Investigación patológica de las roturas de DNA de doble cadena y la oxidación del DNA en la infección natural por Mycobacterium avium subespecie paratuberculosis en cabras

  • Muhammet Bahaeddin Dörtbudak Harran University, Faculty of Veterinary Medicine, Department of Pathology. Sanliurfa, Türkiye
  • Merve Öztürk Necmettin Erbakan University, Faculty of Veterinary Medicine, Department of Internal Medicine. Konya, Türkiye
Palabras clave: Cabra, MAP, paratuberculosis, γ–H2AX, 8–Ohdg

Resumen

La paratuberculosis, provocada por Mycobacterium avium subespecie paratuberculosis (MAP), se manifiesta como una afección crónica marcada por diarrea persistente y enteritis granulomatosa, generalizada en rumiantes domésticos y salvajes del mundo. En esta investigación se evaluó patológicamente la alteración del DNA en tejidos lesionados de cabra infectada naturalmente por MAP. En consecuencia, las cabras que manifestaban síntomas sugestivos de paratuberculosis, incluida emaciación pronunciada y diarrea episódica continua, se sometieron a un procedimiento de diagnóstico ELISA para determinar la presencia de MAP. Este procedimiento de diagnóstico confirmó la presencia del agente infección en 20 pacientes. A continuación, se practicó la eutanasia a estos pacientes y se tomaron muestras de tejido de los ganglios linfáticos intestinales y regionales. Se sometieron a tinción de Hematoxilina y Eosina (HE) para la investigación histopatológica, tinción de Ziehl Neelsen (ZN) para identificar micobacterias acidorresistentes, γ–H2AX para discernir alteraciones en el DNA de doble cadena y 8–Ohdg para detectar la oxidación del DNA mediante el método inmunohistoquímico (IHQ). Observación anatómica macroscópica atrofia adiposa serosa, aumento de las dimensiones de los ganglios linfáticos mesenteriales, hipertrofia mucosa y ondulaciones mucosas no retráctiles. La evaluación histológica destacó degeneración celular epitelial, abundancia de macrófagos epitelioides, linfocitos, plasmocitos, infiltrados en la mucosa. Las entidades ácido–alcohol resistentes, distinguibles mediante tinción de ZN, aparecían como conglomerados rojos luminiscentes en el tejido intestinal y mesenterial. Los análisis inmunohistoquímicos mostraron resultados positivos tanto para γ–H2AX como para 8–Ohdg en todos los tejidos muestreados. Curiosamente, esta investigación presentó la evidencia global inaugural de la expresión de γ–H2AX y 8–Ohdg en una infección natural por MAP, demostrando que este agente patológico precipita la degradación y oxidación del DNA, con lo que aumenta la comprensión de la patogénesis de la enfermedad.

Descargas

La descarga de datos todavía no está disponible.

Citas

Idris SM, Eltom KH, Okuni JB, Ojok L, Elmagzoub WA, El Wahed AA, Eltayeb ES, Gameel AA. Paratuberculosis: The hidden killer of small ruminants. Animals. [Internet]. 2021; 12(1):12. doi: https://doi.org/grhbk3

Verin R, Perroni M, Rossi G, De Grossi L, Botta R, De Sanctis B, Rocca S, Cubeddu T, Crosby–Durrani H, Taccini E. Paratuberculosis in sheep: Histochemical, immunohistochemical and in situ hybridization evidence of in utero and milk transmission. Res. Vet. Sci. [Internet]. 2016; 106(2016):173–179. doi: https://doi.org/f8rkt8

Roller M, Hansen S, Knauf–Witzens T, Oelemann WMR, Czerny CP, Abd El Wahed A, Goethe R. Mycobacterium avium subspecies paratuberculosis infection in Zoo animals: A review of susceptibility and disease process. Front. Vet. Sci. [Internet]. 2020; 7:572724. doi: https://doi.org/m4pz

Roberto JPdL, Limeira CH, Barnabé NNdC, Soares RR, Silva MLCR, Gomes AAdB, Higino SSdS, de Azevedo SS, Alves CJ. Antibody detection and molecular analysis for Mycobacterium avium subspecies paratuberculosis (MAP) in goat milk: Systematic review and meta–analysis. Res. Vet. Sci. [Internet]. 2021; 135:72–77. doi: https://doi.org/m4p2

Mikkelsen H, Aagaard C, Nielsen SS, Jungersen G. Review of Mycobacterium avium subsp. paratuberculosis antigen candidates with diagnostic potential. Vet. Microbiol. [Internet]. 2011; 152(1–2):1–20. doi: https://doi.org/dckknv

Sweeney RW. Pathogenesis of paratuberculosis. Vet. Clin. North Am. Food Anim. Pract. [Internet]. 2011; 27(3):537–546. doi: https://doi.org/ct2bgc

Dennis MM, Reddacliff LA, Whittington RJ. Longitudinal study of clinicopathological features of Johne’s disease in sheep naturally exposed to Mycobacterium avium subspecies paratuberculosis. Vet. Pathol. [Internet]. 2011; 48(3):565–575. doi: https://doi.org/c3rdj4

Collins MT. Diagnosis of paratuberculosis. Vet. Clin. North Am. Food Anim. Pract. [Internet]. 2011; 27(3):581–591. doi: https://doi.org/bxzvsw

Lawrence J, Karpuzoglu E, Vance A, Vandenplas M, Saba C, Turek M, Gogal Jr RM. Changes in γ–H2AX expression in irradiated feline sarcoma cells: an indicator of double strand DNA breaks. Res. Vet. Sci. [Internet]. 2013; 94(3):545–548. doi: https://doi.org/f4w26t

Waterman DP, Haber JE, Smolka MB. Checkpoint responses to DNA double–strand breaks. Annu. Rev. Biochem. [Internet]. 2020; 89:103–133. doi: https://doi.org/ghqjkx

Omari Shekaftik S, Nasirzadeh N. 8–Hydroxy–2′–deoxyguanosine (8–OHdG) as a biomarker of oxidative DNA damage induced by occupational exposure to nanomaterials: A systematic review. Nanotoxicology. [Internet]. 2021; 15(6):850–864. doi: https://doi.org/m4p5

AbuArrah M, Setianto BY, Faisal A, Sadewa AH. 8–Hydroxy–2–deoxyguanosine as oxidative DNA damage biomarker of medical ionizing radiation: A scoping review. J. Biomed. Phys. Eng. [Internet]. 2021; 11(3):389–402. doi: https://doi.org/gj8vzw

Dörtbudak M, Sağlam Y, Yıldırım S, Timurkan M. Examen de adenovirus con métodos moleculares y patológicos en casos de pneumonía ovina. Rev. MVZ Córdoba. [Internet]. 2022; 27(Supl):e2738. doi: https://doi.org/mqsc

Kravitz A, Pelzer K, Sriranganathan N. The paratuberculosis paradigm examined: a review of host genetic resistance and innate immune fitness in Mycobacterium avium subsp. paratuberculosis infection. Front. Vet. Sci. [Internet]. 2021; 8:721706. doi: https://doi.org/m4p8

Krüger C, Köhler H, Liebler–Tenorio EM. Cellular composition of granulomatous lesions in gut–associated lymphoid tissues of goats during the first year after experimental infection with Mycobacterium avium subsp. paratuberculosis. Vet. Immunol. Immunopathol. [Internet]. 2015; 163(1–2):33–45. doi: https://doi.org/m4p9

Khodakaram Tafti A, Rashidi K. The pathology of goat paratuberculosis: Gross and histopathological lesions in the intestines and mesenteric lymph nodes. J. Vet. Med. B. [Internet]. 2000; 47(7):487–495. doi: https://doi.org/cgqvr9

Hailat NQ, Hananeh W, Metekia AS, Stabel JR, Al–Majali A, Lafi S. Pathology of subclinical paratuberculosis (Johne’s Disease) in Awassi sheep with reference to its occurrence in Jordan. Vet. Med. – Czech [Internet]. 2010; 55(12):590–602. doi: https://doi.org/m4qb

Kheirandish R, Sami M, Khalili M, Shafaei K, Azizi S. Diagnosis of paratuberculosis in fresh and paraffin embedded samples by histopathology, PCR and immunohistochemistry techniques. Bulg. J. Vet. Med. [Internet]. 2017; 20(4):339–347. doi: https://doi.org/m4qc

Derakhshandeh A, Namazi F, Khatamsaz E, Eraghi V, Hemati Z. Goat paratuberculosis in Shiraz: Histopathological and molecular approaches. Vet. Res. Forum. [Internet]. 2018; 9(3):253–257. doi: https://doi.org/m4qd

Zarei–Kordshouli F, Geramizadeh B, Khodakaram–Tafti A. Prevalence of Mycobacterium avium subspecies paratuberculosis IS 900 DNA in biopsy tissues from patients with Crohn’s disease: histopathological and molecular comparison with Johne’s disease in Fars province of Iran. BMC Infect. Dis. [Internet]. 2019; 19(23):1–11. doi: https://doi.org/m4qf

Hemida H, Kihal M. Detection of paratuberculosis using histopathology, immunohistochemistry, and ELISA in West Algeria. Comp. Clin. Pathol. [Internet]. 2015; 24:1621–1629. doi: https://doi.org/m4qg

Smeed JA, Watkins CA, Rhind SM, Hopkins J. Differential cytokine gene expression profiles in the three pathological forms of sheep paratuberculosis. BMC Vet. Res. [Internet]. 2007; 3(18):1–11. doi: https://doi.org/dsfjx5

Sonawane GG, Tripathi BN. Expression of inflammatory cytokine and inducible nitric oxide synthase genes in the small intestine and mesenteric lymph node tissues of pauci–and multibacillary sheep naturally infected with Mycobacterium avium ssp. paratuberculosis. Int. J. Mycobacteriol. [Internet]. 2016; 5(Suppl. 1):S77–S78. doi: https://doi.org/m4qh

Souliotis VL, Vlachogiannis NI, Pappa M, Argyriou A, Ntouros PA, Sfikakis PP. DNA damage response and oxidative stress in systemic autoimmunity. Int. J. Mol. Sci. [Internet]. 2019; 21(1):55. doi: https://doi.org/m4qj

Kumar N, Raja S, Van Houten B. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Nucleic Acids Res. [Internet]. 2020; 48(20):11227–11243. doi: https://doi.org/m4qk

Bozukluhan K, Merhan O, Büyük F, Akyüz E, Gezer T, Eğritağ HE, Gökçe G. [Determination of Some Acute Phase Protein and Biochemical Parameter Levels in Cattle Infected with Mycobacterium avium subsp. paratuberculosis]. Bozok Vet. Sci. [Internet]. 2022 [cited 26 Oct. 2023]; 3(2):47–51. Turkish. Available in: https://goo.su/5zZVXrl

El–Deeb WM, Fouda TA, El–Bahr SM. Clinico–biochemical Investigation of Paratuberculosis of Dromedary Camels in Saudi Arabia: Proinflammatory Cytokines, Acute Phase Proteins and Oxidative Stress Biomarkers. Pak. Vet. J. [Internet]. 2014 [cited 18 Oct. 2023]; 34(4):484–488. Available in: https://goo.su/BaJnpB

Nakamura AJ, Suzuki M, Redon CE, Kuwahara Y, Yamashiro H, Abe Y, Takahashi S, Fukuda T, Isogai E, Bonner WM. Fukumoto M. The causal relationship between DNA damage induction in bovine lymphocytes and the Fukushima nuclear power plant accident. Radiat. Res. [Internet]. 2017; 187(5):630–636. doi: https://doi.org/f9sxc9

Toyoda T, Cho YM, Akagi JI, Mizuta Y, Hirata T, Nishikawa A, Ogawa K. Early detection of genotoxic urinary bladder carcinogens by immunohistochemistry for γ–H2AX. Toxicol. Sci. [Internet]. 2015; 148(2):400–408. doi: https://doi.org/f74t2c

Fradet–Turcotte A, Bergeron–Labrecque F, Moody CA, Lehoux M, Laimins LA, Archambault J. Nuclear accumulation of the papillomavirus E1 helicase blocks S–phase progression and triggers an ATM–dependent DNA damage response. J. Virol. [Internet]. 2011; 85(17):8996–9012. doi: https://doi.org/c3hrxd

Sakakibara N, Mitra R, McBride AA. The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci. J. Virol. [Internet]. 2011; 85(17):8981–8995. doi: https://doi.org/cjgd8b

Espinosa J, de la Morena R, Benavides J, García–Pariente C, Fernández M, Tesouro M, Arteche N, Vallejo R, Ferreras MC, Pérez V. Assessment of acute–phase protein response associated with the different pathological forms of bovine paratuberculosis. Animals. [Internet]. 2020; 10(10):1925. doi: https://doi.org/m4qm

Karakurt E, Beytut E, Dağ S, Nuhoğlu H, Yıldız A, Kurtbaş E. Assessment of MDA and 8–OHdG expressions in ovine pulmonary adenocarcinomas by immunohistochemical and immunofluorescence methods. Acta Vet. Brno. [Internet]. 2022; 91(3):235–241. doi: https://doi.org/m4qn

Karakurt E. Immunohistochemical Investigation of Oxidative Stress–induced DNA Damage and Lipid Peroxidation in Bovine Papillomas and Fibropapillomas. Van Vet J. [Internet]. 2021; 32(1):22–27. doi: https://doi.org/m4qp

Publicado
2024-06-26
Cómo citar
1.
Dörtbudak MB, Öztürk M. Investigación patológica de las roturas de DNA de doble cadena y la oxidación del DNA en la infección natural por Mycobacterium avium subespecie paratuberculosis en cabras. Rev. Cient. FCV-LUZ [Internet]. 26 de junio de 2024 [citado 7 de septiembre de 2024];34(2):6. Disponible en: https://mail.produccioncientificaluz.org/index.php/cientifica/article/view/42373
Sección
Medicina Veterinaria