Evaluación inmunohistoquímica de expresiones locales de proteínas de fase aguda en la enfermedad del músculo blanco en corderos
Resumen
La enfermedad del músculo blanco (EMB) y/o distrofia muscular nutricional se define como una enfermedad con un curso generalmente agudo que resulta en la degeneración y necrosis del músculo cardíaco. En este estudio, el objetivo fue revelar la expresion tisular local de proteínas de fase aguda, como la proteína C–reactiva (PCR), el amiloide A sérico (SAA) y la haptoglobina (Hp) en corderos con EMB. El material de estudio estuvo compuesto por 27 tejidos de corazón de cordero de uno a seis meses de edad, 6 sanos y 21 con EMB. Se realizó la necropsia de los corderos y las muestras de corazón correspondientes se pusieron en formaldehído neutro. Posteriormente, se obtuvieron bloques de parafina mediante los procesos de seguimiento tisular rutinarios. Se tomaron secciones de bloques de parafina y se tiñeron con los métodos de Hematoxilina–Eosina (H–E) e Inmunohistoquímico. Histopatológicamente, los grupos de control presentaron una histología normal. En los tejidos cardíacos de corderos con EMB se detectó degeneración hialina, necrosis de Zenker, calcificación, infiltración de células inflamatorias y aumento del tejido conectivo. En comparación con el control, los corderos con EMB mostraron un aumento significativo de las proteínas PCR y SAA (P<0,01). Sin embargo, no hubo diferencia entre los grupos en la tinción de HE (P>0,05). En conclusión, las expresiones tisulares locales de PCR, SAA y Hp en corderos con EMB se identificaron inmunohistoquímicamente por primera vez. Es posible afirmar que PCR y SAA pueden desempeñar papeles importantes en la fisiopatología de la EMB, y que PCR y SAA pueden proporcionar resultados más sensibles en el diagnóstico y pronóstico de la enfermedad.
Descargas
Citas
Dierenfeld ES. Vitamin E deficiency in zoo reptiles, birds, and ungulates. J. Zoo. Wildl. Med. [Internet]. 1989 [cited 20 July 2023]; 20(1):3–11. Available in: https://bit.ly/4akKt6j.
Abutarbush SM, Radostits OM. Congenital nutritional muscular dystrophy in a beef calf. [Internet]. Can. Vet. J. 2003 [cited 18 July 2023]; 44(9):738–739. Available in: https://bit.ly/3GMGbXI. Cited in: PubMed; PMID:14524629.
Yavuz O. The pathological investigations on nutritional myopathy causing lamb deaths in neonatal period. J. Bahri Dagdas Anim. Res. [Internet]. 2017 [cited 18 July 2023]; 6(2):1–8. Available in: https://bit.ly/3Tn2U4g.
Karakurt E, Karataş Ö, Dağ S, Beytut E, Mendil AS, Nuhoğlu H, Yıldız A. Evaluation of 4–Hydroxy–2–Nonenal, Dityrosine and 8–Hydroxy–2–Deoxyguanosine Expressions in Lambs with White Muscle Disease. Firat Univ. Saglik Bilim. Vet. Derg. [Internet] 2021 [cited 23 May 2023]; 35(2):109–113. Available in: https://bit.ly/3TvU1p1.
Kandeel M, Al–Taher A, Venugopala KN, Marzok M, Morsy M, Nagaraja S. Camel Proteins and Enzymes: A Growing Resource for Functional Evolution and Environmental Adaptation. Front. Vet. Sci. [Internet]. 2022; 9:911511. doi: https://doi.org/gstj65
White C, Rewell L. Vitamin E and selenium status of sheep during autumn in Western Australia and its relationship to the incidence of apparent white muscle disease. Aust. J. Exp. Agric. [Internet]. 2007; 47(5):535–543. doi: https://doi.org/d58mqj
Ortiz–Morales O, Ramírez–Bribiesca JE, Hernández–Bautista J, Hernandez–Sanchez D, Bárcena–Gama JR, Hernández–Trujillo E, Díaz–Sánchez VM, Garrido–Fariña G, López–Ojeda JC, Hernández–Rodriguez M. Effect of Supranutritional Dosage Selenium in Neonatal Goat Kids on Productive Performance, Physicochemical Profiles in Meat, Selenium Levels in Tissues, and Histopathological Findings. Biol. Trace. Elem. Res. [Internet]. 2023: 201:4374–4388. doi: https://doi.org/k8z6
McDowell LR, Valle G, Cristaldi L, Davis PA, Rosendo O, Wilkinson NS. Selenium availability and methods of selenium supplementation for grazing ruminants. Proceedings 13th. Annual Florida Ruminant Nutrition Symposium.Gainesville, Florida, USA: IFAS, University of Florida. 2002. p. 86–102.
Tórtora–Pérez J. The importance of selenium and the effects of its deficiency in animal health. Small Rumin. Res. [Internet]. 2010; 89(2–3):185–192. doi: https://doi.org/frz8tv
Cooper B, Valentine B. Chapter 3. Muscle and tendon. In: Maxie MG, editor. Jubb, Kennedy and Palmer’s Pathology of Domestic Animals: Volume 1. 6th ed. Philadelphia, USA: Saunders LTD. 2015: p 214–218.
McDowell L, Williams S, Hidiroglou N, Njeru C, Hill G, Ochoa L, Wilkinson NS. Vitamin E supplementation for the ruminant. Anim. Feed Sci. Technol. [Internet]. 1996; 60(3–4):273–296. doi: https://doi.org/cczm44
Ataollahi F, Mohri M, Seifi HA, Pingguan–Murphy B, Wan Abas WAB, Osman NAA. Evaluation of copper concentration in subclinical cases of white muscle disease and its relationship with cardiac troponin I. PLoS One. [Internet]. 2013; 8(2):e56163. doi: https://doi.org/f4k66r
Kozat S, Gunduz H, Deger Y, Mert N, Yoruk IH, Sel T. Studies on serum α–tocopherol, selenium levels and catalase activities in lambs with white muscle disease. Bull. Vet. Inst. Pulawy. 2007; 51(2):281–284.
Yumusak N, Yigin A, Polat PF, Hitit M, Yilmaz R. Expression of ADAMTS–7 in myocardial dystrophy associated with white muscle disease in lambs. Pol. J. Vet. Sci. [Internet]. 2018; 21(1):119–126. doi: https://doi.org/k8z7
Kozat S, Altug N, Yuksek N, Ozkan C. Evaluation of the levels of homocysteine, troponin I, and nitric oxide in lambs with subclinical white muscle disease. Kafkas Univ. Vet. Fak. Derg. [Internet]. 2011; 17(3):441–444. doi: https://doi.org/k8z8
Nizamlıoğlu M, Tiftik AM, Turgut K, ve Traş B. [Investigation of Vitamin E, Glutamic oxalacetic transaminase (GOT), creatine kinase (CK) and lactate dehydrogenase (LDH) activities in white muscle disease of lambs]. Doğa Türk Vet. Hay. Derg. 1991; 15:59–64.Turkish.
Keleş İ, Dede S, Keleş H, Değer Y, Altuğ N. Studies on some antioxidant vitamin concentrations in lambs with stiff–lamb disease. Yüzüncü Yıl Univ. Vet. Fak. Derg. 2000; 11(1):79–82.
Beytut E, Erişir M, Aksakal M. [Reduced glutathione and malondialdehyde levels with catalase enzyme activity in the heart, skeletal muscle and liver of lambs with white muscle disease]. Kafkas Univ. Vet. Fak. Derg. 2001; 7(1):1–5. Turkish.
Arshad MA, Ebeid HM, Hassan F–u. Revisiting the effects of different dietary sources of selenium on the health and performance of dairy animals: a review. Biol. Trace Elem. Res. [Internet]. 2021; 199:3319–3337. doi: https://doi.org/gpbgsw
Paynter DI. Diagnosis of mineral deficiencies. In: Master DG, White CL, editors. Detection and Treatment of Mineral Nutrition Problem in Grazing Sheep. Canberra, Australia: Australian Centre for International Agricultural Research. 1996. p. 45–56. ACIAR Monograph N° 37.
Gunes V, Ozcan K, Citil M, Onmaz AC, Erdogan HM. Detection of myocardial degeneration with point–of–care cardiac troponin assays and histopathology in lambs with white muscle disease. Vet. J. [Internet]. 2010; 184(3):376–378. doi: https://doi.org/bqjz3h
Murata H, Shimada N, Yoshioka M. Current research on acute phase proteins in veterinary diagnosis: an overview. Vet. J. [Internet]. 2004; 168(1):28–40. doi: https://doi.org/c8tdm3
Petersen HH, Nielsen JP, Heegaard PMH. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res. [Internet]. 2004; 35(2):163–187. doi: https://doi.org/bjtm9p
Cerón JJ, Eckersall PD, Martínez‐Subiela S. Acute phase proteins in dogs and cats: current knowledge and future perspectives. Vet. Clin. Pathol. [Internet]. 2005; 34(2):85–99. doi: https://doi.org/cm573x
Cray C, Zaias J, Altman NH. Acute phase response in animals: a review. Comp. Med. 2009; 59(6):517–526. Cited in: PubMed; PMID: 20034426.
Eckersall P, Bell R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. The Vet. J. [Internet]. 2010; 185(1):23–27. doi: https://doi.org/fb64df
Coşkun A, İsmail Ş. [Clinical Use of Acute Phase Proteins in Cattle]. Saglik Bilim. Derg. [Internet] 2011; [cited 18 May 2023]; 20(3):240–246. Turkish. Available in: https://bit.ly/4anQaQU.
Pathak A, Agrawal A. Evolution of C–reactive protein. Frontiers immunol. 2019; 10:943. doi: https://doi.org/k82x
Niu W, Wan Y, Li M, Wu Z, Zhang L, Wang J. The diagnostic value of serum procalcitonin, IL–10 and C–reactive protein in community acquired pneumonia and tuberculosis. Eur. Rev. Med. Pharmacol. Sci. 2013; 17(24):3329–3333. Cited in: PubMed; PMID: 24379064.
Horadagoda NU, Knox KMG, Gibbs HA, Reid SWJ, Horadagoda A, Edwards SER, Eckersall PD. Acute phase proteins in cattle: discrimination between acute and chronic inflammation. Vet. Rec. [Internet]. 1999; 144(16):437–441. doi: https://doi.org/bt6hb6
Jain S, Gautam V, Naseem S. Acute–phase proteins: As diagnostic tool. Pharm Bioallied Sci. [Internet]. 2011; 3(1):118–127. doi: https://doi.org/dhncrg
Zhang Y, Zhang J, Sheng H, Li H, Wang R. Chapter Two–Acute phase reactant serum amyloid A in inflammation and other diseases. In: Makowski GS, editor. Advances in Clinical Chemistry. Vol 90. [Internet]. Cambridge (MA), USA: Academic Press. 2019. p. 25–80. doi: https://doi.org/k82z
De Buck M, Gouwy M, Wang JM, Van Snick J, Opdenakker G, Struyf S, Van Damme J. Structure and expression of different serum amyloid A (SAA) variants and their concentration–dependent functions during host insults. Curr Med Chem. [Internet]. 2016; 23(17):1725–1755. doi: https://doi.org/gk5wqh
Urieli–Shoval S, Linke RP, Matzner Y. Expression and function of serum amyloid A, a major acute–phase protein, in normal and disease states. Curr. Opin. Hematol. [Internet]. 2000; 7(1):64–69. doi: https://doi.org/cfqsv2
El–Deeb W, Fayez M, Elsohaby I, Salem M, Alhaider A, Kandeel M. Investigation of acute–phase proteins and cytokines response in goats with contagious caprine pleuropneumonia with special reference to their diagnostic accuracy. Peer J. [Internet]. 2020; 8:e10394. doi: https://doi.org/gpgxkc
Kazak F, Deveci MZY, Akcakavak G. Eucalyptol alleviates cisplatin–induced kidney damage in rats. Drug. Chem. Toxicol. [Internet]. 2022; 1–8. doi: https://doi.org/k823
American Registry of Pathology; Luna LG, editor. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology. 3rd ed. New York: Mc Graw–Hill. 1968. 258 p.
Akcakavak G, Kazak F, Deveci MZY. Eucalyptol Protects against Cisplatin–Induced Liver Injury in Rats. Biol. Bull. [Internet]. 2023; 50:987–994. doi: https://doi.org/k824
Dabak M, Karataş F, Gül Y, Kizil Ö. Investigation of selenium and vitamin e deficiency in beef cattle. Turkish J. Vet. Anim. Sci. [Internet] 2002 [cited 24 April 2023]; 26(4):741–746. Available in: https://bit.ly/47ZTzUw.
Abramson JL, Hooper WC, Jones DP, Ashfaq S, Rhodes SD, Weintraub WS, Harrison DG, Quyyumi AA, Vaccarino V. Association between novel oxidative stress markers and C–reactive protein among adults without clinical coronary heart disease. Atherosclerosis. [Internet]. 2005; 178(1):115–121. doi: https://doi.org/cmk2xg
Cottone S, Mulè G, Nardi E, Vadalà A, Guarneri M, Briolotta C, Arsena R, Palermo A, Riccobene R, Cerasola G. Relation of C–reactive protein to oxidative stress and to endothelial activation in essential hypertension. Am. J. Hypertens. [Internet]. 2006; 19(3):313–318. doi: https://doi.org/bdgb69
Noren–Hooten N, Ejiogu N, Zonderman AB, Evans MK. Association of oxidative DNA damage and C–reactive protein in women at risk for cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. [Internet]. 2012; 32(11):2776–2784. doi: https://doi.org/k825
Eklund KK, Niemi K, Kovanen P. Immune functions of serum amyloid A. Crit. Rev. Immunol. [Internet]. 2012; 32(4):335–348. doi: https://doi.org/gk54gq
Joshi V, Gupta VK, Bhanuprakash AG, Mandal RSK, Dimri U, Ajith Y. Haptoglobin and serum amyloid A as putative biomarker candidates of naturally occurring bovine respiratory disease in dairy calves. Microb. Pathog. [Internet]. 2018; 116:33–37. doi: https://doi.org/gdd72z
Derechos de autor 2024 Ozhan Karatas, Gokhan Akcakavak
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.