'%3E%0A%3Cpath d='M0 98.6H935v-26H0v26Z' class='g0'/%3E%0A%3C/g%3E%0A%3Cpath d='M0 1169.7H935v-26H0v26Z' class='g0'/%3E%0A%3Cpath clip-path='url(%23c0)' d='M935 1169.7h935v-26H935v26Z' class='g0'/%3E%0A%3Cpath d='M391.5 182.8H408M56.2 347.8H72.4m349.3 33h16.2m277.4 231h17.2m-494.4 264h16.6m11.4 214.5h16.6m-177.9 33h8.1m65.8 0h16.2' class='g1'/%3E%0A%3Cimage preserveAspectRatio='none' x='52' y='494' width='394' height='222' href='data:image/jpeg%3Bbase64%2C/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx4BBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/AABEIAN4BigMBEQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5%2BgEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4%2BTl5ufo6ery8/T19vf4%2Bfr/2gAMAwEAAhEDEQA/APsqgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAMTxL4jttBmtI57S6uDdeZt8gx/IEAOSHdSQSQOAeSM4HNb06PPCU3JK1t7639E156taLS70E3qYzfEOzEW8aBrRby0fYPs%2BcscFP9djK9TzjHQk8VosPTcre1ju1f3unX4dnsuvdJaiu%2Bw5fiBZGXZ/YesgeY6bsQEEAZD4EucMeAMZz1AHNT7CFr%2B0jsn9rq9vhtdbvpbZt6Bd9jrbWUz2sU5hkhMiBzHIAHTIzhgCRkdDzWE48knG97dVsUiWpAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAGyxpLG0UqK6OCrKwyGB6gj0pxk4u63A85%2BIHw%2B8BWPgXXb2y8EeGrW6g0%2BeSGaHSoEeN1QkMrBcgg8givp8pz3NKuOo06mJqOLlFNOcmmr7NXMZ0oKLaSPSK%2BXNgoAKACgAoAKACgAoAKACgAoAKAOD%2BKQX7fpBO3dsuMZgycfus4f8Ah7cfxcf3a6oN/V5%2BsevlLp19enzJe5ylcpQy4Cm3kDbNuw53khcY745xWlK/tI27iex634eEY0DThF5Hli1iC%2BQxaPGwY2luSvoTzitMW26873vd7779baX7hHZF%2BucYUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHKePh4vhFrf8Ahu6jNrCT9utFt1eeRP70RY4LD%2B4cbh0IIwfYyr6hLmp4qPvP4XdqKfaVtbPutuzW0VFNr3N/z8vL%2BlpusT4S63q2v674lmn8SPqmm2d3HBbxtZJCVJgjZs4AYEMWBU981359g6GEoUIxo8k5Jtvmb%2B00vJ3VmmjmpVZTryjfRKLtbvc9Gr5g7DnPid/yTnxJ/wBgu4/9FtXp5L/yMaH%2BOP5oip8DOjrzCwoAKACgAoAKACgAoAKACgDnYfG3hSa2W5i1y0khaEzq6kkGMHBYcdM12zy/E05unKFmny2897EqaauTN4u8NLL5TaxbB/MWLGT95hlR07islhKzjzJaWb%2BSdn%2BI%2BZHH%2BOtc0zV77SP7MvluUEVwzeXPgDDRryh5bkHB7c/3q3lh50qE1NWd49L9G9%2BnTTr8ib3asYU0kcMTyyuqRopZmY4CgdSa89tJXZtTpyqTUIK7eiXdnJnXte11seF9P%2Bz2XX%2B0btfvgNg%2BVH1fIHGcA98da4YYitiJJUFaP80tt%2BiPr3kuW5TFvNarlV/59U907ac8npHXdK9ul9UvUrDwr46uNHjnm%2BJOqQXskW8J/ZdsiRsRlQyYJ44BG/qDgita2Frqcl7bW72St8r62%2BZzRznKIySjl6cdN5z5vPVNK/8A27byGS%2BJPGfhC/ePxbpZ13RpGQpq%2BkW2Gt84BWW33FsA87lJ4I4J4GDr18PL96uaPdLb1R0RyrKs2pJ5fU9lVV706j0lbVOM7JXe1nbXstX22gazpevaZFqWj30N5aSgFZI2zjgHBHUHBHB5rtp1YVY80HdHzONwOIwNZ0MRBxkuj/rVeaNCtDkCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOJ8eR3r%2BINPF8NfPhw28gmGjPMsoucjYZDbkTbNu77vy5xu7V72VyprDz9nye2urc/K1y9bc/uXvbfW23Uxrc948vw63tv0t523%2BHW9vs3KvgeNR4td/DzeIDoQtpVvv7WnuZP9KDpsCfaWMoIXzN2Pl6d62zOT%2BqJYnk9rdcvIor3bO9%2BRKNr2tfX5EW/ex5L9ea9/K2/X9N%2Bh6BXzZ0nOfE7/knPiT/sF3H/AKLavTyX/kY0P8cfzRFT4GdHXmFhQAUAFABQAUAFABQAUAFAHhuibP7GsfL8vZ9nj2%2BXAYVxtGMRnlB/s9uldePv9aqc178z3fM9%2Bsur8%2Bu5MfhRbrkKKc%2Bz%2B2bTPl7vIlxmElsZjzh%2Bijpkd%2BP7tdUL/V59rx66fa6dfJ9PmS9zmnjn8aXsizb4fDdtMU2hub90bBJx/wAsww6dyPy8Jp42TvpTT/8AAmv0PuY1KfDFGLhaWMnG97aUoyV1a/22n8l3vr1kiRpatGFiSMIV2k7UAx0OOg%2BletRVpxt3Wx8TOUptyk7tnr2gCNdC09YvJ8sWsYXyXLx42jG1m5K%2BhPJFa4tt15t3vd76PfqlpcmOyL1c4zzrxT4PvdAu73xd8P2Wx1Dy/NvNKSIfZtS2ZONgHyykZAZcZJ56knz62GlSbrYfR9V0f/BPscuzulj4Qy/N/ehe0ajfvU76bveK0unsttkjr/CniDTPE%2Biw6tpMxkgkyrKw2vE4%2B8jr/Cw6EV10a0K0OeGx87mWW4jLcQ8PiFZr7mujT6p9Ga1anAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBmeKNYh0HRJ9UmhknEZREijwGd3cIi5PAyzAZPSuvBYSWLrqlF2vfXskrt/ciZzUIuctkr/ccV8J9ehe4lsJLGW3uNXu9R1D/XCVEeK68mWPO1TjO0qSOQT0Ir3c9wUlFVFK6pqnHaztKHNF7vzT10OdVbVpOStzSa%2BcIqP4qN/wAO1/RpUEkbRsWAYFSVYqefQjkH3FfMRfK7o6jzn4g%2BCNGs/Auu3cV74laSHT55FE3iXUJUJCEjcjzlWHqGBB7ivp8pznEVMdRhKNOzlFaUqSe/RqCa9U7mM6aUXv8Aez0ivlzYKACgAoAKACgAoAKACgAoA8N0Xf8A2NZeYJQ/2ePd5s4mfO0Z3SDhz6sOvWuvH2%2BtVOW1uZ7LlW/SPRdl02Jj8KLdchRyfi2e41HXLbw7pVzNFcSQsbyWOcKIICy7jt6lzjavHG4n3HNXrVJxeGprezcusVron05u3W1%2Bh9TkmEw%2BDovNsZrGN1Tg0/fn%2BXLF6y18tb2fS6daQWFjBZWqbIIIxHGuc4AGBz3ranCNOKjHZHz2LxVXF1516rvKTbfqyaQsEYrv3AHGxQWz7A8E1tTtzK5zs9e0hpG0mzaXzvMMCFvOjCSZ2jO5V4VvUDgGrxCSqySta721W/RvVoS2LVYjCgDz7xZ4d1Pw9rdx438FW5lupADq2kK21NRQfxoP4ZgM4PfkdSc%2BfWozpTdeiteq7/8ABPrsszPD4/DxyzM5Wiv4dTrTb6PvB9V032WnYeG9ZsPEGhWes6bKJLW7iWROQSuRyrYJAYdCM9RXZSqxqwU47M%2Bdx%2BBrYDEzw1dWlF2f%2Bav0e68jRrQ4woAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDH8Yvq8Ph%2B6utEnWO7t4nmVDb%2BcZtqkiMDcuCTjnNaUnBS99XXrb5mlKCnNRbtexwGgeK/E09t4TuJPFOharc6nNEt/YWViQ8ashLkHzCVCHGSw7HvivZr4OhCrVgoNRinaTemm3Tr0t3R59KvOpho1XpJ2066vVeq/Rnq9eEdgUAcP8Stce3%2B06ONOsryBdKn1G7W7LBZIo2UbEx0fJzu/hwK9/JsEp8tfncXzxgrW0bvq79PLqROXvRpreV99rK1/W9/uuYvwq0yw0DXLK3i0q3jk1jS3v4J0v7m7aFN6O8Zad3wGabdlSoZgSRmu/PcRVxlCcnNtU5qLXLGN3ZpO0UtlG2t2lpc46Li5U6yXxptbtq9m/LXq%2B6XkepV8id5znxO/5Jz4k/7Bdx/6LavTyX/kY0P8cfzRFT4GdHXmFhQAUAFABQAUAFABQAUAFAHhmiFDotiYvK2G3j2%2BVCYUxtGNqHlB6KenSuvH3WKq8178z3fM9%2Bslu%2B767kw%2BFDdf1OHSNJnv5sERr8iZGZH/AIVHqSeMV59esqNNzZ6WVZdUzHFww9Pq9X2XVvyS1Zj%2BGdLOnXVvNfSxz6rexyz3Urw5kLHy8qr4G1F4G09eMYxWuCoSp4ScpXbbi276XtLpu7dH017nXn2ZwxuIjToR5aNNcsF5J7vV%2B9LeT6vvudNQeIMnCmFw2zaVOd7FVxjuRyB71dK/OrdxPY9d0ERrodgsXk%2BWLaML5MhkTG0Y2seWHoTyRWmKbdebd73e6s9%2BqWz8gjsi7WAwoAKAPNdf064%2BHmr3Hi3QnA8O3UyvrmmnOyHJAa6hABIYZyygfMB6gY82pB4STqw%2BF/Ev1X6n2mCxUOIKEcvxS/fxTVKfV9qcu6e0W3o/Js4rQ7TTLzQbKb7NYXCTWSRl47UIjocMVCHlVLc7D0PXmvo6%2BY13WlKlVlbmbXv312T5lo3bTmW620PjKmHlRk6dWNpLRpqzXlY0ja2pl8020Jk84T7tgz5gG0Pn%2B9jjPXFcv1qvy8vO7Wtu9r3t6X1ttcnlXY6v4S21na32pxWsNnCEt7dRHFIQ6rumIzH91VyWww5J3Z%2B6K6MRXrV6EZ1ZOTcpavvaP2t29rp6JWtuxJJPQ9CrgKCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAKWuy30GiX0%2BmQrPfR20j20TdHkCkqp9icCmrNq%2BxpRjGVSKltfU8Z8JX3iRNa0eeXxTqNxd301nK9q%2Bl2cRuoJYiZ87bdZF8uRWz82RgA8nNfSYinh7TjGC5VzK95O1vhfxW1Vraa3POjOtOkpzXLK0dO0r2lHXt%2BVme5180doUAUNW0bSNWMJ1TS7K%2BMDbojcQLJsPqMjiuihi6%2BHv7GbjfezauKSUlZjNI0HRNIkll0rSLCweX/WNb26xl/qQOarEY3E4lJVqjkltdt/mJQipc1tTSrlKOc%2BJ3/JOfEn/YLuP/AEW1enkv/Ixof44/miKnwM6OvMLCgAoAKACgAoAKACgAoAKAPDdGDjR7IS%2Bd5gt493nTCV87Rnc44c%2BrDgnmurHOLxNRxtbmeyst%2BieqXZPbYmPwoxdSjXXPF9tYN81no5W7mHZp2BEa5/2QSxHuvBBrx6i9viFDpDV%2BvT7tz6zB1HlWUzxC/iYi8I%2BUE1zv/t5pRT8nZpo2pw/9r2pHm7PJl3YlATOUxlOrHrgjpz6ivXg19Xnte8emv2tn0XdddOx8m9y3XMUNkLCNiu/dg42KGbPsD1PtV07c6uDPXtGLtpFm0vm7zboW82MRvnaM7lHCn1A4FXiElWla1rvZ3W/R9V5iWxbrEYUAFADXVXQo6hlYYIIyCKBptO6Pl/wlczeE7bT9H1OKWPS7qNDZXUk4lMLsATDK4%2BXOc4YcHtWGLqLC42pTdvZuUuVpcqWr05X8K7LotD7GvhlxBhFjaDviIRXtIPeSStzxf2nb4t3fXqr93W58adb8MGl%2B3aop%2B0eUIoCuYVEW7Mmdr9WbGMqeANpH3jXTJR%2Brxel7vrrtHdbJdn117IXU7quYYUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBi%2BM9IfWfD9zbQS3cV0sbvam3v57T97tITc8LqxXJ5GcflWtGq6U%2BZfik/waauaUuXnSntpf0PMvCWl3vmeFra0l%2BITa5ZTRtrj6vfX4tmVUIl3M7eRL85G0QlgeDyuTXu4mtT5qsvc9m0%2BWyjfXbS3Mn3va2vWx51ONX6vGNS/tNL22311WnLbb7W3XmPZ6%2BdO0KACgAoAbIgkjaNiwDAg7WKnn0I5H1FNOzuB558QvBukWngTXrqK88RNJDp07qJfEV/KhIQkbkeYqw9QQQe4r6XKc3r1MdRg4ws5RWlOmnv0agmvVamM6aUXv8Aez0WvmTYKACgAoAKACgAoAKACgAoA%2BfjqVvpfg2HUgsTRRWcbRpBEYkclQFVEblQSQAp5GQOtbZtUdGvWlO91KW7Td79WtG79Vu9jtynASzDE08NB25uvRLdv0Su/JD/AAlpkmmaQBdP5l9cu1xeSf3pXOT%2BA4A4HA6CuDC0XSp%2B98T1fqztz7MYY7Fv2StSglCC7Rjovm93q9Xuy1OU/tq0B8neYJtuYiXxmPOG6KOmQevGOhr04KX1ab1tePXTaW63b7Ppr3PDe6LtcpQ2bBhcNt27Tnc20fiR0HvV0vjVu4meuaEEGiWAj8rYLaPb5UpkTG0Y2ueWHoTyetaYq7rTvvd7qz36rp6BHYu1gMKACgAoA%2Bf7KxstV8GWtjMkD2lxYxriGExoFKDBRG5QDqAeRx6V0ZrS9piK1OpfWUr3ak93u1o35rRvU6cuxtXA16eJoO0otNf5ej6rsVvCd/PDPceHdVvRPqFlgxyPw9xAR8smO5HQ98jJ68%2BVhakk3RqO8l%2BK7/5nu57gqdSnDM8JT5aVTdLaE1vHyXWPSzstnb0z4XiL%2B1NWYeR5phtw2J2Mm3dLjdH0VeuGHLHcD90V68m/q0Vrbml002j13b7rpo%2BrPl/tHe1ylFXVp5LXSru6iVnkhgeRFVN5JCkgBcjP0yM1pRip1Ixeza62/Hp6iex5ynjHxQ8CsJ9NV2jj%2B9ZPw2fnJHmdxwB29TW7lh4ytyO139rp0%2Bz06vr2QtRw8X%2BJ/MybjTCnmOdv2N87CPkXPmdQeSe/oKlzw9vgd7L7XXq9uvRdO7CzN/wNrur6pfzW%2BpeW6x2yN5kNoyRl8kN8xc8njC44HOTVVI0nSc4K3vbXu7dNLLbv17IFe9mdfXIUFABQAUAFABQAUAFABQAUAFABQAUAFAGX4p8iLQ7u9njvpVs4JZ/KtLiSKSTbG2VGxgSSM4Hrg9QDV021LS2umu34/wBWNKUOecY92vzPIfBniG2uNd02eO31KSA3Fpasw8U390HuZoTKwWN5CjpGpXduHc%2BlfRYrDSgpwbV/e%2BxFaRdr3tpd3SsedCt7SmpqLStGWu/vPReqVm0e5V80doUAcp4%2B1vxHoQtrzS9KtLvTBkX88juZLUdn8tQS6euMkdcEZx7GVYPCYvmhWm4z%2BytLS8rt6PtfR97kVHJK8Vfv6eXd%2BX3XehR%2BHXibXvEOu67DenQ5dOsJo44JrB3Yyb4Y5Acnhh85547fWujN8uwuDoUZU%2BdTmm2pW0tJr1WxhTryqVXFWaSi/vv/AJHc18%2BdRznxO/5Jz4k/7Bdx/wCi2r08l/5GND/HH80RU%2BBnR15hYUAFABQAUAFABQAUAFABQB80ukupa54f0mYztDYWovrxZpRKzSBQkYd14LbizZ6NtJwayzPlrZi4RtypylomlvpZPVLqk%2Bm%2Bx9RlbWAyavi/t1GqcX1S%2BKbXR6JRbWqutVc6%2BtT5cqTCT%2B1rZh53liGUNiQBM5TGV6k9cEdOc9RXTBx9hNaXvHo7/a2eyXdddLbMT3LdcwxsufKbbuztONq7j%2BA7n2q6fxq/cTPXdFLnR7IyebvNvHu82IRPnaM7kHCn1UdOlXibe2nba72d1v0fX16gti5WIwoAKACgDwzQlkXRLBZvP8wW0Yfz5VkkztGdzrwzepHBPIrqxzi8TUcbW5nayaW/RPVLsnqtiY/Cin4n0KPWII5YpTaajbHfaXaD5om9PdT3B4NeZicMqyTTtJbPse7kudTy2coTjz0Z6Tg9pL9GujWqOn%2BAfiBtWutYsr1ZbXVLOG3W8tGgVUR8ygsj5JcHA4yQBtIPzGujD4hVcLFSSU1J3V9do9O3Z9dV0Kz3Jv7PrKpQlz0KmsJd12ei95bSVlbsj1imeEZ/iQKfDupB/L2/ZJc75Ci42Hqw5Ue/at8Lf20Lb3Wyu9%2Bi6%2BnUUtjyS2x9njxtxsGNrZHTse9Z1PjYIkqBnTfDQR/27eH9x5v2ZR/x8HzMbv8Ann02/wC11zxXVr9W625u2m3fe/l8yftHoNcpQUAFABQAUAFABQAUAFABQAUAFABQAUAUPEV3cWHh/Ub60SF7i3tZZYlmbahdUJAY8YGRyacUpSSfU1owU6kYy2bR5Z8K7zQb%2B00C/T4rCa/uI0mbSVi0u3BldR5kYiFuJk54xu3YAyT1r6DMaVSlOpBUPdV0pe%2B9Fs783L57W8jzqNZ1qaqVHyyerXZ9tdX2T6rVbnsVfPHYFAHD%2BP8AWLu01/T9NuPEL%2BFtHuIJJH1VYYiTOpG2DzJleKPKlm%2BZSW24UjBr38qwkKlCdWNL21RNLku9nvK0WpOzstHZX1Ma05RcEtne73ta1vJX11enTdoy/hqllpvi2507w3rsfiLSryCS8vrxLe2AhuQyKqmS1jjjJZSx2sC3y5ziuzOXUr4SNXFUvZTi1GMbz1jZt6TlKWjtqnbW25krRrJwd%2Ba99umzuvW1nvutmemV8odZznxO/wCSc%2BJP%2BwXcf%2Bi2r08l/wCRjQ/xx/NEVPgZ0deYWFABQAUAFABQAUAFABQBU1jULXSdKutTvpRFbWsTSysSBhVGT14qJzVOLlLZHRhcNUxVeFCkryk0l8z59%2BHNk0egx6nOIBPqKpMBCm1I4doEUajsqpjj9T1KSqyq1K1ZNTnJt82612ei1XXRa30PY4gxNH2sMFhXelRXKmtpP7UuvxSu1q9LW00OmrQ%2BfKVw0Y1uzU%2BT5hgmK7oyXxmPO1ugHTIPJ4x0NddNS%2BrTetrx6q20t1u32fTW%2B6JfxIu1yFDJyBBIWAICnILbR09e31q6fxr1EzptN8ePFo9qtvoIcLaRbAl%2BHUngFQ5GWAXkMetdtanRdeXPNr3n9mz9bX0d9LdCU3bYur49Yy7TorhPNZd32kfcxkNjHUnjHbrmudwo8t1PW3brfVb9tblXZX/4WLIJ44G0MCV7ZpQn21d25TjaBt5XJXLdtw4rb6vRcXNTdlJK/LpZ9d999OttxXZMPH8u7B0JwMx8/ah0P3/4f4f19qydOhb4316dtuvX8PMLvsB8fy440Jif3n/L0O33P4f4v096FTofzvp0779en4%2BQXfY4Hw00b%2BHdMaHyPKNpEU8iJo48bBjarcqvoDyBwavMVJYyqpXvzSvdpvd7taN92tG9gh8KNCuMow9RP2HX117S9PMmtabHFOksN4weaHewe3eHoVZdxVuu5cdBgzjMMvq0cRC/OpO2mjVldc3X/D0umt3f6PIMzScsuxUrUKujv9mX2ZrtZ7vqr32TXfaJ8U7TWrOO907SpJLd5QhLXAV0GPm3LjhgeNvfrnFaYeeGr0lUjPptbrfbf8Ty80yzE5XiZYfERs19zXRp9U/61E1fx3cT6HexnQ5YpHs5f9XMsrK/IUBdvzcc/Xiu6jSw6rxtO65lurK3Vt3010/E81t22Obt8/Z485zsGcrtPT07fSuKp8bKQ%2BoGdP8ADQyf23eDM/l/Zl/5dx5ed3/PTru/2emOa6tPq3S/N3127dvP5E9T0CuUoKACgAoAKACgAoAKACgAoAKACgAoAKAKurm9GlXZ01Y2vhA/2YSfcMm07c%2B2cU1a%2BuxpS5edc%2B19fQ8f8Eaj4yk1m206SPxcb9NThlvZdSs5UtvJ%2BzgXI8xlEJHm52LESMgFfkzX0GKp4WznHl5LSSs1ff3NPivbdvpe%2Bp50XXVNe0%2BNqG21/tbactr%2Be32j2qvnjtCgClrmqWejaXNqV87JBCBnapZmJIVVAHJJJAA9TW%2BGw1TE1VSprV/8O38lqKUlFOT2Rx3wt16zumu7Z57v7RqV9fX1tHcpgrGlwYnjzkjKMMEA4wwIr288wNSmozSVoRhFtd3HmT2XxL8tTCNVOtO%2Bl3ZesYxi196b9PRneSqXjZFkaMsCA64yvuMgjP1FfPRdndq50HnPxB8Nazb%2BBddnl%2BIPiW7jj0%2Bdmgmg08JKAhJVilqrYPQ7SD6EV9PlOY4eeOoxjhacW5R1Tq3Wu6vUa%2B9NeRjOD5X7z/D/ACPSK%2BXNgoAKACgAoAKACgAoAKAOF8ds%2Bv8Ai7RvA8fy2rqdU1Uno9vE4CQjv80hUnkcKeoJFcOJ/e1Y0Om79F0%2BbPqcmSwGBrZo/iX7uHlKSbcvlFO2j1fRpM4jSFkTSrNJfP8AMWBA3nyK8mdozuZeGb1I4J6V6%2BMcXiKjja13ayaW/RPVLsnqkfKxvZXLVcwyrMsh1W2Yef5YhlDbXAjzlMbl6k9cEcD5s9RXRBx9hJO17ro79dnsl376W2YuparnGR3Ofs8uM52HGF3Hp6d/pV0/jXqJkembv7Ntd2/d5KZ3x%2BW2cDqo%2B6fbtV4m3tp27vrfr36%2BvUFsWKxGU5d/9tW%2BPM2fZpc4hBXO6PGX6g9cL35P8NdUbfVpbX5o9ddpdOq7vpoupPUuVylBQBT0NZF0WxWb7R5otow/2iRXlztGd7LwzepHBPSunGuLxNRxtbmdrJpb9E9UuyeqW5MdkXK5iinFv/tq4z5mz7NFjMIC53SZw/Vj0yvbg/xV1St9Wjtfml112j06Ls%2Buq6E9TB8Q6dcaNfyeJ9FyDjOo2YUlblB1cAdJAOc9%2B/fPi16UqMnXpfNd/wDgn2OU4%2BlmVCOU4/8A7hzvrB9m3vB7W6dOltn7fY6n4elvbOeGe1lt2YN5uxcbTwzdU9D3HPpXp4GrGrUpzpu92tlfr26vy%2BR8zjsFXwNadDERcZR0af8AW3ZrRrVF63x9njxjGwYw24dPXv8AWip8bOZD6gDp/hp5f9uXnEPmfZl/5eTvxu/55dMf7X4V1a/Vutubtpt37%2BXzJ%2B0egVylBQAUAFABQAUAFABQAUAFABQAUAFABQBx3xOnlP8Awj2ki6ltrbVdVW2u3ilMbtEIpZCoYcjcUAOOcE13YCKc5yavyxbXqmkvzuZ15ONNtdWl97SM7xDZab4X1DQr/wAOytatPqsNpdQR3LNHPFJuUhkJIyCQQ2MjHXBNbYedTEc0Kuq5W9tmlfT7rE10o03Nbq34tJp%2BVn/kehV5ZsFAHHfErWdKt4rTQNX0vVbqPVX2QS2ojRFmQh0XzHdVWTKhlBPO3gHBFe5k2ErzcsTRnFOnunduz0eiTbWtm%2Bl9bGdZxULTV09H/wAHtfa%2Bmum9jmvg9YWFt4n1a1S18Vy3OlPJD5%2BsSWhSE3DLcyKogxy7OGyQ3AxkDivU4hr1Z4anNypqM7O0Oe75bwTfPfZK269Huc0VH6w073WvSycrtv52t1%2BWp6tXx52nOfE7/knPiT/sF3H/AKLavTyX/kY0P8cfzRFT4GdHXmFhQAUAFABQAUAFAFTUdS07TVhbUb%2B1sxPKIYTPMsfmSEEhFyRlsKTgc4B9K0p0alRScIt2V3ZXsu77LzE2luZMnjjwYlo13/wleiPCtu1zujvo3zEp2lwASSN3GR3461tVwOKopupSkrOzvF6O17bb21tvbUujB16kadPWUnZfPQ5b4Z%2BIdCuPt/inVtc0m11LXbtFjtpL2IPBCFJtoCN2Q5jJkK5zlycDoOHBYLE1IPEum/eXNs/gTtf07va7PoeI61KhOGW0pXjQ91vvUfxv79Fpslvucp4eaJ9A054Ps/lNaxFPs6MkW3YMbFbkL6A8gda9DMVJYyqpXvzSvdpvd7taN92tL7HzUPhRerjKKNwY/wC3bNT5HmG3mK7kJkxmPO09AOmQeT8uOhrrpqX1WbV7Xj1Vtpbre/btrfdEv4kXq5CiO5x9nlzjGw5y20dPXt9aun8a9fUTI9M2/wBm2u3bt8lMbZPMGMDo38Q9%2B9aYm/tp37vpbr26enQI7FisBlOXZ/bdvnZv%2BzS4zMQ2N0ecJ/EOmW7cD%2BKuqN/q0u3NHpptL7XT066voT1LlcpQUAZ/hlom8N6Y0P2fyjZxFPs6MkW3YMbFbkL6A8gda7cyUljKqle/NK92m93u1o33a0vsTD4UaFcRRTi2/wBt3GNm/wCzRZxMS2N0mMp/COuG78j%2BGuqV/q0e3NLpptH7XX06aPqT1LlcpRx3iHw/d6Y0%2BreFESKWRGF3YhAY7kHPzBTxvGcjseh9DxKk8LWWIoq9ndx25l5Po/M%2BwwWcUszof2fm0tPsVHq4Paz7wfVdN/NdB4c1Wy1jSYbyxnEqFdrArtZGHBVl/hIPb%2BldNPEQxC9pDZ/h5Hz%2BaZXicrxDw%2BIjZrr0a6NPqn/wNzRrQ886f4ab/wC27w/vfL%2BzL/y7DZnd/wA9euf9j8a6tPq3nzd9dv5f1%2BRPU9ArlKCgAoAKACgAoAKACgAoAKACgAoAKACgCnqul6bq1utvqmnWl/CrbxHcwrIobpnDAjPJ596unUnTfNB2fkHSxSs/CnhazuY7q08NaNbzxndHLFYxq6n1BC5FayxdeSs5u3qyXCL6GzXOUFAFfUbK01Gxlsb%2B3juLaZdskUi5VhWlGtUoTVSm7NbMDG8G%2BErDws2pNY3eoXP9oXCzSfa5vNKbUVFVWxnaFUAbiTx1ruzHNKuP9n7SKXIraK17tttra7b6WXkY06Eac3OPVJfd/wAP/kdDXmmxznxO/wCSc%2BJP%2BwXcf%2Bi2r08l/wCRjQ/xx/NEVPgZ0deYWFABQAUAFABQAUAcd8VBIdN0sp5%2B0ahl/LYBceTL98HkrnHA5ztPQGuii4qFS9ttL3v8S27O3fS11vYT6HkfiudNV1O18KQMrGf9/fgHmO3Ujg%2B7sVHfjP1rycVJVZrDrrq/T/gn1mR0ZYDDVM4qK3L7tPzqO%2Bv/AG6rvda231R0wGBgV3Hyj1KmjCRdIslm%2B0eYLeMP9odWlztGd5Xgt6kcZ6V0YxxeIqONrXdrXS36J6pdr623FHZFuucZWlEn9qW7Dz/LEUm7awEecpjcOpPXBHA%2BbPUV0QcfYSTte67367Pa3f5W6i6lmucZHc5%2Bzy4znYcYXcenp3%2BlXT%2BNevp%2BImR6ZuGm2obdu8lM7o/LOcDqv8P07VeJt7adu76369%2Bvr1BbFisRlOUN/bVuRv2/Zpc/uMrndHjMn8J6/L35P8NdMbfVpd%2BaPXyl9nr69NupPUuVzFBQBU0USro9ks32jzRbxh/tDq0u7aM7yvBb1I4znFdOMcXiKjja13blulv0T1S7X1tuKOyLdcwynEG/tq4J37fs0WP3GFzukziT%2BI9Pl/h4P8VdUrfVo9%2BaXXyj9np69duhPUuVylFfVNo0y6LbdvkvndL5YxtPVv4fr261vhr%2B2hbuul%2Bvbr6dRS2Oe1Tw07SprPhy5TTNUKZkZV3xXIx91x35x83XrXm4rCP2rq0Xyz16b%2Bq/qx9VlfEMFQWBzOHtaGltbSh5xfp9nZ6dN73hrxDBqpksrmP7Fq1vxc2UjfOpGPmX%2B8hyCGHqKeHxSq3jLSS3X9dDlznIamXqNek/aUJ/DNbPyfaSs7p9Uz0L4aFP7bvB%2B73/AGZf%2BXk7sbv%2BeXTH%2B3%2BFepr9W8ubt5fzfp8z577R6BXKUFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFADZFLRsquyEggMuMr7jPH5007O4Hn/xD0HVYfAevTSeNtfuUTTp2aGWGxCSARn5W224bB6cEH0Ir6TKMdQlj6MVhoJuUdU6l1rvrNr700Yzi%2BV6/l/kehV80bBQAUAFABQAUAFAHnfx51O30jw5pd9OsEjJqOIY3DF5ZDbzhUjx0c9Oc8bu%2BK3jVdLD1566RW1v542v3V7ba3t0ud2W5fLMMXTw8Xa71fRJJtt%2BSV276HB%2BFNMubG1lu9SZX1O9fzrplYlVP8KLnkKo4A%2BtedhaMoRcp/FLV/wCS8kd2e5jRxVWNHCq1GmuWF9G%2B8pW%2B1J6t%2Bmhs11Hhmf4ZMbeG9LaH7OYzZxFPs6ssWNgxsDchfQHnGM125kpLGVVK9%2BaV%2Ba193vbS/e2lyYfCjQriKKFwY/7esgfs/mG3n27lPmY3R52noB0znn7uO9dlNS%2Bq1Gr2vHtbaW/W/b536Ev4kX64yiO5x9nlzjGw9W29vXt9aun8a9fX8BMj0wg6balcYMKYxL5g%2B6P4/wCL69%2BtaYm/tp37vpbr26enQFsWKwGU5Sv9t24%2BXd9mlx%2B/wcbo/wDln/EOnzfw8D%2BKuqKf1aT/AL0enlL7XT0679CftFyuUoKAM7wuY28M6W0P2YxGzhKfZlZYsbBjYG5C%2BgPOMZruzNSWNrKV780r81nLd720v3tpfYmHwo0a4SinEV/tu4Hy7vs0RP7/ACcbpP8Aln/COvzfxcj%2BGuqSf1aP%2BKXTyj9rr6dN%2BpP2i5XKUV9UBOm3QXOTC%2BMReYfun%2BD%2BL6d%2Blb4a3toX7rrbr36evQUtiW3z9njznOwdV29vTt9KzqfG/wDhwRma94e03WTHJcpJFcxZ8q6t38uaPgjhh9Twcj2rkr4WnW1lo11W57WV57i8svGk1KEt4SV4vrqvlurPzDwT4i1fwHrUsnigzan4ekiSNtYjs8GzJYBRMQCSCeOD1wSORiPa18JR/fSUoX3%2B0tOqva3na9%2BvQ9z%2Bz8u4gT/s2HssQlf2bd4z3b5G9U0teV6W22bfuWkalp%2Br6dDqOl3sF7ZzAmOaCQOjYJBwR6EEH0IIrohONSPNF3R8jisLWwlV0a8HGS3TVmW6swCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDjPG89/H4isI7mXW4NAa2kMkmkwSSSG43Dar%2BUrSBNu48YGcZPQH3cshSeHm4KDq3VlNpLl625mot3tvrbYyqualG22t/wt8t9tdulyLwpNdt4sVNMm8QXGiGykNy2rQzJsnDp5ezzlVzlTJnHy8DvVY6EFhL1VBVOZW5HF%2B7Z3vytre1upF37SPJe2t77dLfO/4b9DuK8A6DnPid/wAk58Sf9gu4/wDRbV6eS/8AIxof44/miKnwM6OvMLCgAoAKACgAoAjuJobe3kuLiVIYYlLySOwVUUDJJJ4AA70m0ldlQhKpJQgrt6JLds8S8Tyah441DTfFk6n/AIRi1vZINJt0wftDbXzdy56LmPai43DdnjnPJhoLGSlWnblivdTvq7pXVtL2va%2Blr9bH2OPqx4fwjy%2Bi39YqW9rL%2BVWv7NfenJp7pLVbWq7D4wKAKujiQaTZib7SJBAm/wC0FTLnaM7yvBb1xxnOK6MW4vET5bWu7ct7b9L627X1tuKOyLVc4ytKJP7StyPtHl%2BVJu2lfLzlMbh1z1xjj72e1bx5fYy2vdd79dulu/yt1F1LNYDI7nP2eTHXYf4d3b07/Srp/GvX0/ETI9MBGm2oOciFM5i8s9B/B/D9O3StMS71p27vrfr36%2BvUFsWKwGU5Qf7btzztFtKD%2B4yPvR/8tP4f93%2BLr/DXVFr6tJf3o9fKX2evr026k/aLlcpQUAVdGEg0izE32kSi3Tf9pKmXO0Z3leC3rjjOcV0YxxeIqctrXduW/Lv0vrbtfW24o7ItVzjKcQb%2B27g87fs0QH7jAzuk/wCWn8X%2B7/D1/irqk19Wiv70uvlH7PT167fZJ%2B0XK5SivqhA0y6JxgQvnMvlj7p/j/h%2BvbrW%2BG1rQt3XS/Xt19OopbEtv/x7x4/uD%2BLd29e/1rOp8b/4b8AQ%2BoGdN8N/LfWb2NlRs2oyDc9Ru/54%2Bn%2B3%2BFdNv9m/7e7eX836fMSbUrom1L4ZaSt1cah4X1C/8KahMjBn01wsMjclTJCRtYAnttOOMivIngIXcqTcH5bfNH1WH4sxLhGjjoRxEF0n8SXXlktVdd7q%2BtmYPiPXPHejeF9X0jxbol1qkM9nPDDrXh0ESDMJAZousb5z84%2BUHHAAydsFja%2BDxEJ1oKSi072utGn70d7d7G9bKMpzSLnltf2Ura06jS6/Zns%2Bmj183suX0HxLouuTldM12eaceXKY/tcqt8g%2BU7Secd8cetdFDOFXXLCaej6L7W/T/huljyc04azLKlz4ui4xva%2B6%2B9beV9zYKuU2G7vsbZF/4%2B5Oj/e/i/8A1dsV1fXKqd7rp0X2dun/AA/W54fKjqvhXcFtY1m0a7ilMVtaP5bSSvOgJmUFixKbCI8Lt%2BbKvuz8tb4hyng6dSSespq%2BltoOytrdX1vpZq3US0k0d/XnFhQAUAFABQAUAFABQAUAFABQAUAFAHF%2BN7W/l8RWE1xaarf6Ets6yW%2BnTFHFxkFXcKysy7dw4PBPIr3csq0o4ecYyjGrdWcldcvVK6aTvb5GVVTco221v%2BFvlv8AeiPwpZXUfi1bjTbDWNO0YWUiXMWozs/mTl0MZRXdiMKHyeByKrH1oSwnLVlGVTmVnFJWVne7SW7tYz5X7SLgmt7/AKfO/Xt6ncV4B0nOfE7/AJJz4k/7Bdx/6LavTyX/AJGND/HH80RU%2BBnR15hYUAFABQAUAYXi/wAWaF4Ut7eTWLsxyXUnl2tvGhkmuH4G1EXljyPzHqKwr4mnQSc3vt3Z6mV5NjM0lJYaN1FXk27Riu7b0W359jj/AOzvE/xHuIn8QWT6D4RDCT%2BzJMreX2ApUT4OEjzk7Qc8YPtyclXFv94uWHbq/XyPovrOX8PRawc/a4rbnXwQ3vydXK3V6dV56fxThtrfS9At4orSGOPUQkEZUjaBbTgCMLwCBnrxt3d8V7uFTVKso3tyra1rc0d/L0626XPias5VJ883dt3be7f%2BZyVcgBQBneGPLPhrSzD9m8v7HFs%2BzhhFjYMbN3O30zzjGa7cy5vrlbmvfmlfmtfd720v3tpfYmHwo0a4iihc%2BX/b1ln7P5n2efbuB8zG6PO3tjpnPP3cd67KfN9Vqb2vHtbaW/W/b536Ev4kX64yiO54t5T/ALB/i29vXt9aun8a9fX8BMj0wg6bakdDCn/LXzOw/j/i%2BvfrWmJ0rT9X0t17dPToC2LFYDKcpH9t244z9mlP%2Bvx/FH/yz/i/3v4en8VdUV/s0n/ej08pfa6enXfoT1LlcpQUAZ3hfyz4Z0ow/ZvK%2Bxw7PswYRY2DGzdzt9M84xmu7M%2Bb67W5r35pX5rc273tpfvbS%2BxMPhRo1wlFOIj%2B27heMi2iP%2Bvz/FJ/yz/h/wB7%2BLp/DXVJf7NF/wB6XTyj9rr6dN/tE9S5XKUV9UBOmXQHUwv/AMsvM/hP8H8X079K3wztWh6rrbr36evQUtiW3/494/8AcH8O3t6dvpWdT43/AMP%2BI0PqAOn%2BGgP9t3jc4%2BzKP%2BPXj73/AD1/9k/Guq/%2BzW/vd/L%2BX9fkT9o9ArlKMH4ieWPh/wCIjN9n8v8Asq63/aAxix5TZ37edvrjnGcV25bzfXKXLe/NG3La%2B62vpftfS5M/hZ5Frnh/SdaKPf2itNGQY50JSVMHIw45HNeVWwtKt8a179fvPZyzPcdll44edou94vWLurO8Xo9DLPhrV7Rx/Y3iu9t4juzFeRC6AycjaWII79SfwrD6pVh/CqtLz1PV/wBYcBiF/t2BjKWmsG6b%2BaSafTZL5m/8PX%2BKukavqLW1vZeJtJZIQFllFliT95u8sgMAR8m7IOQY8Y%2BaumX1qnh4fBP3pd1K1o2vvHl35ba35r9Bt8N41ae0w8rf9fI7v/DK7Xokdonj/U4IYZdV%2BHniq0VsCVooY7kRsR2Ebl2GeM7fwFc/1yaV50pL7n%2BWpD4bw85ONDHUpPpduN/nJKKflf7wl%2BLHhCznSLWW1XRPMVmifU9Nmt1k2kZCll5I3Ch5jRi7TvH1TQR4NzOtFyw3LVtvyTjK172vZ6bGnp/xF8CX9sLi38X6KEJI/e3iRNx/suQf0rSONw8ldTX3nFX4YzihPknhp38ot/iro29I1fSdYhefSNUstQiRtjvazrKqtjOCVJwa3hUhUV4NP0PLxWCxOEko4inKDfSSa/MvVZzBQAUAFABQAUAFABQAUAUNfgmuNJuI4dSk01gpY3CCMlQOTnzFK49SRXRhZxhVTlDn8tf0aZUN0ct8FoPsXgPSLF/EcGsSRWMKlYZoJI4do2kI0QG5dykZJPQ816/Ec/a46rUVFwTk91JN311UtnZ3srbnDg48kHFvrLT/ALef9M7aQFo2VXKEggMAMj35rwU7O7Ow5bVPCepanptzp194z1iW1uomhmQW9ou5GGCMiHI4PavXoZpRoVI1aeHipRd1rPdf9vGbg2rNnV145oYHifw/fazcxS23irWtHSNNpisTEFc5%2B8d6Mc9uuKwrUZVHdTa9Lf5HrZdmVLBwcZ4eFRvrLm08laSRkf8ACDat/wBFH8W/9923/wAZrH6pP/n7L8P8j0P9YcN/0A0vun/8mH/CDat/0Ufxb/33bf8Axmj6pP8A5%2By/D/IP9YcN/wBANL7p/wDyYyT4fXVwVS/8e%2BLrq3DbmiF3HDu%2BrRxqw/Aik8G38VSTXrb8kVHiWnTu6WDoxl35W7fKUmvwNHwr4A8J%2BGr46jpWkouoMrK95K7STPuOWJZieT3PWtKODo0XzQWvfqceZcSZlmVP2Nep7mlopJRVtrJdF2OorqPDMvxJosWt2sNvLdXFusUhkBhK/MTG6DOQcgF931Udsg60qkYX5oqV%2B9%2B6fRrtb0b6iauYa%2BArMR7TquoFtsQ3YizlPvn7mMv37D%2BHbWrr0r39muvWXXbr9np363FZ9xT4Ds/M3f2rqAXfK2393jDj5V%2B5nCdR3P8AFupe3p2t7NdOsum73%2B11/CwWfcZD8P7OO0WD%2B2NTdlhhj81zGWLJ95z8mCz9G7D%2BELVzxNOU3L2SV23b3ra7LfaPTr3uFnbcePAdkJQ51XUCvmyvs/d42sMKn3M4Q8g9T/ETUe3p2t7NbLrLpu9%2BvXp2sFn3Im%2BH1oZVk/tvVBizNvtHlYMhx%2B/Pyff46fd5Py1axNJRt7KPxX3lt/Lvt%2BPmHK%2B5K3gOyM28apqAXzY32Dy8bVGGT7mcOeSeo7EDioVana3s1s%2Bsuuz36bLp3TCz7jT4BsTAYn1TUGJiljLERZJc5V8bMZQcAdD/ABA0/rFNS5lTW6e8um6367vqujQWfcYPh7ZJaLbxatqEW23SFWRYRhlbJcDZjJHy4xtA6AHmqeKpym5ypp3be8uvTe%2Bj1vvfdtByu25OngWwE/mHUL5k89pPLOzGwrgR5252g/MDndnqSOKzdWm429mtrXu97777vbt2Vx2fcrf8K7sTNHMdX1AyJaNbhykO7c3Pm58vhvu/KPlO0ZU1t9bp8riqas5J2vLp0%2BLbfXfV6i5X3Jl8B2YfcdV1AjMJ2ny8YT74%2B5/H39P4dtZuvTt/DXXrLrt1%2Bz079bhZ9wbwHZkYGq6gvE3I8v8Aj%2B5/B/B29f4t1Cr0v%2Bfa6dZdN%2Bv2uvbpYLPuNt/h/ZwwJEdY1OXasC7nMZY7PvknZyZP4vT%2BHbVVMTTnJy9klfm25uu3X7PT8bgk%2B45vAVmXyNV1BRmY4Hl/x/cH3P4O3r/FuqVXpW/hrp1l036/a69ulgs%2B5D/wruyE0kw1fUFke0W3LhId25efNz5fLct8p%2BUbjhRWn1unyqLpKyk3a8uvT4vTXfRahyvuWn8C2Bn8wahfKnnrJ5Y2Y2BcGPO3O0n5ic7s9CBxWKq01G3s1ta93vfffdbdvK47PuVpPh5Zy2Mlq%2Bt6rl7aSEyr5SuGY5EgwnDKOB27kE81tDF0oVFNUo6NO3vNadN9nu%2BvnYXK7WuPh8AWcewHV9SdVeRsN5fzKy4VSdmcIeQepP3iRUTxFOV/3S1t1l03e/XZ9F0sFn3HN4CszDsGraiG8qNN%2BIs7lOWf7mMuOCOg7AHmkq9K9/ZLd9Zddlv03XXu2Fn3JbHwdJp93dXOn%2BJdXtmuFZVQCFkiBdWGFZCCQAVBOThjnJwRtDG0owUHRi7Wf2rvRre/Xeysrr1Fyu97mkNK1Tzg/wDwk%2BolfOD7PIt8bR1T/V5wfXr71P1qja3sY7W3l9/xb/h5D5X3K994f1K802Wxl8WaqFltmgeRIbYOSzElwfK4badvHGBnGeaqGMoRnzewjve15W22%2BLa%2BvfztoLlfcpp4FsBP5h1C%2BZPPaTyzsxsK4EedudoPzA53Z6kjiud1qbjb2a2te73vvvu9u3ZXKs%2B5C3w/tjB5Y1vU1fyFi8wLDneGyZcbMbiPlxjbjoM81osRS5r%2ByW97Xltbbfbr387Cs%2B5seHPDWn6He397bGSS4vSivJJjKxpuKRjAGVUvIRnJy556YiriZTpQo2tGN3bzdrvXq0ktNNNhqNnc265hhQBj33hbwxf3cl3feHNHuriQ5eWayjd2PTklcmsZYelJ3lFN%2BiPRo5xmFCCp0q84xWyUpJL5JmNqPwu%2BH1/cm4ufCWmeYQB%2B7j8sYHspA/SsZYDDTd3BHpUOLs7oQ5IYmVvN3/F3ZUl%2BEHw6aMiLw1BbSdVlgldJEPYqwbgj1qXluF6Qsbx42zxP3sQ5Ls0mn5NW1RteGfCFhoF%2B95a6jrdy7xGIpe6nNcIASDkK7EA8devX1ralho0pXTb9W2ebmGdVsfTVOpCEUnf3YRi%2BvVJO2ux0VdB44UAFABQAUAFABQByfxQl0ybw3Jo95qcVpc3hVreMxtK0xjdXKmNAWZDtwxA4Br2ckjWjiVXhDmUd3dK101u9E9brzRnWUZU3CTtzJr710XXvbscb8GtOuV18S6je6VFc2UF75VpaNP5kiXV155dvOiiO1DhBhSMknIzivb4ixEHh%2BWlGTUnC7fLZOEOWy5ZSV3u7tdrPc5YxbratLWUut3zPb0XXe7ttbX16vizuCgAoA4W%2B8NeHPEHxQ1Zte8P6VqrQaLp4iN7ZxzGMGe9zt3g4zgdPSvoKWY4vB5ZSWHqyhedS/LJq/u097MycIym7rov1NH/hXHw8/wChD8Lf%2BCiD/wCIrm/1gzX/AKCqn/gcv8x%2Byp/yoP8AhXHw8/6EPwt/4KIP/iKP9YM1/wCgqp/4HL/MPZU/5UH/AArj4ef9CH4W/wDBRB/8RR/rBmv/AEFVP/A5f5h7Kn/Kg/4Vx8PP%2BhD8Lf8Agog/%2BIo/1gzX/oKqf%2BBy/wAw9lT/AJUH/CuPh5/0Ifhb/wAFEH/xFH%2BsGa/9BVT/AMDl/mHsqf8AKjA8T/D/AMBxa54Vji8E%2BGo0m1WRJVXSoAHX7Fcthht5G5VOD3APavRwWe5nKhiG8TPSCt78tP3kF37NoiVKF1ov6TN//hXHw8/6EPwt/wCCiD/4ivO/1gzX/oKqf%2BBy/wAy/ZU/5UH/AArj4ef9CH4W/wDBRB/8RR/rBmv/AEFVP/A5f5h7Kn/Kg/4Vx8PP%2BhD8Lf8Agog/%2BIo/1gzX/oKqf%2BBy/wAw9lT/AJUH/CuPh5/0Ifhb/wAFEH/xFH%2BsGa/9BVT/AMDl/mHsqf8AKg/4Vx8PP%2BhD8Lf%2BCiD/AOIo/wBYM1/6Cqn/AIHL/MPZU/5Uc18SPAHgS18PWslt4K8NwO2taVGWj0uBSUfULdXXIXoVYqR3BI716uT55mdTESU8TNrkqvWct1Sm09%2Bj1XmRUpQS2W6/M6X/AIVx8PP%2BhD8Lf%2BCiD/4ivK/1gzX/AKCqn/gcv8y/ZU/5UH/CuPh5/wBCH4W/8FEH/wARR/rBmv8A0FVP/A5f5h7Kn/Kg/wCFcfDz/oQ/C3/gog/%2BIo/1gzX/AKCqn/gcv8w9lT/lQf8ACuPh5/0Ifhb/AMFEH/xFH%2BsGa/8AQVU/8Dl/mHsqf8qD/hXHw8/6EPwt/wCCiD/4ij/WDNf%2Bgqp/4HL/ADD2VP8AlQf8K4%2BHn/Qh%2BFv/AAUQf/EUf6wZr/0FVP8AwOX%2BYeyp/wAqOc%2BF/gDwJd/DPwtdXXgrw3PcTaNaSSyyaXAzuxhQlmJXJJJySa9TO88zOnmWIhDEzSU5pJTlZLmfmRTpQcFotjo/%2BFcfDz/oQ/C3/gog/wDiK8v/AFgzX/oKqf8Agcv8y/ZU/wCVB/wrj4ef9CH4W/8ABRB/8RR/rBmv/QVU/wDA5f5h7Kn/ACoP%2BFcfDz/oQ/C3/gog/wDiKP8AWDNf%2Bgqp/wCBy/zD2VP%2BVB/wrj4ef9CH4W/8FEH/AMRR/rBmv/QVU/8AA5f5h7Kn/Kg/4Vx8PP8AoQ/C3/gog/8AiKP9YM1/6Cqn/gcv8w9lT/lRzPw18A%2BBLrw7dS3Pgrw3O663q0YaTS4WIRNQuFRcleiqoUDsAAOlernOeZnTxEVDEzS9nSek5bulBt79Xq/MinSg1st3%2BZ03/CuPh5/0Ifhb/wAFEH/xFeV/rBmv/QVU/wDA5f5l%2Byp/yoP%2BFcfDz/oQ/C3/AIKIP/iKP9YM1/6Cqn/gcv8AMPZU/wCVB/wrj4ef9CH4W/8ABRB/8RR/rBmv/QVU/wDA5f5h7Kn/ACoP%2BFcfDz/oQ/C3/gog/wDiKP8AWDNf%2Bgqp/wCBy/zD2VP%2BVB/wrj4ef9CH4W/8FEH/AMRR/rBmv/QVU/8AA5f5h7Kn/Kjl9N8A%2BBW%2BK%2Bv2jeCvDbW0Wh6ZJHCdLhKI7T34Zgu3AJCICe%2B1fQV61bPMzWVUZrETu6lRX55Xso0rLfpd29X3M1ShztWWy/U6j/hXHw8/6EPwt/4KIP8A4ivJ/wBYM1/6Cqn/AIHL/M09lT/lQf8ACuPh5/0Ifhb/AMFEH/xFH%2BsGa/8AQVU/8Dl/mHsqf8qD/hXHw8/6EPwt/wCCiD/4ij/WDNf%2Bgqp/4HL/ADD2VP8AlQf8K4%2BHn/Qh%2BFv/AAUQf/EUf6wZr/0FVP8AwOX%2BYeyp/wAqD/hXHw8/6EPwt/4KIP8A4ij/AFgzX/oKqf8Agcv8w9lT/lRnWPhrw54f%2BKWkNoOgaVpTT6JqIlNlZxwGQCeyxu2AZxk9fU11VcxxeMyuqsRVlO1Snbmk3b3au12JQjGasuj/AEO6r541CgAoAKACgAoAKAOe13Qb%2B48QW2vaNqkFjfRWz2ji5tDcQyRMwb7odCGDKOQ3qCDxj0sLjqUMPLDV4OUW1LR8rTStu1JWs9rfMznT5pRknZxv%2BNr3%2B5DdM0HU/wDhI4dd1vVrW8ube1ktoI7Sya3jVZGRmLBpJCxzGuOQBzxTrY2j9XeHw9NxTabvLmeiaVrRiktX0%2BYnTlKUXJ/Df8To68w1CgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPOfDniu/kvrm71rUL22Q3N4LWyk00xRSxxmTYqysoLPsTfwex9K%2BnxmWUowjChBN2heSldpu17xT0V3YxU37Zxk7Lmsvutq/N3a%2BS3KMnjvWdE0O01/V5oryDUtGudSjtlhWPyHijEqxhgfmBU4ycnIz7V0RyTD4qvLDUU4uE4wbve6b5W7dHfXQypV3JQqS%2BGTenkk3%2BSZ0PhnVtbg8UW%2Bh63ew3zX2l/wBoRSJAIjE6sqyR8HlfnUg9eDkmvMxuFw08LLEYeLjyz5Xre6abT9dHfoFKrJqnKX209OzVn%2BTt8vM7OvDOsKAEY4UkAkgdB3oQ0eZxeOfE1vonjG%2B1bSrSzu9NvIoLC0Eok2CVI9nmsMAtufJCnA6AnrX1csmwc62Fp0ZuUZxbk7W%2BFu/Ku1lpfXq0tjjniZU3VlKOkI81ur%2BL7r2XoO1XxVruhajfeGri/ivdRP2D7JeNbKmBcyvExZAcHaYyR65ANKhlmGxdOGKjHlh7/NG7fwJSVn53sTVrToe7J3bjdadeZRfyu0181cW68V63baufCJvo5NTk1eKyjvzbqCIXt3nLlM4LARsvpyDilDLMNOl9d5bQUHJxu91JRtfe2qZdWrKk5Rvd%2B7b/ALebX4Wb%2B46fwLq15qMOqWWoyJNeaVqEllJMibBMAFZX25OCVcZ7ZBxivJzPC06MqdSkrRqRUkt7bpq/qtPI1hJ%2B0nTbva33NJr7r2OjrzDUKAOL0zxH4hl%2BImraTqOlw2WlW2n/AGizAlEk8%2BHKtIwXhQcfKuSccnBOB7tbL8LHL6dalNym5WlpZLS9lfVtdXZLtdamTnL28adrJ31725fw1fn5IwdI8a6jZ%2BFLzW9bv7tr%2BPS5b1NPuNO%2BzISozhGZQXAyoPPfNejiMno1cVHD4eK5HNR5lLmevdJtK%2BrIhVd7z0%2BJ28ld797f1YPEPjPX/CkcllqF1BqV7eWdrLZSGARiKaa4S3KkA/MitKrDvwRmjCZRhcwaqU4uEYykpK97qMXO%2B2jaTXbyMZYmVKl7Wet4SlbzSVl6NtI6jwnqmpjxRrHhjV7tL6axht7qG6WERF4pt42soOMho25GOCO4yfIx%2BGo/VaWLox5VJyi1e9nG2z80187nQnKFVU5O943/ABaf5XXrbodVXkGwUAeffE3VvF3h6y1TX7XU9Nis7WOIaZpwtzLLqEx6xOeCrOcIoTOOpz0r6TJcLgMZOnhpwk5SvzSvZQXdd0lq7%2Bi7mNeUoqUk1FJXvvd9rdtkrO7b6WV4LvxdrS/b9fE8cOmafrEOmvYmFWZ1Zo0eQvnIYNJwBxhe%2Ba1p5Vh3yYa15zg581%2BybSt2svXU55YifJUqNcvIk2t%2Bik/wdl5rzC28Xavm18QTXUR0m61qTTBZiBcoiu8ayB85LbkyR0wcY70p5VQ97DRj%2B8jBT5r7tpNq3az%2B9GrqSbk19mSj66pP8X%2BAnhHxdrd6fCesX88MmneKxJ5NqsIVrQ%2BW0sWHB%2BbKIQ2e5BGOlPMMqw1L6zQppqdC13f4tVGWnTV6W6b3JVdyiqqfu87jby95J/8Akuvr5HpNfLHWFAHLeOJNftlkv7TXdO0TSLSzkmnnlh82RpR90ENhRGBnODuJIAxXr5ZHCzapzpSqVJSSSTsrddtb/giZKTaSdlrd9vTp5tvta2t1y0fi/wAQXh0qe/a/0O3fRYL28MGltOqTPksGYqQigDPPIzzXrvKsLT9pGnao1OUY3na6W1ldXb%2B7scsK1SdOMmrXT6dnZO3mtfmixrfi/V0bxHrGm3sH9m%2BG5II5IDCrfbA0ccsjb85X5ZBtx3HORxWWGyrDv2FCrF89ZSd7/DZuK066rXy7FTqtuag/hipX76N/dZfj5ER8bawY38TrPD/YqeIl0UWXkjcYzOLYzeZnO7zG3Y6bRjGeav8AsfD3WEs/aez9pzX68vPy27cune%2Bu2hE8S3GrUjoqbj89IuXp8Wnprvp6fXyZ2hQBm%2BI11dtO2aLPa287SIJJpwW8qLPzsqgHc%2BM4BwM9fQ9WDdBVL102rOyXV9E30V92tewpczi1Hfp/XktfN6abnB6R4x1nVYrLSbe%2BjFxdaxcWSagbcBzBFH5hcxHG1z93BHT5scivosRlOHw7nWlHSMIy5b6c0na3Mt0t/wAL6HK6zV4p395JejV3%2BqX3kmmeKtc1nUbDw1b38VpqAlv0u71bdWyts6ICqE4BYyKT6YOKitlmGw1OeLlHmhaFo3f203q/KzG6rjP2b1fM1fyUeb79Uv0KujeNPEXiiY6fpdxa6deWGkteXkhgEiTT%2BdLCqAFsqhMDk855ABGOdsRlGEwC9pWTlGc%2BWKvZqPLGTe2r95JdN9B05yqVYYe%2Br5k3b%2BVqKdvNtv5W6ne%2BDdaTxH4S0jX44jEuo2cVz5ZOdm9A238M4r5zMcG8Fi6uGbvySav6OxWGrOtSjN7/AK9TXrjNypq/9o/2Xc/2SLY3/ln7P9pZhFv7FtoJx9K2w/svax9tflvrbe3lcL2PPJ/FmvWth4ps7e9Op3emC3S3uBYESeZIxVx5Sj51UjIYDByRzivpo5Xhak8POUeSM%2Ba65tLJXXvPZvtf8zmU5xcot3ajftrr%2BGxPdeKr2G303SbTV7ifVdU1VLAyXlgsMlmpieVmMRC5ykbYz3PfGKzhllOUqladNKnCDl7srqWqjbm16tXFOtyU2763il/287X9LXfysQWnizxBfeIY/BSXsEOpxX91Dc6itupzBFFHIrLGTgO3nRqeo4YgDIxpUyvC0sO8e4twcYtRv9qTaabtey5W11217qrWlSqqju3JK/ZODn96ty/O/kdX8Otdn8Q%2BGReXaot3Bd3NlcbBhWkgmeJmAycBtm7HbNeNm%2BCjg8TyQ%2BFqMl6SipJfK9jWjNtzhLVxbXrbb8LX8zo68w2CgAoAKACgAoAKACgBKAORuvCeoandWUevaxDqFhYXT3MCfZdkzMVdVEjhtpCiQ42qv3R759qGaUqEJvD03Gckk9bq103ZWvrbq3uzCpSc7Rb926l56PmS9E7dL6LXcz7f4ePPYxaZrerJe6faabPptmkVuYnWOVdhZ2LtuYKAAQFHU4rpnnyhN1aEOWcpRnK7urxd9FZWV9eoU6PI4q/uxbdvXTf0bRreGvDWoWWsJq2tatDqF1BYiwtvJtjCqx7gzMwLtudiFyeBxwK48bmNKrRdGhBxi5czu767K2islr9%2B4qdBw5It3UFZd9bat%2BiX4nU15B0BQAUAclqXguO/g8Twz37quuSxyq0aYa3aONFUg5%2Bb5kDdvSvZo5u6MsPKMf4Sa9U22/TR2MZ0I1JTctpRUX%2BPX5lO68D32om%2B1DVNZgk1m4NqYbi3tWjih%2BzOzx/uy5JyzsT83OcDFbwzmlR5KdGm/Zrmum7t86SetlbRK2hEsO6n8R3drK2nW9/m0vusLN4HvZ3bVZdXg/t7%2B0o9QS5W1YQKyRGIJ5e/JXYzA/NnJzSjnNOK9iqb9lyuNrq%2Br5r3ta90uhU6LnzOT1fLby5Xdfje/qb3hLRH0W0uzcXQu72%2Bu3u7qZY9itI2BhVydqgKoAyenWvPx%2BMWKnHljyxilFLfRd3pdt3excYNSlOW7/RWX4G1XAaBQBiyaGzeLJddW8MZk077EI1TlTvLbwTx36YrvWNSwiw7je0ub8LW/pkShepGfZP8bf5GHf8Agi81xQnibV4b9YbGezgeC1MMmJlCNI53EF8D%2BEKOTxXfSzmnhdcJTcbyjJ3d17ruktFpfu2/Mz9i5OPM7qN353aa39G9kitffD661m1uf7f1qO4vfssNtZz21sYhAYpVmSQqXbc3mIhPIGFxgVrSz2GGlH6tTtG7ck3e/MnFq9lZWbS33JWGTh7ObvHlcfPVWbv30Vje8MaBd2GralrWrX8V9qeoLFE7wQGGKOKINsRVLMeruSSTy1edjcdTrUqdCjFxhC71d23K123ZdktuhooSc%2Bebu0rL03/Fv8joa801CgDidW8K%2BIbvxv8A8JEmuaZLDboF06zu9PkkWzYjDyDbMoZ2zjcRkDgYyc%2B9h8zwlPBfVXTkm/ilGSTl2WsXZLtfV6voY1aTqTjK%2Bi2Xn39ei7fMLrwRdT31zF/a0I0e81GLUri1%2BzMZTMhViFk34CFkU42k9eeaIZzCEIv2b9pGLgnfSzutVbdJtb/IidBzUk38dr/Kydu10kFt4HnjvoYJNUifRbfU5NThtRbkSiVizbTJvwUDOxxtB6c0TzmLg5KH7xxUG76WVle1t7JLcqVJtuz0bTfys/zSYnhnwLPpVzosNxqyXOl6B5o0u2W3KOm5Si%2BY5c79qMyjAXrk5p43Oo4iNWUadp1bc7vdaO7srK12k3qw9j9lP3eZyt1u79eybf4djt68A3CgDj/G3hbV/EGt6ddRavZLptl%2B8/s66s3lilnBysj7ZU3bccKcgHnqBj28tzPD4OhODpvnlpzKSTUeqV4u1%2BrWttNrmNek6qUb6dV37X8lvbq99izrGi%2BJNQgkg/t%2BzSG7tPs93EbElQSCGeH94ChIPRi44HvnLD4zCUZKXsneLunzfcpaa28uUq1Rap6%2Bmnl/VzIufh4wS%2B03T9VS20XUltxfWzW5eVhCiR4jfeAm5I0Byp6HGK7YZ8rwq1IXqQ5uV3svebeqtrZttarzMVhuSPLTdvdUfkrr77Nr7iQ%2BAJDeva/2sv8AYL6wusGy8g%2BaJw4l2%2Bbvx5fmgPjbntnFT/bi5FPk/e8ns%2Ba%2BnLblva2/Lpe9uthzw6fOouyna/ySWna/Kr/O253VfPHSFAGfr1pqN3ZKmlan/Z90kqyLI0IlRwDyjrkEqRwcEH0NdOFq0qc71oc0Wmt7P1T7rzTXkTJc0Wk7f1/SfkcoPAl2l8%2Buxavbr4gk1EXzz/ZW%2BzH9yIdnleZnGwdd2c857V7H9tU3BYd037JR5bXXN8XNfmtvfytY53huabqSfve76e7e2nzd/wDgIfB4HvrBrDUNM1iCPWbeS6eaee1Z4ZvtLK0g8sOCAGRMfMcY70pZzTqqdKrTbptRSSaTXImlrZ9G76dS/Y3fM3rzc3lta33W%2B4rwfD260sRS%2BH9dW0un05rC9muLYy%2BcpkaTzFAdQrhpJCOo%2BbpxWks%2BhXusTS5oqXNFJ2tolZ6O6aSvs9NwjSlCUaqfvrmd%2Bj5mm9PJpW12uup2Xh/S7XQ9CsNGsQwtbG2jt4QxydiKFGT64FeHi8TPFV516nxSbb9W7lUaSo01BdC9XOalXVre4u9NuLa0vZLG4kQiO4jUM0bdjhuD9DW1CpCnUjKceZLdd/uBq6aOaTwtrL6hea1Pr0EetTW0VrFNa2ZSJI0cvhkZ2LbiSCcjjpjrXqPMsOqcaEaTdNNtpyu22raNJWt0033uc7oylNTk9Umlbzab79l/TKl94Fu768Ot3Gq2y%2BIEvILqC4itWWBDEjoFMZcsVKySA/P/ABcYxW1LOoUofV4wfsnGUWm1d8zTve1k00radAnQdTmcnq7Wt05XzL1138hsXgO%2BtruDW7TW4V8QLez3c9zJas0EomRY2j8oOCFCpHj5s5QZJyacs7pTg8POm/ZcsYpJ%2B8uVtp3tu23fTr0CdD2kvaTfvKSattpFxtbr7rfz18jo/BuhReHNBj0yOdrh/NluJ5mGPMllkaSRsdgWdsDsK8zMcbLG13Vatokl2UUkl9yRdKm4czbu5Nt%2Br/qxs1wmoUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFACHoaAPE/D3i7W73wzpOoaf4zvdY8Q3F5GkmkNbW3lMhm2yA7IVdAqZbdv4xznpX0EsJSVXlnTShb4ru692997PXpbU58ROUY1eT4k5cq7tNpL/g/M3JfFfiGy8E67p8t4lx4ptdVbSrOV40G95mBt5CgAUgRuGPGDsauaOEpVa1KSVoSV35cvxfl%2BKKlV9k6ravy6pd%2Bb4V6c3u330ZeXxdqFhc6s8skmpi0vbbRbK2ASI3N2VUvK7BflBLjOOAFOFJ4qfqsKihyrl5uaXXSKvou%2Bz31ehClKnfnlfkir6auTt928bbLV30tavqXj7V47DXZ7rSjpVx4av7Zb2OOdbiO6hkA3FWKKQMPkHCnK%2BnBqlgKcp0uWXMql0tLNNbdX19Vb8HWqygqitrGKl6rVtfdFo9KryDoFoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAEPSgDK8IaJH4c8OWmiwzvOlspUSOMFssT0H1rbEVnWnztW2/BWElZt92397uZN/4HsLv4h2vjE3UySQwqstqBmKaRA4jlPoyiWQe%2BR6Ct6WNnTw8qFtHs%2B17X%2B%2By/pk1YKo4vt%2BK3S%2BTu/mc/4m8M6vFLr39n6Zc3iT6jbaxYS2s8Syx3C7VkXErKrEbA2CVVgzDcDiunD4mHLT5pWceaLunbld309Wn1WjSZnVp80pK2kkvKzi1%2BlmtGrpqVk1fOsvCHinVNJ14azDOk3iTVLY3CzGBHtrWJV3Flid152FQFdz8wJPXG7xeHpTpezelNN9dW9t0n26JfrnUpzq%2B1b05oqPy1TenlJ%2Beh65XhHWLQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAA/9k='/%3E%0A%3Cpath d='M489.2 121.3h394v43.3h-394V121.3Z' class='g2'/%3E%0A%3Cpath d='M489.2 437.4H688.4m0 0h64.9m0 0h65m0 0h64.9' class='g3'/%3E%0A%3Cpath d='M489.2 394.1H688.4m0 0h64.9m0 0h65m0 0h64.9' class='g4'/%3E%0A%3Cpath d='M489.2 186.2H688.4m0 0h64.9m0 0h65m0 0h64.9' class='g5'/%3E%0A%3Cpath d='M489.2 806.2h394v43.3h-394V806.2Z' class='g2'/%3E%0A%3Cpath d='M489.2 1120.8h64.9m0 0h43.3m0 0h69.3m0 0h60.6m0 0H775m0 0h60.6m0 0h47.6' class='g3'/%3E%0A%3Cpath d='M554.1 982.2h43.3m0 0h69.3m0 0h60.6m0 0H775m0 0h60.6m0 0h47.6m-394-86.6h64.9m0 0h43.3m0 0h69.3m0 0h60.6m0 0H775m0 0h60.6m0 0h47.6' class='g5'/%3E%0A%3Cpath d='M489.2 1068.8h64.9m0 0h43.3m0 0h69.3m0 0h60.6m0 0H775m0 0h60.6m0 0h47.6' class='g4'/%3E%0A%3C/svg%3E)
Estudio del peso vivo de aves de corral / Centurión et al.______________________________________________________________________
4 of 7
Por tanto, la distribución que se adecuó mejor a la dinámica de
comportamiento del PV de las aves es la Gaussiana inversa, con
función de enlace log para modelar los dos parámetros de esta
distribución seleccionada, la media (μ) y dispersión (σ) [23]. Esta
distribución, también conocida como distribución de Wald, con
soporte positivo en el intervalo (0, ∞), captura la asimetría positiva
observable en datos de crecimiento.
Como puede observarse (FIG. 2), el PV presentó un
comportamiento asimétrico hacia la derecha, en congruencia con
la característica de la distribución escogida. Esta asimetría no
constituye meramente un inconveniente estadístico, sino un reflejo
de la realidad biológica. De acuerdo con los señalamientos de Punzo
[30], la distribución Gaussiana inversa es ampliamente conocida y
considerada por estos aspectos peculiares (datos positivos sesgados
a la derecha), en coincidencia con manifestaciones de Pasari [31],
sobre las aplicaciones de esta distribución en diferentes campos
del conocimiento. Aquí, el histograma representó la distribución
observada del PV, mientras que la línea roja ilustró la distribución
de probabilidad ajustada.
Según los resultados expuestos en la TABLA II, en primera instancia
(VIF1), se detectó el valor más alto para LC, motivo por el cual fue
excluida. Seguidamente, fueron eliminadas AP y LQ, identificándose
valores superiores para las mismas (VIF2). Finalmente, en la última
fase todas las variables restantes presentaron niveles inferiores al
umbral de referencia, quedando escogidas LCU, LM, AC, LDM, LD y edad.
De acuerdo con Giacomet et al. [24], quienes al analizar el
VIF, no eliminaron de manera automática todas las variables con
VIF > 5, sino que la estrategia de exclusión fue secuencial hasta
lograr seleccionar predictores acordes con el criterio adoptado,
procedimiento seguido en este trabajo.
En la TABLA III, se presenta el resultado del proceso de
selección de las variables independientes en la cual se aprecian
los efectos estimados para el modelo de regresión GAMLSS con
distribución Gaussiana inversa para el PV, en la modelación de
cada parámetro (μ y σ).
El modelo GAMLSS permite que todos y cada uno de los
parámetros de la distribución escogida, puedan ser modelados de
manera explícita, en este caso, tanto la media (μ) como el parámetro
de dispersión (σ) fueron modelados en función de las características
morfométricas. Según Punzo [30], en el análisis de regresión, la
eficiencia del modelo puede verse afectada de manera sustancial si
son utilizados modelos de dispersión constantes cuando en realidad
no lo son. Es por ello, importante la consideración de este tipo de
modelo (GAMLSS), a fin de determinar una distribución acorde, y
a partir de allí analizar la estructura de regresión, en donde cada
parámetro pueda ser descrito en función de las variables explicativas.
En la TABLA II se muestran los valores VIF obtenidos de manera
secuencial, específicamente en tres etapas, como parte del
proceso de selección de variables en el modelo GAMLSS.
El VIF fue calculado de manera gradual de acuerdo al
procedimiento de Giacomet et al. [24], teniendo como punto de
corte VIF > 5. No obstante, en otros estudios adoptaron como criterio
VIF>10 [1] o VIF <4 [25], este último más exigente.
FIGURA 2. Histograma del Peso Vivo en gramos y la distribución Gaussiana
inversa ajustada
TABLA II
Valores del factor de inflación de la varianza calculados de manera
secuencial en el proceso de selección de variables independientes
Variable independiente VIF1 VIF2 VIF3
LCU (cm) 4,1741 2,5983 1,9082
AP (cm) 21,1468 13,6949 –
LQ (cm) 17,3735 13,1652 –
LM (cm) 1,6854 1,6746 1,4206
LC (cm) 149,9224 – –
AC (cm) 4,5110 1,5316 1,4656
LDM (cm) 5,8014 1,4447 1,4970
LD (cm) 6,3906 3,7759 3,2415
Edad (joven y adulto),
11 y 31 sem, respectivamente
28,3593 8,6451 4,4391
LCU: Longitud de cuello; AP: ancho de pecho; LQ: Longitud de quilla; LM: longitud de
muslo; LC: Longitud corporal; AC: ancho de cráneo; LDM: Longitud del dedo medio; LD:
longitud del dorso; VIF: Valores del factor de inflación de la varianza en tres etapas (1, 2, 3)
TABLA III
Efectos estimados en el modelo GAMLSS con respuesta Gaussiana
inversa para el peso vivo y función de enlace logarítmica
Parámetro
modelado
Función
Enlace
Estimación EE Valor t Valor P
μ Log
Intercepto 6,1237 0,0051 1192,2100 0,0000 *
Edad_31sem 0,2725 0,0082 32,97 0,0000 *
LM 0,0768 0,0018 41,08 0,0000 *
LCU 0,0214 0,0006 32,30 0,0000 *
σ
Log
Intercepto -11,9406 1,4020 -8,5160 0,0000 *
LCU -0,4804 0,0515 -9,320 0,0000 *
AC 3,9140 0,1030 37,9690 0,0000 *
LDM 0,71476 0,2778 2,5720 0,0162 *
μ: media, σ: dispersión, log: logaritmo, LM: longitud de muslo, LCU: longitud del cuello,
AC: ancho de cráneo, LDM: Longitud del dedo medio, Edad: variable categórica de dos
niveles, joven con 11 sem y adulta con 31 sem, EE: error estándar, *: Efectos significativo
al 5 % de probabilidad de error: