Efecto del propóleo sobre la actividad de la piruvato quinasa y la superóxido dismutasa en el daño tisular inducido por doxorrubicina: análisis de acoplamiento molecular
Resumen
El estudio tuvo como objetivo, evaluar el efecto del propóleo sobre la piruvato quinasa (PK), que es una enzima clave en la glucólisis y la superóxido dismutasa (SOD), una enzima antioxidante sobre la toxicidad inducida por DOX en diferentes tejidos. Mediante el acoplamiento molecular, analizamos cómo afectaba el propóleo a las enzimas responsables de la glucólisis y el sistema antioxidante. No hubo solicitud en el primer grupo (control). El segundo grupo recibió 100 mg·kg-1 día de propóleo por sonda gástrica durante 7 días, el tercer grupo recibió una dosis única de 20 mg·kg-1 de DOX intraperitoneal y el cuarto grupo propóleo+DOX. Dos días antes de la administración de DOX, se inició la aplicación de propóleo, que duró siete días. Se determinaron las actividades de PK y SOD en tejidos de hígado, corazón, riñón y testículos, y se aplicó acoplamiento molecular para ratificar la actividad de algunos componentes del propóleo (éster fenetílico del ácido cafeico (CAPE) y quercetina) sobre las enzimas PK y SOD. Cuando se comparó el grupo DOX con el grupo de control, se encontró una disminución en las actividades de PK y SOD, y se encontró una diferencia significativa en las actividades de PK y SOD. La administración de DOX disminuyó las actividades de PK y SOD de los tejidos del hígado, el corazón, los riñones y los testículos. En conclusión, el presente estudio revela que DOX interrumpe la glucólisis en tejidos de rata. Se demostró que los compuestos CAPE y quercetina interactúan de manera similar con los ligandos cocristalinos de PK y SOD. Además, cuando se examinaron los tipos de interacción de estos compuestos, especialmente en PK, y las puntuaciones de acoplamiento obtenidas, se puede decir que muestran mayor afinidad que DOX.
Descargas
Citas
Eleiwa NZ, Galal AA, El–Aziz A, Reda M, Hussin EM. Antioxidant activity of Spirulina platensis alleviates doxorubicin–induced oxidative stress and reprotoxicity in male rats. Oriental Pharm. Exp. Med. [Internet]. 2018; 18(2):87–95. doi: https://doi.org/mjdx
Yang W, Lu Z. Pyruvate kinase M2 at a glance. J. Cell Sci. [Internet]. 2015; 128(9):1655–1660. doi: https://doi.org/f7ck3d
Warburg O. On the origin of cancer cells. Sci. [Internet]. 1956; 123(3191):309–314. doi: https://doi.org/fj737q
Wu SF, Le HY. Dual roles of PKM2 in cancer metabolism. Acta Biochim. Biophys. Sin. [Internet]. 2013; 45(1):27–35. doi: https://doi.org/f4kndk
Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin. Cancer Biol. [Internet]. 2005; 15(4):300–308. doi: https://doi.org/bpg6sb
Abdel–Daim MM, Kilany O, Khalifa HA, Ahmed AA. Allicin ameliorates doxorubicin–induced cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Cancer chem. Pharmacol. [Internet]. 2017; 80(4):745–753. doi: https://doi.org/gbzxnw
Sarvazyan NA, Askari A, Huang WH. Effects of doxorubicin on cardiomyocytes with reduced level of superoxide dismutase. Life Sci. [Internet]. 1995; 57(10):1003–1010. doi: https://doi.org/bhgvdr
Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. [Internet]. 2003; 17(10):1195–1214. doi: https://doi.org/brndsj
Fialkow L, Wang Y, Downey GP. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Rad. Biol. Med. [Internet]. 2007; 42(2):153–164. doi: https://doi.org/fnx4d8
Raj S, Franco VI, Lipshultz SE. Anthracycline–induced cardiotoxicity: a review of pathophysiology, diagnosis, and treatment. Curr. Treat. Opt. Cardio. Med. [Internet]. 2014; 16(6):1–14. doi: https://doi.org/mjd6
Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin–induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J. Mol. Cell. Cardiol. [Internet]. 2012; 52(6):1213–1225. doi: https://doi.org/f3xjqt
Renu K, Sruthy KB, Parthiban S, Sugunapriyadharshini S, George A, Tirupathi–Pichiah TB, Suman S, Abilash V G, Arunachalam S. Elevated lipolysis in adipose tissue by doxorubicin via PPARα activation associated with hepatic steatosis and insulin resistance. Eur. J. Pharmacol. [Internet]. 2019; 843:162–176. doi: https://doi.org/mjd7
Arunachalam S, Tirupathi–Pichiah PB, Achiraman S. Doxorubicin treatment inhibits PPARγ and may induce lipotoxicity by mimicking a type 2 diabetes–like condition in rodent models. FEBS Lett. [Internet]. 2013; 587(2):105–110. doi: https://doi.org/f4h3vh
Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ. Res. [Internet]. 2013; 113(6):709–724. doi: https://doi.org/f5nxvg
Van Raamsdonk JM, Hekimi S. Reactive oxygen species and aging in Caenorhabditis elegans: causal or casual relationship? Antioxid. Redox Sig. [Internet]. 2010; 13(12):1911–1953. doi: https://doi.org/cwg6wb
Mohan UP, Kunjiappan S, Tirupathi–Pichiah PB, Arunachalam S. Adriamycin inhibits glycolysis through downregulation of key enzymes in Saccharomyces cerevisiae. Biotech. [Internet]. 2021; 11(1):1–13. doi: https://doi.org/mjd8
Ciaccio M, Valenza M, Tesoriere L, Bongiorno A, Albiero R, Livrea MA. Vitamin A inhibits doxorubicin–induced membrane lipid peroxidation in rat tissues in vivo. Arc. Biochem. Biophy. [Internet]. 1993; 302(1):103–108. doi: https://doi.org/cprnh6
Mohamed EK, Osman AA, Moghazy AM, Rahman A, As A. Propolis protective effects against doxorubicin–ınduced multi–organ toxicity via suppression of oxidative stress, inflammation, apoptosis, and histopathological alterations in female albino rats. Biointerface Res. Appl. Chem. [Internet]. 2021; 12:1762–1777. doi: https://doi.org/mjd9
Sameni HR, Ramhormozi P, Bandegi AR, Taherian AA, Mirmohammadkhani M, Safari M. Effects of ethanol extract of propolis on histopathological changes and anti‐oxidant defense of kidney in a rat model for type 1 diabetes mellitus. J. Diabetes Invest. [Internet]. 2016; 7(4):506–513. doi: https://doi.org/f9hhpz
Kaya E, Yılmaz S, Ceribasi S. Protective role of propolis on low and high dose furan–induced hepatotoxicity and oxidative stress in rats. J. Vet. Res. [Internet]. 2019; 63(3):423–431. doi https://doi.org/mhzs
Rivero–Cruz JF, Granados–Pineda J, Pedraza–Chaverri J, Pérez–Rojas JM, Kumar–Passari A, Diaz–Ruiz G, Rivero–Cruz BE. Phytochemical constituents, antioxidant, cytotoxic, and antimicrobial activities of the ethanolic extract of Mexican brown propolis. Antioxid. [Internet]. 2020; 9(1):70. doi: https://doi.org/gp63pm
Ripari N, Sartori AA, da Silva–Honorio M, Conte FL, Tasca KI, Santiago KB, Sforcin JM. Propolis antiviral and immunomodulatory activity: a review and perspectives for COVID–19 treatment. J. Pharm. Pharmacol. [Internet]. 2021; 73(3):281–299. doi: https://doi.org/mjfd
Yilmaz S, Kandemir FM, Kaya E, Ozkaraca M. Chemoprotective effects of propolis on aflatoxin b1–induced hepatotoxicity in rats: Oxidative damage and hepatotoxicity by modulating TP53, oxidative stress. Curr. Prot. [Internet]. 2020; 17(3):191–199. doi: https://doi.org/mh2j
Lee YJ, Liao PH, Chen WK, Yang CC. Preferential cytotoxicity of caffeic acid phenethyl ester analogues on oral cancer cells. Cancer Lett. [Internet]. 2000; 153(1–2):51–56. doi: https://doi.org/cgsk64
Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nut. Res. [Internet]. 2004; 24(10):851–874. doi: https://doi.org/b5twkq
McConkey BJ, Sobolev V, Edelman M. The performance of current methods in ligand–protein docking. Curr. Sci. [Internet]. 2002 [cited 20 July 2023]; 83(7):845–856. Available in: https://goo.su/MnXD
Ristivojević P, Dimkić I, Guzelmeric E, Trifković J, Knežević M, Berić T, Yesilada E, Milojković–Opsenica D, Stanković S. Profiling of Turkish propolis subtypes: Comparative evaluation of their phytochemical compositions, antioxidant and antimicrobial activities. LWT. [Internet]. 2018; 95:367–379. doi: https://doi.org/mjfj
Yamauchi C, Fujita S, Obara T, Ueda T. Effects of room temperature on reproduction, body and organ weights, food and water intake, and hematology in rats. Lab. Anim. Sci. [Internet]. 1981; 31(3):251–258. doi: https://doi.org/mjfk
Iqbal M, Dubey K, Anwer T, Ashish A, Pillai KK. Protective effects of telmisartan against acute doxorubicin–induced cardiotoxicity in rats. Pharmacol. Rep. [Internet]. 2008 [cited 20 July 2023]; 60(3):382–390. Available in: https://goo.su/KkQ6u. Cited in: PubMed; PMID 18622063.
Kaya E, Yılmaz S. Determination of effects of Nigella sativa oil on doxorubicin–ınduced cardiotoxicity in rats. Firat Uni. Vet. J. Health Sci. [Internet]. 2019 [cited 15 July; 2023]; 33(1):31–36. Available in: https://goo.su/l5vOqN. Turkish
Beutler E, Blume KG, Kaplan JC, Löhr GW, Ramot B, Valentine WN. International Committee for Standardization in Haematology: Recommended methods for red‐cell enzyme analysis. British J. Haematol. [Internet]. 1977; 35(2):331–340. doi: https://doi.org/csvd2s
Sun YI, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem. [Internet]. 1988; 34(3):497–500. doi: https://doi.org/gj74fn
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. [Internet]. 1951; 193(1):265–275. doi: https://doi.org/ghv6nr
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comp. Chem. [Internet]. 2009; 30(16):2785–2791. doi: https://doi.org/dvtqjs
Jurica MS, Mesecar A, Heath PJ, Shi W, Nowak T, Stoddard BL. The allosteric regulation of pyruvate kinase by fructose–1, 6–bisphosphate. Structure [Internet]. 1998; 6(2):195–210. doi: https://doi.org/dwzzwc
Renu K, Abilash VG, PB TP, Arunachalam S. Molecular mechanism of doxorubicin–induced cardiomyopathy–An update. Eur. J. Pharmacol. [Internet]. 2018; 818:241–253. doi: https://doi.org/gcrvs2
Damiani RM, Moura DJ, Viau CM, Caceres RA, Henriques JAP, Saffi J. Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch. Toxicol. [Internet]. 2016; 90(9):2063–2076. doi: https://doi.org/grcdr2
Lommi J, Koskinen P, Näveri H, Härkönen M, Kupari M. Heart failure ketosis. J. Int. Med. [Internet]. 1997; 242(3):231–238. doi: https://doi.org/c86nj7
Wilson RB, Solass W, Archid R, Weinreich FJ, Königsrainer A, Reymond MA. Resistance to anoikis in transcoelomic shedding: The role of glycolytic enzymes. Pleura Perit. [Internet]. 2019; 4(1): 20190003. doi: https://doi.org/ghfxw6
Israelsen WJ, Vander–Heiden MG. Pyruvate kinase: Function, regulation and role in cancer. Semin. Cell Dev. Biol. [Internet]. 2015; 43:43–51. doi: https://doi.org/f7zc9s
Van den Brink J, Canelas AB, Van Gulik WM, Pronk JT, Heijnen JJ, De Winde JH, Daran–Lapujade P. Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism. App. Env. Microbiol. [Internet]. 2008; 74(18):5710–5723. doi: https://doi.org/brgs4b
Taymaz–Nikerel H, Karabekmez ME, Eraslan S, Kırdar B. Doxorubicin induces an extensive transcriptional and metabolic rewiring in yeast cells. Sci. Rep. [Internet]. 2018; 8(1):1–14. doi: https://doi.org/gd58qk
Pan C, Wang X, Shi K, Zheng Y, Li J, Chen Y, Jin L, Pan Z. MiR–122 reverses the doxorubicin–resistance in hepatocellular carcinoma cells through regulating the tumor metabolism. PloS One [Internet]. 2016; 11(5):e0152090. doi: https://doi.org/f9v9mn
Abdel–aleem S, El–Merzabani MM, Sayed–Ahmed M, Taylor DA, Lowe JE. Acute and chronic effects of adriamycin on fatty acid oxidation in isolated cardiac myocytes. J. Mol. Cell. Cardiol. [Internet]. 1997; 29(2):789–797. doi: https://doi.org/bddkkd
Goffart S, von Kleist–Retzow JC, Wiesner RJ. Regulation of mitochondrial proliferation in the heart: power–plant failure contributes to cardiac failure in hypertrophy. Cardio. Res. [Internet]. 2004; 64(2):198–207. doi: https://doi.org/cq5wbz
Rizk SM, Zaki HF, Mina MA. Propolis attenuates doxorubicin–induced testicular toxicity in rats. Food Chem. Toxicol. [Internet]. 2014; 67:176–186. doi: https://doi.org/f53g96
Orak N, Gakmuk G, Kaya S. An evaluation of damages caused by doxorubicin in liver tissue and potential protective effect of propolis on these damages. Konuralp Med. J. [Internet]. 2022; 14(1):104–113. doi: https://doi.org/mjfr
Perry JJP, Shin DS, Getzoff ED, Tainer JA. The structural biochemistry of the superoxide dismutases. Biochim. Biophys. Acta – Proteins Proteom. [Internet]. 2010; 1804(2):245–262. doi: https://doi.org/fc4wd6
Doroshow JH, Akman S, Chu FF, Esworthy S. Role of the glutathione–glutathione peroxidase cycle in the cytotoxicity of the anticancer quinones. Pharmacol. Therap. [Internet]. 1990; 47(3):359–370. doi: https://doi.org/fmbwrd
Olson RD, Mushlin PS. Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J. [Internet]. 1990; 4(13):3076–3086. doi: https://doi.org/mjfs
Nitiss JL. DNA topoisomerase II and its growing repertoire of biological functions. Nature Rev. Canc. [Internet]. 2009; 9(5):327–337. doi: https://doi.org/ctfdqc
Cheung KG, Cole LK, Xiang B, Chen K, Ma X, Myal Y, Hatch GM, Tong Q, Dolinsky VW. Sirtuin–3 (SIRT3) protein attenuates doxorubicin–induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J. Biol. Chem. [Internet]. 2015; 290(17):10981–10993. doi: https://doi.org/f69bnn
Kostrzewa–Nowak D, Paine MJI, Wolf CR, Tarasiuk J. The role of bioreductive activation of doxorubicin in cytotoxic activity against leukaemia HL60–sensitive cell line and its multidrug–resistant sublines. British J. Canc. [Internet]. 2005; 93(1):89–97. doi: https://doi.org/c9fcdw
Swamy AV, Wangikar U, Koti BC, Thippeswamy AHM, Ronad PM, Manjula DV. Cardioprotective effect of ascorbic acid on doxorubicin–induced myocardial toxicity in rats. Indian J. Pharmacol. [Internet]. 2011; 43(5): 507–511. doi: https://doi.org/c8v99c
Rohde LE, Belló–Klein A, Pereira RP, Mazzotti NG, Geib G, Weber C, Clausell N. Superoxide dismutase activity in adriamycin–induced cardiotoxicity in humans: a potential novel tool for risk stratification. J. Card. Fail. [Internet]. 2005; 11(3):220–226. doi: https://doi.org/dt5c96
Köse E, Oğuz F, Vardi N, Sarihan ME, Beytur A, Yücel A, Eki̇nci̇ N. Therapeutic and protective effects of montelukast against doxorubicin–induced acute kidney damage in rats. Iranian J. Basic Med. Sci. [Internet]. 2019; 22(4):407–411. doi: https://doi.org/mjft
Kuropatnicki AK, Szliszka E, Krol W. Historical aspects of propolis research in modern times. Evidence–Based comp. Alt. Med. [Internet]. 2013; (Spec No):964149. doi: https://doi.org/gbc5ft
Cornara L, Biagi M, Xiao J, Burlando B. Therapeutic properties of bioactive compounds from different honeybee products. Front. Pharmacol. [Internet]. 2017; 8(412)1–20. doi: https://doi.org/mjfw
Huang S, Zhang CP, Wang K, Li GQ, Hu FL. Recent advances in the chemical composition of propolis. Molec. [Internet]. 2014; 19(12):19610–19632. doi: https://doi.org/f6vfn2
Burdock GA. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem. Toxicol. [Internet]. 1998; 36(4):347–363. doi: https://doi.org/d2t9t4
Sforcin JM, Bankova, V. Propolis: is there a potential for the development of new drugs? J. Ethnopharmacol. [Internet]. 2011; 133(2):253–260. doi: https://doi.org/fnqzwd
Sheibani M, Nezamoleslami, S, Faghir–Ghanesefat H, Dehpour AR. Cardioprotective effects of dapsone against doxorubicin–induced cardiotoxicity in rats. Canc. Chem. Pharmacol. [Internet]. 2020; 85(3):563–571. doi: https://doi.org/grb2cm
Aksu EH, Kandemir FM, Yıldırım S, Küçükler S, Dörtbudak MB, Çağlayan C, Benzer F. Palliative effect of curcumin on doxorubicin‐induced testicular damage in male rats. J. Biochem. Mol. Toxicol. [Internet]. 2019; 33(10):e22384. doi: https://doi.org/mjfx
Liu HX, Li J, Li QX. Therapeutic effect of valsartan against doxorubicin–induced renal toxicity in rats. Iranian J. Basic Med. Sci. [Internet]. 2019; 22(3):251–254. doi: https://doi.org/mjfz
Husna F, Arozal W, Yusuf H, Safarianti S. Protective effect of mangiferin on doxorubicin–induced liver damage in animal model. J. Res. Pharm. [Internet]. 2022; 26(1):44–51. doi: https://doi.org/mjf2
Nagai K, Fukuno S, Oda A, Konishi, H. Protective effects of taurine on doxorubicin–induced acute hepatotoxicity through suppression of oxidative stress and apoptotic responses. Anti–Cancer Drugs [Internet]. 2016; 27(1):17–23. doi: https://doi.org/mjf3
Omobowale TO, Oyagbemi AA, Ajufo UE, Adejumobi OA, Ola–Davies OE, Adedapo AA, Yakubu MA. Ameliorative effect of gallic acid in doxorubicin–induced hepatotoxicity in Wistar rats through antioxidant defense system. J. Dietary Supp. [Internet]. 2018; 15(2):183–196. doi: https://doi.org/mjf4
Fuliang HU, Hepburn HR, Xuan H, Chen M, Daya S, Radloff SE. Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus. Pharmacol. Res. [Internet]. 2005; 51(2):147–152. doi: https://doi.org/dfcqmx
Baykara M, Silici S, Özçelik M, Güler O, Erdoğan N, Bilgen M. In vivo nephroprotective efficacy of propolis against contrast–induced nephropathy. Diag. Inter. Radiol. [Internet]. 2015; 21(4):317–321. doi: https://doi.org/gs8p7d
Promsan S, Jaikumkao K, Pongchaidecha A, Chattipakorn N, Chatsudthipong V, Arjinajarn P, Lungkaphin A. Pinocembrin attenuates gentamicin–induced nephrotoxicity in rats. Canadian J. Physiol. Pharmacol. [Internet]. 2016; 94(08):808–818. doi: https://doi.org/f8zkx6
Derechos de autor 2024 Seval Yilmaz, Emre Kaya, Harun Yonar, Harun Uslu
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.