Mexican pork price forecast, based on WTI crude oil and Corn and Soybean grains
Abstract
The research conducted is correlational and studied the influence of the price of a barrel of WTI crude oil, a bushel of Corn and a ton of Soybean meal as independent variables, on the price of a pound of Mexican pork, with the objective of finding a function that explains these variations. Monthly average price data, collected over a 10–year period, from 01/10/2012 to 01/09/2022, were used. In the data there is a clear linear trend between the price of pork with the price of a barrel of WTI crude oil, and the price of a ton of soybean meal, but not so clear or evident with the price of a bushel of corn, being this variable excluded from the final model for being statistically not significant (Sig. 0.184). The independent variables of the final model are statistically significant (Sig. 0.000), with t–student values of 4.999 for WTI crude oil and 3.697 for soybean meal, and there are no collinearity problems between them. The model obtained is multiple linear regression, and has as predictors of pork price: the price of a barrel of WTI crude oil and the price of a ton of soybean meal . It predicts that the price of pork cannot fall below 15.50 US cents per pound, and can explain the variations of pork by 61.4%. The standardized residuals of the model present a normal distribution, corroborated by a Kolmogorov–Smirnov test of 0.071, there being a pair of positive extreme values, which can inform about the circumstances of the variables for the researcher's interest in the months of May and June 2021.
Downloads
References
Chuluunsaikan T, Ryu GA, Yoo KH, Rah H, Nasridinov A. Incorporating Deep Learning and News Topic Modeling for Forescating Pork Prices: The Case of South Korea. Agricult. [Internet]. 2020; 10:513. doi: https://doi.org/kmzp
Parant, A. World population: Trends and prospects. Futuribles. [Internet]. 2023; 452:63–85. doi: https://doi.org/ktx9
El Sitio Porcino. Sector porcino: ¿Qué pasa con los costos de producción? [Internet] Charlbury (GBR): Global Ag Media. 2018 [consultado 20 Ene 2023]; Disponible en: https://bit.ly/3QFN3wv.
Campabadal C. Guía técnica para la alimentación de cerdos. Costa Rica: Imprenta Nacional. 2009; p. 7–23.
Henke A. La relación entre el precio del petróleo WTI y los índices bursátiles S&P 500 y el S&P 500 del sector energético. [tesis de maestría en Internet]. Argentina: Universidad de San Andrés; 2017 [consultado 18 Feb 2023]. 32 p. Disponible en: https://bit.ly/45dCpke.
Zhang Y, Ma F, Wang Y. Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors? J. Empir. Finance. [Internet]. 2019; 54:97–117. doi: https://doi.org/gmmqqk
Zhang D, Li Q, Mugera AW, Ling L. A hybrid model considering cointegration for interval–valued pork price forecasting in China. J. Forescasting. [Internet]. 2020; 39:1324–1341. doi: https://doi.org/ghhm6n
Boubaker S, Liu Z, Zhang Y. Forecasting oil commodity spot price in a data–rich enviroment. Ann. Oper. Res. [Internet]. 2022; 1–10. doi: https://doi.org/km2g
Zhang Y, Wei Y, Zhang Y, Jin D. Forecasting oil price volatility: Forecast combination versus shrinkage method. Energy Econom. [Internet]. 2019; 80:423–433. doi: https://doi.org/gjgdww
Evelina D, Barca E, Mikosz R, de Araujo H, Berardi L, Passarella G. Linear and evolutionary polynomial regression models to forecast coastal dynamics: Comparison and reliability assessment. Geomorph. [Internet]. 2018; 300:128–140. doi: https://doi.org/gctbdn
Goyal L, Mittal M, Sethi J, Hemanth DJ. Monitoring the Impact of Economic Crisis on Crime in India Using Machine Learning. Comput. Econom. [Internet]. 2019; 53:1467–1485. doi: https://doi.org/gmq32s
Hung NT. Oil prices and agricultural commodity markets: Evidence from pre and during COVID–19 outbreak. Resour. Policy. [Internet]. 2021; 73(102236):1–10. doi: https://doi.org/gk7t43
Bianco V, Manca O, Nardini S. Linear Regression Models to Forecast Electricity Consumption in Italy. Energy Sourc. [Internet]. 2012; 8(Pt B):86–93. doi: https://doi.org/gf8ntm
Huang J, Aldeeb H. Mathematical Modeling and Forecasting of Economic Variables Based on Linear Regression Statistics. Appl. Mathemat. Nonliner. [Internet]. 2022; 1–7. doi: https://doi.org/km2k
Silva D, de Souza Y, Antonini T, Valadares H, de Nobrega M. Unorganized machines and linear multivariate regression model applied to atmospheric pollutant forecasting. Acta Scientif. Technol. [Internet]. 2020; 42(48203):1–11. doi: https://doi.org/km2m
Walpole RE, Myers RH, Myers SL, Ye K. Probabilidad y estadística para ingeniería y ciencias. México. Pearson. 2012; p. 319–506.
Navidi W. Estadística para ingenieros y científicos. México: McGraw Hill. 2006; p. 368–527.
Ahumada H, Cornejo M. Forecasting food prices: The case of corn, soybeans and wheat. International Journal of Forecasting. 2016; 32(3):838–848. doi: https://doi.org/gn8635
Hayrapetyan HN, Hambaryan MA. Empirical Specification of Factors Affecting Per Capita Pork Consumption in Armenia. AgriScience and Technology. 2020; 70(2):35–42.
Wen F, Zhao Y, Zhang M, Hu C. Forecasting realized volatility of crude oil futures with equity market uncertainty. Appl. Econ. [Internet]. 2019; 51(59):6411–6427. doi: https://doi.org/gpcm2p
Li X, Shang W, Wang S. Text–based crude oil price forecasting: A deep learning approach. Int. J. Forecast. [Internet]. 2019; 35:1548–1560. doi: https://doi.org/gmwq4k
Wang, C. and Sun, Z. Monthly pork price forecasting method based on Census X12–GM(1,1) combination model. PLoS ONE. [Internet] 2021; 16(5):e0251436. doi: https://doi.org/kt6d

Copyright (c) 2023 Sergio Orozco-Cirilo, Juan Manuel Vargas-Canales, Sergio Ernesto Medina–Cuéllar, Juan Antonio Bautista

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.