct) in the POP group, the increase
in the MOP group shows that macerated peanut oil stimulates blood
production. The data obtained in this study show that both macerated

on the hematological and NBT levels of trout. However, the NBT value
was found to be the highest for the MOP group. Additionally, some
studies show different values in hematological results. The reason for
these differences is thought to be due to the production technique of
the macerated oil. It is obvious that by keeping it in oil for a long time,
more oil–soluble substances pass into the oil, causing this effect.





concentration (MCHC) values [32].

with MOP and POP at high stocking density. This decrease indicates

the MOP group, an increase was observed in lymphocyte and NBT
values, which are indicators of acquired immunity. The increase
in RBC, Hgb, Hct, MCV, MCH, PLT, MPV values in the MOP group is
remarkable. This is an indication that macerated peanut oil affects
erythropoiesis and thrombocytosis. Although this group appears
to be a microcytic hyperchromic picture, high Hgb and Hct values
indicate that hematopoietic organs, especially the thymus and
pronephros, are stimulated by lymphocytosis to compensate for
anemia. Increasing NBT values despite granulopenia in both groups
indicate that neutrophils with phagocytosis ability are stimulated.
Studies have been conducted to investigate the effects of peanut
et al. [33] found in
their experiment that peanut cake increased the MDA level of juvenile
hybrid grouper, and a similar increase was seen in the POP group in
the study [25]. In this study, the stimulating effects of MOP on MDA
and GR inhibitory and antioxidant defense system parameters (SOD,
CAT, GR) were parallel to the results of another study conducted with
vitamin E [9].


possible increase in the concentration of n–3, which has oil–soluble
properties in MOP. Higher n–3 content in diets causes higher SOD
activity in rainbow trout [34].
In another similar study, it was stated that peanut supplemented
35]. In
another study conducted on a sea bass species, it was determined
that palm oil and coconut oil increased the SOD and GPx activities
36]. Darsini et al. determined
that elephant–apple (Limonia acidissima) fruit increased the SOD,
GPx, and GST activities in carp, as in the POP group, and decreased
the MDA level [37
with vitamin C supplemented feed increased SOD, GPx, CAT activities
similar to the MOP group [38].
CONCLUSIONS
When the results of the experiment were examined, it was seen
that peanut oil applications did not have a different effect on the
proximate composition values of 
POP successfully coped with oxidative stress caused by high
stocking density. The use of MOP and POP at high stocking density
reduced their negative effects on most of the antioxidant parameters,
which could be attributed to the antioxidant role of peanut oil as an
antioxidant. POP is a good source of antioxidants, but MOP prepared
by soaking in oil showed a stronger MDA suppression effect than POP.
It is thought that this effect occurs when peanuts are kept in oil, and
more fat–soluble components such as vitamin E, resveratrol and
coenzyme Q10 pass into the oil. The fact that the GPx, GR and SOD
levels of the POP group and the CAT level of the MOP group were higher
than the control group and the other experimental group showed that
antioxidant enzyme activities may change under stress. Minimizing

study, the superiority of the MOP group was clearly revealed.
In conclusion, incorporating diets rich in macerated peanut oil into

the adverse effects associated with high–density stress levels, thereby
promoting better overall health and well–being in aquatic species.


BIBLIOGRAPHICS REFERENCES
[1] Gulec AK, Altinterim B, Aksu O. Determination of lethal concentration
(LC50) values of Cinnamomum zeylanicum

Available in: 
 
of Eucalyptus camaldulensis hydrosol on mirror carp (Cyprinus
carpio
2024]; 21(5):1219–1222. Available in: https://goo.su/v27r
_____________________________________________________________________________Revista Cientifica, FCV-LUZ / Vol. XXXIV, rcfcv-e34487
5 of 6
[3] Kumari V, Kumawat P, Meena SN, Rajput SS, Saini R, Choudhary S,
Singh B, Yeri SB, Gothwal DK, Sharma R, Kumari P, Ahmad S. Modern
role of essential oils in drug discovery and medicinal products. In:
Meena SN, Nandre V, Kodam K, Meena RS, editors. Biochemistry
and Biotechnology, new horizons in natural compound research.
New York (USA): Academic Press; 2023. p. 351–360.
[4] Jyotirmayee B, Mahalik G. Essential oils extracted from CO2
extraction method. In: Bhadra P, Parida S, editors. Aromatherapy

 
Oncorhynchus mykiss) Yem

[Effects of green tea (Camellia sinensis) oil on feed utilization
and hematological parameters of rainbow trout (Oncorhynchus
mykiss
2018; 13(2):159–164. Turkish. doi: https://doi.org/g8t5rh
[6] Altinterim B, Danabas D, Aksu O. The effects of common yarrow
(Achillea millefolium Linnaeus), cinnamon (Cinnamomum zeylanicum
Blume) and rosemary (Rosemarinus ocinalis Linnaeus) hydrosols
on the some immunological and hematological parameters of
common carp (Cyprinus carpio L., 1758). Cell. Mol. Biol. (Noisy–le–
grand). [Internet]. 2018; 64(14):19–24. doi: https://doi.org/gfn9mw
[7] Mingyai S, Srikaeo K, Kettawan A, Singanusong R, Nakagawa K,

of rice bran oils produced from colored rice. J. Oleo Sci.
[Internet]. 2018; 67(2):135–142. doi: https://doi.org/g8t5rj
[8] Dandapat J, Chainy GBN, Rao KJ. Dietary vitamin–E modulates
antioxidant defence system in giant freshwater prawn,
Macrobrachium rosenbergii. Comp. Biochem. Physiol. Pharmacol.
Toxicol. Endocrinol. [Internet]. 2000; 127(1):101–115. doi: https://
doi.org/c9s2tr
 

[Internet]. 2019; 7(7):2280–2290. doi: https://doi.org/grg5ms
 Allium sativum Limne)
Allium tuncelianum
Oncorhynchus mykiss

seviyelerine etkileri [Effects of oils of macerated garlic
(Allium sativum Limne) and macerated Tunceli garlic (Allium
tuncelianum Kollman) on some hematological parameters and
NBT (NitroblueTetrazolium) levels of rainbow trout (Oncorhynchus
mykiss
[Internet]. 2019; 21(2):716–723. doi: https://doi.org/g8t5rk
[11] Rahimi P, Islam S, Duarte PM, Salajegheh–Tazerji S, Sobur A, El


Technol. [Internet]. 2022; 121:105–113. doi: https://doi.org/gr85pq
 

(Dicentrarchus Labrax) in recirculated systems. Alinteri J. Agr. Sci.
[Internet]. 2020; 36(1):109–121. doi: https://doi.org/g7nx2g
 
method on the shelf–life of Capoeta umbla sausages. Iran. J.
https://doi.org/
g8t5rm
 
fresh shibuta (Barbus grypus
Chem. [Internet]. 2015; 189:80–85. doi: https://doi.org/g8t5rn
 
smoked concentration on the shelf–life of sausages produced
Capoeta umbla). Indian J. Anim. Res. [Internet]. 2017;
51(5):956–961. doi: https://doi.org/g8t5rp
 
on quality properties of vacuum–packed hot smoked rainbow
trout (Oncorhynchus mykiss
storage. LWT. [Internet]. 2023; 184:115084. doi: https://doi.org/
g8t5rq
 

(Larmichthys crocea) by regulating triacylglycerol synthesis and
catabolism at the transcriptional level. PLoS ONE [Internet].
2017; 12(1):1–19. doi: https://doi.org/f9k3z6
 
oil and peanut oil in improving biochemical characteristics of
Clarias gariepinus
2009 [cited 20 Jan. 2024]; 9(1):105–110. Available in: https://

 

on growth and chemical composition of common carp (Cyprinus
carpio). Isr. J. Aquac. Bamidgeh [Internet]. 2013; 65:1953–1962.
Disponible en: https://goo.su/vb63NOO
 

and tetrabromobisphenol A (TBBPA), on hepatic enzymes and
other biomarkers in juvenile rainbow trout and feral eelpout.
Aquat. Toxicol. [Internet]. 2004; 69(3):229–245. doi: https://doi.
org/fwqf9k
 
reductase/20β–hydroxysteroid dehydrogenase mRNA in rainbow
trout downstream from sewage treatment works—Possible roles
of aryl hydrocarbon receptor agonists and oxidative stress.
Aquat. Toxicol. [Internet]. 2010; 97(3):243–249. doi: https://
doi.org/c447jh
[22] Altinterim B, Aksu O. Effect of macerated tomato (Lycopersicon
esculentum) and carrot (Daucus carota) oils on hematological
parameters of rainbow trout (Oncorhynchus mykiss) at high
stocking density. Int. J. Pure Appl. Sci. [Internet]. 2019a; 5(2):85–
90. doi: https://doi.org/g7nktx
 
wheat germ (Triticum vulgare) oils added at different rates to

NBT (Nitroblue tetrazolium) values of rainbow trout (Oncorhynchus
mykiss). Int. J. Pure Appl. Sci. [Internet]. 2019; 5(2):72–77. doi:
https://doi.org/g7nktz
The different effects of macerated peanut oils on rainbow trout health / Altinterim _________________________________________________
6 of 6
 

composition and haematology of Huso huso. J. Anim. Physiol.
Anim. Nutr. (Berl). [Internet]. 2011; 95(5):632–641 doi: https://
doi.org/d6vfqb
 

biochemical and hematological parameters of Mozambique
tilapia juveniles (Oreochromis mossambicus
Sci. [Internet]. 2014; 14(4):887–892 doi: https://doi.org/g8t5rr
[26] Siwicki AK, Anderson DP, Rumsey GL. Dietary intake of

and protection against furunculosis. Vet. Immunol. Immunopathol.
[Internet]. 1994; 41(1–2):125–139. doi: https://doi.org/dx638d
[27] AOAC International. Official methods of analysis of AOAC
International. 16
th
ed. Gaithersburg (MD, USA): AOAC International;
1995. 1015 p.
 

2007. 696 p. Turkish. No 76.
 
fatty acid composition, peroxisome proliferator–activated
receptors gene expressions, and antioxidant abilities of blunt
snout bream, Megalobrama amblycephala, fingerlings fed
different dietary oil sources. J. World Aquac. Soc. [Internet].
2015; 46:(4):395–408. doi: https://doi.org/g8t5rs
 
replacement by rapeseed oil on the growth, fatty acid composition

carp, Mylopharyngodon piceus. Aquac. Nutr. [Internet]. 2011;
17(4):441–450. doi: https://doi.org/dsms57
 

internal organ histology, blood biochemical parameters, and
proximate composition. Aquac. Nutr. [Internet]. 2011;17(2):e148–
e163. doi: https://doi.org/bptrcp
 Oncorhynchus mykiss)


2018; 24(1):292–299. doi: https://doi.org/gcw8h5
 
performance, antioxidant capacity, liver fat metabolism and
intestinal flora composition responsiveness to fish meal
replacement by peanut cake for juvenile hybrid grouper
(Epinephelus fuscoguttatus × Epinephelus lanceolatus ). Aquac.
Rep. [Internet]. 2022; (23):101060. doi: https://doi.org/g8t5rt
[34] Kiron V, Puangkaew J, Ishizaka K, Satoh S, Watanabe T. Antioxidant
status and nonspecific immune responses in rainbow trout
(Oncorhynchus mykiss) fed two levels of vitamin E along with
three lipid sources. Aquac. [Internet]. 2004; 234(1–4):361–379.
doi: https://doi.org/bnxp8g
 
C, Wang A. Effects of dietary dandelion extract on intestinal
morphology, antioxidant status, immune function and physical
barrier function of juvenile golden pompano Trachinotus ovatus.
https://
doi.org/gc4f6d
[36] Varghese S, Oommen OV. Long–term feeding of dietary oils
alters lipid metabolism, lipid peroxidation, and antioxidant
enzyme activities in a teleost (Anabas testudineus Bloch). Lipids
[Internet]. 2000; 35(7):757–762. doi: https://doi.org/d3q74g
[37] Darsini DTP, Maheshu V, Srinivasan P, Nishaa S, Castro J.
Dietary supplementation of Limonia acidissima L. fruit on
invivo antioxidant activity and lipid peroxidation of Cyprinus
carpio L. Proceedings International Conference on Sustainable
Environment and Agriculture; 2013. p. 73–77.
 
vitamin C on growth performance, antioxidant status and innate
Takifugu obscurus). Isr. J. Aquac.
[Internet]. 2017; 69:1434. doi: https://doi.org/g8t5rv