Efecto de la suplementación con mioinositol en la estructura fisicoquímica de la carga viral en el alimento para gatos contaminados con SARS–CoV–2 mediante la simulación de estornudos

  • Serol Korkmaz Pendik Veterinary Control Institute, Virology Laboratory. Istanbul, Turkey - Marmara University, Institute of Health Sciences, Biosafety and Biosecurity Program. Istanbul, Turkey https://orcid.org/0000-0001-8970-6883
  • Ayşe Parmaksız Pendik Veterinary Control Institute, Virology Laboratory. Istanbul, Turkey
  • Burcu Irem Omurtag–Korkmaz Marmara University, Faculty of Health Sciences, Department of Nutrition and Dietetics. Istanbul, Turkey https://orcid.org/0000-0001-7918-6212
  • Ahmet Sait Pendik Veterinary Control Institute, Virology Laboratory. Istanbul, Turkey
Palabras clave: Alimento de gato, inocuidad de los alimentos, mioinositol, transmisión por alimentos, SARS–CoV–2

Resumen

Se llevo a cabo un experimento con el objetivo de estudiar el efecto de la suplementación con mio–inositol en la estructura fisicoquímica del alimento y la carga viral del alimento seco para gatos, contaminado con SARS–CoV–2 inactivo, mediante la simulación de estornudos. La infección más natural del síndrome respiratorio agudo severo coronavirus 2 (SARS–CoV–2) en animales está relacionada con el contacto cercano con sus dueños con el COVID–19 que es el manejo, cuidado y alimentación de los mismos. El SARS–CoV–2 puede sobrevivir en alimentos, fómites y superficies durante períodos prolongados en relación con las condiciones ambientales. Muchos aditivos y suplementos naturales para piensos han sido candidatos en las recientes estrategias de tratamiento antiviral contra el COVID–19. En este estudio, se utilizó mio–inositol, que está permitido en la alimentación animal, en diferentes concentraciones (0; 12,5; 25 y 50 mg·100 g-1 de alimento para gatos) y condiciones (22 °C a temperatura ambiente y 4 °C en frigorífico) para investigar sus efectos sobre la estructura fisicoquímica y la carga viral del alimento seco para gatos contaminado con SARS–CoV–2 inactivo mediante la simulación de estornudos. Para las interacciones entre el mioinositol, la estructura del alimento y la carga viral, se midieron la materia seca, la humedad, el índice de absorción de agua (WAI), el índice de solubilidad en agua (WSI), el pH y la copia del gen del virus (GC) por RT–qPCR. Como solo la temperatura de almacenamiento afectó, tanto a WAI como a WSI como se esperaba, La suplementación con mioinositol disminuyó de forma dependiente de la dosis la copia genética en la comida seca para gatos en (IC50: 366,4–581,5 mg·100 g-1 de comida para gatos) a una temperatura de almacenamiento de 22 °C. La GC del virus no se correlacionó con la materia seca, el contenido de humedad, el pH y el WAI después del tiempo de contacto de 30 min (excepto WSI). En conclusión, el mioinositol como aditivo para piensos podría tener el potencial de controlar infecciones virales graves como la COVID–19 para las interacciones entre humanos y animales en un contexto de One–Health.

Descargas

La descarga de datos todavía no está disponible.

Citas

World Health Organization. Coronavirus (COVID–19) Dashboard. [Internet] 2023 [cited 17 Jun 2023]. 18 p. Available in: doi: https://covid19.who.int/.

Sila T, Sunghan J, Laochareonsuk W, Surasombatpattana S, Kongkamol C, Ingviya T, Siripaitoon P, Kositpantawong N, Kanchanasuwan S, Hortiwakul T, Charernmak B, Nwabor OF, Silpapojakul K, Chusri S. Suspected Cat–to–Human Transmission of SARS–CoV–2, Thailand, July–September 2021. Emerg. Infect. Dis. [Internet]. 2022; 28:1485–8. doi: https://doi.org/grgdmv

Costagliola A, Liguori G, D’angelo D, Costa C, Ciani F, Giordano A. Do animals play a role in the transmission of severe acute respiratory syndrome coronavirus–2 (SARS–CoV–2)? a commentary. Anim. [Internet]. 2021; 11:1–11. doi: https://doi.org/ghswcz

Bosco–Lauth AM, Hartwig AE, Porter SM, Gordy PW, Nehring M, Byas AD, VandeWoude S, Ragan IK, Maison RM, Bowen RA. Experimental infection of domestic dogs and cats with SARS–CoV–2: Pathogenesis, transmission, and response to reexposure in cats. Proc. Natl. Acad. Sci. [Internet]. 2020; 117:26382–8. doi: https://doi.org/ghj9d7

Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, Liu R, He X, Shuai L, Sun Z, Zhao Y, Liu P, Liang L, Cui P, Wang J, Zhang X, Guan Y, Tan W, Wu G, Chen H, Bu Z, Bu Z. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Sci. [Internet]. 2020; 368:1016–20. doi: https://doi.org/ggrj6s

Hamer SA, Pauvolid–Corrêa A, Zecca IB, Davila E, Auckland LD, Roundy CM, Tang W, Torchetti MK, Killian ML, Jenkins–Moore M, Mozingo K, Akpalu Y, Ghai RR, Spengler JR, Behravesh CB, Fischer RSB, Hamer GL. SARS–CoV–2 infections and viral isolations among serially tested cats and dogs in households with infected owners in texas, USA. Viruses. [Internet]. 2021; 13(5):e938. doi: https://doi.org/gk68hj

Barroso–Arévalo S, Sánchez–Morales L, Barasona JA, Rivera B, Sánchez R, Risalde MA, Agulló–Ros I, Sánchez–Vizcaíno JM. Evaluation of the clinical evolution and transmission of SARS–CoV–2 infection in cats by simulating natural routes of infection. Vet. Res. Commun. [Internet] 2022; 46:837–52. doi: https://doi.org/kwfk

Riddell S, Goldie S, Hill A, Eagles D, Drew TW. The effect of temperature on persistence of SARS–CoV–2 on common surfaces. Virol. J. [Internet]. 2020; 17:1–7. doi: https://doi.org/ghfj2h

Baker CA, Gibson KE. Persistence of SARS–CoV–2 on surfaces and relevance to the food industry. Curr. Opin. Food Sci. [Internet]. 2022; 47:100875. doi: https://doi.org/kwfm

Meister TL, Dreismeier M, Blanco EV, Brüggemann Y, Heinen N, Kampf G, Todt D, Nguyen HP, Steinmann J, Schmidt WE, Steinmann E, Quast DR, Pfaender S. Risk of SARS–CoV–2 transmission by fomites: a clinical observational study in highly infectious COVID–19 patients. Angew. Chemie Intern. [Internet]. 2021; 119:361–416. doi: https://doi.org/kwfn

Munoz–Fontela C, Dowling WE, Funnell SGP, Gsell PS, Riveros–Balta AX, Albrecht RA, Andersen H, Baric RS, Carroll MW, Cavaleri M, Qin C, Crozier I, Dallmeier K, de Waal L, de Wit E, Delang L, Dohm E, Duprex WP, Falzarano D, Finch CL, Frieman MB, Graham BS, Gralinski LE, Guilfoyle K, Haagmans BL, Hamilton GA, Hartman AL, Herfst S, Kaptein SJF, Klimstra WB, Knezevic I, Krause PR, Kuhn JH, Le Grand R, Lewis MG, Liu WC, Maisonnasse P, McElroy AK, Munster V, Oreshkova N, Rasmussen AL, Rocha–Pereira J, Rockx B, Rodriguez E, Rogers TF, Salguero FJ, Schotsaert M, Stittelaar KJ, Thibaut HJ, Tseng CT, Vergara–Alert J, Beer M, Brasel T, Chan JFW, Garcia–Sastre A, Neyts J, Perlman S, Reed DS, Richt JA, Roy CJ, Segales J, Vasan SS, Henao–Restrepo AM, Barouch DH. Animal models for COVID–19. Nature. [Internet]. 2020; 586:509–15. doi: https://doi.org/ghmtrm

Segalés J, Puig M, Rodon J, Avila–Nieto C, Carrillo J, Cantero G, Terrón MT, Cruz S, Parera M, Noguera–Julián M, Izquierdo–Useros N, Guallar V, Vidal E, Valencia A, Blanco I, Blanco J, Clotet B, Vergara–Alert J. Detection of SARS–CoV–2 in a cat owned by a COVID–19–affected patient in Spain. Proc. Natl. Acad. Sci. [Internet]. 2020; 117:24790–3. doi: https://doi.org/ghqhsp

Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, Debnath P, Sharma N, Bhardwaj PK, Haldar PK. Role of medicinal plants in inhibiting SARS–CoV–2 and in the management of post–COVID–19 complications. Phytomed. [Internet]. 2022; 98:153930. doi: https://doi.org/gq84cr

Chapman RL, Andurkar SV. A review of natural products, their effects on SARS–CoV–2 and their utility as lead compounds in the discovery of drugs for the treatment of COVID–19. Med. Chem. Res. [Internet]. 2022; 31:40–51. doi: https://doi.org/gp4f6n

Claus–Desbonnet H, Nikly E, Nalbantova V, Karcheva–Bahchevanska D, Ivanova S, Pierre G, Benbassat N, Katsarov P, Michaud P, Lukova P, Delattre C. Polysaccharides and their derivatives as potential antiviral molecules. Viruses. [Internet]. 2022; 14(2):1–26. doi: https://doi.org/kwgr

Tian J, Hu X, Liu D, Wu H, Qu L. Identification of Inonotus obliquus polysaccharide with broad–spectrum antiviral activity against multi–feline viruses. Intern. J. Biol. Macromol. [Internet]. 2017; 95:160–7. doi: https://doi.org/kwgs

Jaber N, Al–Remawi M, Al–Akayleh F, Al–Muhtaseb N, Al–Adham ISI, Collier PJ. A review of the antiviral activity of Chitosan, including patented applications and its potential use against COVID–19. J. Appl. Microbiol. [Internet]. 2022; 132:41–58. doi: https://doi.org/kwgt

Chen X, Han W, Wang G, Zhao X. Application prospect of polysaccharides in the development of anti–novel coronavirus drugs and vaccines. Intern. J. Biol. Macromol. [Internet]. 2020; 164:331–43. doi: https://doi.org/gg42r4

Li S, Zhao F, Ye J, Li K, Wang Q, Du Z, Yue Q, Wang S, Wu Q, Chen H. Cellular metabolic basis of altered immunity in the lungs of patients with COVID–19. Med. Microbiol. Immunol. [Internet]. 2022; 211:49–69. doi: https://doi.org/kwgv

European Food Safety Authority (EFSA). Scientific Opinion on the safety and efficacy of inositol as a feed additive for fish, dogs and cats. EFSA. J. [Internet]. 2014; 12(5):3671. doi: https://doi.org/kwgw

European Food Safety Authority (EFSA). Safety and efficacy of inositol as nutritional additive for dogs and cats. EFSA. J. [Internet]. 2016; 14(6): e04511. doi: https://doi.org/kwgx

European Commission, Directorate–General for Health and Food Safety, European Union register of feed additives pursuant to Regulation (EC) No 1831/2003. Annex I, List of additives (Released date 21.09.2021), Publications Office of the European Union. [Internet]. 2021 [Accessed 8 Jun 2023]; 237 p. Available in: doi: https://doi.org/kwg3

Korkmaz S, Ahmet S, Gargılı A. The Potential Antiviral Activity of Inositol (Vitamin B8) as a Dietary Supplement in Human and Animal Nutrition. J. Heal. Sci. Manag. [Internet]. 2022; 2:68–72. doi: https://doi.org/kwg4

Centers for Disease Control and Prevention (CDC). 2019–novel coronavirus (2019–nCoV) real–time rRT–PCR panel primers and probes 2020. [Internet]. 2023 [cited 17 Jun 2023]; 66 p. Available in: https://bit.ly/45acud6

Stoian AMM, Zimmerman J, Ji J, Hefley TJ, Dee S, Diel DG, Rowland RRR, Niederwerder MC. Half–life of African swine fever virus in shipped feed. Emerg. Infect. Dis. [Internet]. 2019; 25:2261–3. doi: https://doi.org/kwg5

Caserta CL, Jessica JC, Singrey A, Niederwerder MC, Dee S, Nelson EA, Diel DG. Stability of Senecavirus A in animal feed ingredients and infection following consumption of contaminated feed. Transbound. Emerg. Dis. [Internet]. 2022; 69:88–96. doi: https://doi.org/kwg6

Trudeau MP, Verma H, Sampedro F, Urriola PE, Shurson GC, Goyal SM. Environmental persistence of porcine coronaviruses in feed and feed ingredients. PLoS One. [Internet]. 2017; 12:1–12. doi: https://doi.org/f9832f

Shurson GC, Palowski A, van de Ligt JLG, Schroeder DC, Balestreri C, Urriola PE, Sampedro F. New perspectives for evaluating relative risks of African swine fever virus contamination in global feed ingredient supply chains. Transb. Emerg. Dis. [Internet]. 2022; 69:31–56. doi: https://doi.org/gkcc6b

Gebhardt JT, Woodworth JC, Jones CK, Tokach MD, Gauger PC, Main RG, Zhang J, Chen Q, Derouchey JM, Goodband RD, Stark CR, Bergstrom JR, Bai J, Dritz SS. Determining the impact of commercial feed additives as potential porcine epidemic diarrhea virus mitigation strategies as determined by polymerase chain reaction analysis and bioassay. Transl. Anim. Sci. [Internet]. 2018; 3(1):93–102. doi: https://doi.org/kwg7

Schettino DN, van de Ligt LG, Sampedro F, Shurson GC, Urriola PE. Guidelines for developing a risk–based plan to mitigate virus transmission from imported feed ingredients. University of Minnesota. [Internet]. 2019 [cited 17 Jun 2023]; 44 p. Available in: https://bit.ly/3rwLVRp.

Savage M, Torres J, Franks L, Masecar B, Hotta J. Determination of adequate moisture content for efficient dry–heat viral inactivation in lyophilized factor VIII by loss on drying and by near infrared spectroscopy. Biol. [Internet]. 1998; 26(2): 119–124. doi: https://doi.org/bf5tsc

Glišin V, Crkvenjakov R, Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochem. [Internet]. 1974; 13(12): 2633–2637. doi: https://doi.org/dj2dx8

Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. Isolation of Biologically Active Ribonucleic Acid from Sources Enriched in Ribonuclease. Biochem. [Internet]. 1979; 18(24): 5294–5299. doi: https://doi.org/dvw6f5

European Medicines Agency. Guideline on bioanalytical method validation. [Internet]. 2015 [cited 17 Jun 2023]; 23 p. Available in: https://bit.ly/3tfyAO5.

Food and Drug Administration (FDA). Bioanalytical Method Validation Guidance for Industry Bioanalytical Method Validation Guidance for Industry. [Internet]. 2018 [cited 17 Jun 2023]; 44 p. Available in: https://bit.ly/46tyjFt.

European Food Safety Authority (EFSA). Safety and efficacy of inositol as nutritional additive for dogs and cats. EFSA J. [Internet]. 2016; 14 (6): e04511. doi: https://doi.org/kwgx

European Commission. Commision Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. Eur. Union. [Internet]. 2009 [cited 17 Jun 2023]; 89 p. Available in: https://bit.ly/3rrIj3l.

Baranova EO, Shastina NS, Lobach OA, Chataeva MS, Nosik DN, Shvets VI. Activity of the inositol–containing phospholipid dimer analogues against human immunodeficiency virus. Vopr. Virusol. [Internet]. 2014 [cited 17 Jun 2023]; 59(1):34–38. Available in: https://bit.ly/3F13uMO. PMID: 25065144.

Tuchnaya OA, Gorlachuk OV, Livshits VA, Kashiricheva II, Shastina NS, Yurkevich AM, Shvets VI. Synthesis of anionic derivatives of myo–inositol and other polyols and investigation of their antiviral activity. Pharm. Chem. J. [Internet]. 2008; 42:4–10. doi: https://doi.org/dsv69c

Liu M, Yu Q, Yi Y, Xiao H, Putra DF, Ke K, Zhang Q, Li P. Antiviral activities of Lonicera japonica Thunb. Components against grouper iridovirus in vitro and in vivo. Aquaculture. [Internet]. 2020; 30:519. doi: https://doi.org/kwkx

Kuhlmeier E, Chan T, Klaus J, Pineroli B, Geisser E, Hofmann–Lehmann R, Meli ML. A Pre–and Within–Pandemic Survey of SARS–CoV–2 RNA in Saliva Swabs from Stray Cats in Switzerland. Viruses. [Internet]. 2022; 14:1–9. doi: https://doi.org/kwkt

Kuhlmeier E, Chan T, Meli ML, Willi B, Wolfensberger A, Reitt K, Hüttl J, Jones S, Tyson G, Hosie MJ, Zablotski Y, Hofmann–Lehmann R. A Risk Factor Analysis of SARS–CoV–2 Infection in Animals in COVID–19–Affected Households. Viruses. [Internet]. 2023; 15(3):731. doi: https://doi.org/kwkv

Wang J, Tang K, Feng K, Lv W. High Temperature and High Humidity Reduce the Transmission of COVID–19. BMJ Open. [Internet]. 2020. 11(2): e043863. doi: doi: https://doi.org/ggpwxx

Jia M, Taylor TM, Senger SM, Ovissipour R, Bertke AS. SARS–CoV–2 Remains Infectious on Refrigerated Deli Food, Meats, and Fresh Produce for up to 21 Days. Foods. [Internet]. 2022; 11:1–15. doi: https://doi.org/kwkw

Publicado
2023-10-13
Cómo citar
1.
Korkmaz S, Parmaksız A, Omurtag–Korkmaz BI, Sait A. Efecto de la suplementación con mioinositol en la estructura fisicoquímica de la carga viral en el alimento para gatos contaminados con SARS–CoV–2 mediante la simulación de estornudos. Rev. Cient. FCV-LUZ [Internet]. 13 de octubre de 2023 [citado 28 de diciembre de 2024];33(2):8. Disponible en: https://mail.produccioncientificaluz.org/index.php/cientifica/article/view/40983
Sección
Medicina Veterinaria