'%3E%0A%3Cpath d='M-934.9 98.6H0v-26H-934.9v26Z' class='g0'/%3E%0A%3Cpath d='M0 98.6H935v-26H0v26Z' class='g0'/%3E%0A%3C/g%3E%0A%3Cpath d='M0 1169.7H935v-26H0v26Z' class='g0'/%3E%0A%3Cpath d='M300 182.8H417.1m-16.2 74.7h44.9M82.3 274h91.3m-64.9 58.1h126m-48.1 58.2H325m-73.5 74.6H387.6M244.2 539.6H381.8M148.6 663.8H286.7m113.5 91.1h45.6M82.3 771.4h86.6M52 796.6H82.3m136.2 66H351.1m1.7 74.6h93M82.3 953.7h29.4m202.8 74.7H445.8M82.3 1119.6H214.8M815.2 166.3H883M519.5 182.8h71.4M648.4 241H792M648.4 365.1H766.2M656.6 439.8H791.5m-25 74.6H883M713.4 572.6h136M519.5 680.3H652m101.5 74.6H883M519.5 846.1H658.2m35.1 74.6H829.7m-243.9 91.2H729.1m-209.6 91.2H643.2' class='g1'/%3E%0A%3C/svg%3E)
_________________________________________________________________________________________________Revista Cientifica, FCV-LUZ / Vol.XXXV
7 of 7
[14] Benmoussa A, Ly S, Shan ST, Laugier J, Boilard E, Gilbert C,
Provost P. A subset of extracellular vesicles carries the bulk of
microRNAs in commercial dairy cow’s milk. J. Extracell. Vesicles
[Internet]. 2017; 6(1):1401897. doi: https://doi.org/pv4v
[15] Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall
JO. Exosome–mediated transfer of mRNAs and microRNAs
is a novel mechanism of genetic exchange between cells.
Nat. Cell. Biol. [Internet]. 2007: 9(6):654–659. doi: https://
doi.org/d5df4s
[16] Hüttenhofer A, Mayer G. Circulating miRNAs as biomarkers of
kidney disease. Clin. Kidney J. [Internet]. 2017; 10(1):27–29.
doi: https://doi.org/pv4w
[17] Thind A, Wilson C. Exosomal miRNAs as cancer biomarkers
and therapeutic targets. J. Extracell Vesicles [Internet]. 2016;
5(1):31292. doi: https://doi.org/ghv97d
[18] Iannaccone M, Cosenza G, Pauciullo A, Garofalo F, Proroga YT,
Capuano F, Capparelli, R. Milk microRNA–146a as a potential
biomarker in bovine tuberculosis. J. Dairy Res. [Internet].
2018; 85(2):178–180. doi: https://doi.org/gdkdxv
[19] Taibi F, Metzinger–Le Meuth V, Massy ZA, Metzinger L.
miR–223: an inflammatory oncomiR enters the cardiovascular
field. Biochim. Biophys. Acta, Mol. Basis Dis. [Internet]. 2014;
1842(7):1001–1009. doi: https://doi.org/f55nd8
[20] Rossi M, PitariMR, Amodio N, Di Martino MT, Conforti F, Leone
E, Botta C, Paolino FM, Del Giudice T, Caraglia ELM, Ferrarini
M, Giordano A, Tagliaferri P, Tassone, P. miR–29b negatively
regulates human osteoclastic cell differentiation and function:
Implications for the treatment of multiple myeloma–related
bone disease. J. Cell. Physiol. [Internet]. 2013; 228(7):1506–
1515. doi: https://doi.org/f5b552
[21] Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu
M. Wojcik S, Aqeilan R, Zupo S, Dono M, Rassenti L, Alder H,
Volinia S, Liu C, Kipps TJ, Negrini M, Croce CM. miR–15 and
miR–16 induce apoptosis by targeting BCL2. Proc. Natl. Acad.
Sci. [Internet]. 2005; 102(39):13944–13949. doi: https://
doi.org/crtvkp
[22] He L, He X, Lim PL, Stanchina E, Xuan Z, Liang Y, Xue W,
Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen
C, Lowe S, Cleary M , Hannon GJ. A microRNA component of
the p53 tumor suppressor network. Nature [Internet]. 2007;
447:1130–1134. doi: https://doi.org/c2j33r
[23] Dumpler J, Kulozik U. Heat stability of concentrated skim milk
as a function of heating time and temperature on a laboratory
scale – Improved methodology and kinetic relationship. Int.
Dairy J. [Internet]. 2015; 49:111–117. doi: https://doi.org/
pv4x
[24] Hata T, Murakami K, Nakatani H, Yamamoto Y, Matsuda T,
Aoki N. Isolation of bovine milk–derived microvesicles carring
mRNAs and microRNAs. Biochem. Biophys. Res. Commun.
[Internet]. 2010; 396(2):528–533. doi: https://doi.org/d5pq4f
[25] Lai YC, Fujikawa T, Ando T, Kitahara G, Koiwa M, Kubota C,
Miura N. Rapid communication: MiR–92a as a housekeeping
gene for analysis of bovine mastitis–related microRNA in
milk. J. Anim. Sci. [Internet]. 2017; 95(6):2732–2735. doi:
https://doi.org/gbpjxs
[26] Livak KJ, Schmittgen TD. Analysis of relative gene expression
data using real–time quantitative PCR and the 2
–∆∆C
T Method.
Methods [Internet]. 2001; 25(4):402–408. doi: https://doi.
org/c689hx
[27] Benmoussa A, Provost P. Milk MicroRNAs in health and
disease. Compr. Rev. Food Sci. Food Saf. [Internet]. 2019;
18(3):703–722. doi: https://doi.org/gmr4w2
[28] Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian
Z,Liang X, Cai X, Yin Y, Wang C, Zhang T, Zhu D, Zhang D,
Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen J, Wang J, Wang M,
Zhang Q, Zhang J, Zen K, Zhang CY. Exogenous plant MIR168a
specifically targets mammalian LDLRAP1: evidence of cross–
kingdom regulation by microRNA. Cell. Res. [Internet]. 2012;
22(1):107–126. doi: https://doi.org/cwd
[29] Dickinson B, Zhang Y, Petrick JS, Heck G, Ivashuta S, Marshall
WS. Lack of detectable oral bioavailability of plant microRNAs
after feeding in mice. Nat. Biotechnol. [Internet]. 2013;
31(11):965–967. doi: https://doi.org/gjvprm
[30] Wolf T, Baier SR, Zempleni J. The intestinal transport of bovine milk
exosomes is mediated by endocytosis in human colon carcinoma
Caco–2 cells and rat small intestinal IEC–6 cells 1, 2, 3. J. Nutr.
[Internet]. 2015; 145(10):2201–2206. doi: https://doi.org/f7tjzc
[31] Zempleni J, Baier SR, Howard KM, Cui J. Gene regulation by
dietary microRNAs. Can. J. Physiol. Pharmacol. [Internet].
2015; 93(12):1097–1102. doi: https://doi.org/f72dkk
[32] Zempleni J, Aguilar–Lozano A, Sadri M, Sukreet S,
Manca S, Wu D, Zhou F, Mutai E. Biological activities
of extracellular vesicles and their cargos from bovine
and human milk in humans and implications in
infants. J. Nutr. [Internet]. 2017; 147(1):3–10. doi:
https://doi.org/ggpq8f
[33] Howard KM, Kusuma RJ, Baier SR, Friemel T, Markham L,
Vanamala J. Zempleni J. Loss of miRNAs during processing
and storage of cow’s (Bos taurus) milk. J. Agric. Food Chem.
[Internet]. 2015; 63(2):588–592. doi: https://doi.org/f6zvjq
[34] Kirchner B, Pfaffl MW, Dumpler J, von Mutius E, Ege MJ.
microRNA in native and processed cow’s milk and its
implication for the farm milk effect on asthma. J. Allergy
Clin. Immunol. [Internet]. 2016; 137(6):1893–1895. doi:
https://doi.org/gmr4xx
[35] Golan–Gerstl R, Elbaum Shiff Y, Moshayoff V, Schecter D,
Leshkowitz D, Reif S. Characterization and biological function
of milk–derived miRNAs. Mol. Nutr. Food Res. [Internet].
2017; 61(10):1700009 doi: https://doi.org/gmr4tv
[36] Kleinjan M, van Herwijnen MJ, Libregts SF, van Neerven RJ,
Feitsma AL, Wauben MH. Regular Industrial Processing of
bovine milk impacts the integrity and molecular composition of
extracellular vesicles. J. Nutr. [Internet]. 2021; 151(6):1416–
1425. doi: https://doi.org/gmr4wp
[37] Zhang Y, Xu Q, Hou J, Huang G, Zhao S, Zheng N, Wang J.
Loss of bioactive microRNAs in cow’s milk by ultra–high–
temperature treatment but not by pasteurization treatment.
J. Sci. Food Agric. [Internet]. 2022; 102(7):2676–2685. doi:
https://doi.org/pv43