Expresión inmunohistoquímica de MMP–2 y MMP–9 en el tejido cerebral de ovejas infectadas naturalmente con Listeria monocytogenes y relación con la muerte celular en la encefalitis por listeria
Resumen
Listeria monocytogenes es una bacteria intracelular transmitida por los alimentos. El ensilaje es una fuente importante de este patógeno causante de listeriosis. La listeriosis es un importante problema de salud tanto para los animales como para los humanos en el mundo. La enfermedad comprende tres síndromes clínicos: meningoencefalitis, septicemia y metritis con aborto. La encefalitis se observa con frecuencia y los factores que influyen en su patogénesis son objeto de investigación. En este estudio, se investigó la expresión inmunohistoquímica de MMP–2 y MMP–9 junto con la tinción TUNEL en la patogénesis de la meningoencefalitis en ovejas infectadas naturalmente con L. monocytogenes. En este estudio se utilizaron los cerebros de 25 ovejas con meningoencefalitis por listeria. También se utilizó como control material cerebral de 10 ovejas procedente del matadero. Las secciones de tejido se tiñeron inmunohistoquímicamente con anticuerpos de L. monocytogenes, MMP–2 y MMP–9. Además, se realizó tinción TUNEL para determinar la apoptosis en la enfermedad. Como resultado del estudio, se observó que la tinción de TUNEL en neuronas y células gliales, las expresiones de MMP–2 y MMP–9 en células endoteliales vasculares, células inflamatorias, microglía y especialmente neuronas en el tejido cerebral infectado aumentaron significativamente en comparación con los controles. . Estos resultados sugirieron que MMP–2 y MMP–9 desempeñan un papel activo en la neurodegeneración y muerte celular que se producen en la encefalitis por Listerial.
Descargas
Citas
Lecuit M. Listeria monocytogenes, a model in infection biology. Cell. Microbiol. [Internet]. 2020; 22(4):e13186. doi: https://doi.org/gnbsrg
Walter FS. Epidemiology and Clinical Manifestations of Listeria monocytogenes Infection. Microbiol. Spectr. [Internet]. 2019; 7(3)1–12. https://doi.org/gnbsq9
Cardenas–Alvarez MX, Zeng H, Webb BT, Mani R, Muñoz M, Bergholz TM. Comparative Genomics of Listeria monocytogenes isolates from ruminant Listeriosis cases in the Midwest United States. Microbiol. Spectr. [Internet]. 2022; 10(6):e0157922. doi: https://doi.org/gvjnhw
Liu Z. Listeriosis in a goat herd. Can. Vet. J. [Internet]. 2023 [cited 20 Feb. 2024]; 64(6):595–597. PMID: 37265813. Available in: https://goo.su/mFlV4
Karayiğit MÖ. Nitric oxide synthase expression in naturally ınfected sheep brain with Listeria monocytogenes and relationship with cell death. Acta Sci. Vet. [Internet]. 2018; 46(1617):1–7. doi: https://doi.org/nhjv
Haligur M, Aydogan A, Ozmen O, Ipek V. Immunohistochemical
evaluation of natural cases of encephalitic Listeriosis in lambs. Biotech. Histochem. [Internet]. 2019; 94(5):341–347. doi: https://doi.org/gkj574
Karayigit MO, Dincel GC. Role of ADAMTS–13 and nNOS expression in neuropathogenesis of Listerial encephalitis of small ruminants. Biotech. Histochem. [Internet]. 2020; 95(8):584–596. doi: https://doi.org/gvjnhx
Shamseddin A, Crauste C, Durand E, Villeneuve P, Dubois G, Pavlickova T, Durand T, Vercauteren J, Veas F. Resveratrol–Linoleate protects from exacerbated endothelial permeability via a drastic inhibition of the MMP–9 activity. Biosci. Rep. [Internet]. 2018; 38(4):BSR20171712. doi: https://doi.org/gdzh98
Hannocks MJ, Zhang X, Gerwien H, Chashchina A, Burmeister M, Korpos E, Song J, Sorokin L. The gelatinases, MMP–2 and MMP–9, as fine tuners of neuroinflammatory processes. Matrix Biol. [Internet]. 2019; 75–76:102–113. doi: https://doi.org/gp3bms
Younis NS, Mohamed ME. Anethole Pretreatment Modulates Cerebral Ischemia/Reperfusion: The Role of JNK, p38, MMP–2 and MMP–9 Pathways. Pharmaceuticals [Internet]. 2023; 16(3):442. doi: https://doi.org/gvjnh3
Waubant E, Goodkin DE, Gee L, Bacchetti P, Sloan R, Stewart T, Andersson PB, Stabler G, Miller K. Serum MMP–9 and TIMP–1 levels are related to MRI activity in relapsing multiple sclerosis. Neurology [Internet]. 1999; 53(7):1397–1401. doi: https://doi.org/gvjnh4
Yong VW, Power C, Forsyth P, Edwards DR. Metalloproteinases in biology and pathology of the nervous system. Nat. Rev. Neurosci. [Internet]. 2001; 2:502–511. doi: https://doi.org/d4f37m
Engelhardt B, Liebner S. Novel insights into the development and maintenance of the blood–brain barrier. Cell Tissue Res. [Internet]. 2014; 355:687–699. doi: https://doi.org/f5xnkx
Wang H, Huang L, Wu L, Lan J, Feng X, Li P, Peng Y. The MMP–2/TIMP–2 System in Alzheimer Disease. CNS Neurol. Disord. Drug Targets [Internet]. 2020; 19(6):402–416. doi: https://doi.org/gvjnh6
Roach DM, Fitridge RA, Laws PE, Millard SH, Varelias A, Cowled PA. Up–regulation of MMP–2 and MMP–9 leads to degradation of type IV collagen during skeletal muscle reperfusion injury; protection by the MMP inhibitor, Doxycycline. Eur. J. Vasc. Endovasc. Surg. [Internet]. 2002; 23(3):260–269. doi: https://doi.org/dr6cz8
Dong M, Liu R, Guo L, Li C, Tan G. Pathological findings in rats with experimental allergic encephalomyelitis. APMIS. [Internet]. 2008; 116(11):972–984. doi: https://doi.org/ffs4qf
İlhan F, Ulusoy Y, Halıgür M. Matrix metalloproteinase expression in sheep with Listerial meningoencephalitis. Res. Vet. Sci. [Internet]. 2012; 92(2):269–272. doi: https://doi.org/crnz8f
Bojarski C, Weiske J, Schöneberg T, Schröder W, Mankertz J, Schulzke JD, Florian P, Fromm M, Tauber R, Huber O. The specific fates of tight junction proteins in apoptotic epithelial cells. J. Cell Sci. [Internet]. 2004. 117(10):2097–2107. doi: https://doi.org/djr4f9
Elmore S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. [Internet]. 2007; 35(4):495–516. doi: https://doi.org/b5hgfz
Luna LG, editor. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology. 3rd ed. New York: Mc Graw–Hill. 1968. 258 p.
Nagibina MV, Vengerov YY, Tishkevich OA, Smirnova TY, Baikova LB, Svistunova TS, Ryzhov GE, Matosova SV, Tsvetkova NA, Sadykova VD. Листериоз центральной нервной системы [Listeriosis of the Central nervous system]. Terapevticheskii arkhiv. [Internet]. 2019; 91(11):38–44. Russian. doi: https://doi.org/gvjnh8
Boully A, Casenaz A, Blot M, Piroth L, Thai M, Zanetta G, Blanchot T, Sixt T. A brain problem with Listeria monocytogenes. Lancet Infect. Dis. [Internet]. 2022; 22(2):296. doi: https://doi.org/gpbh8m
Zhang C, Yi Z. Brain abscess caused by Listeria monocytogenes: a case report and literature review. Ann. Palliat. Med. [Internet]. 2022; 11(10):3356–3360. doi: https://doi.org/gvjnh9
Liu W, Furuichi T, Miyake M, Rosenberg GA, Liu KJ. Differential expression of tissue inhibitor of metalloproteinases–3 in cultured astrocytes and neurons regulates the activation of matrix metalloproteinase–2. J. Neurosci. Res. [Internet]. 2007; 85(4):829–836. doi: https://doi.org/ccdcmp
Zeng G, Ding W, Li Y, Sun M, Deng L. Morroniside protects against cerebral ischemia/reperfusion injury by inhibiting neuron apoptosis and MMP2/9 expression. Exp. Ther. Med. [Internet]. 2018; 16(3):2229–2234. doi: https://doi.org/gd6mhb
Ji Y, Huang W, Chen Y, Zhang X, Wu F, Tang W, Lu Z, Huang C. Inhibition of MMP–2 and MMP–9 attenuates surgery–induced cognitive impairment in aged mice. Brain Res. Bull. [Internet]. 2023; 204:110810. doi: https://doi.org/nhp9
Spindler KR, Hsu TH. Viral disruption of the blood–brain barrier. Trends. Microbiol. [Internet]. 2012; 20(6):282–290. doi: https://doi.org/f3z2jb
Shukla JN, Kalsi M, Sethi A, Narva KE, Fishilevich E, Singh S, Mogilicherla K, Palli SR . Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol. [Internet]. 2016; 13(7):656–669. doi: https://doi.org/gmp2x9
Edgar JM, Nave KA. The role of CNS glia in preserving axon function. Curr. Opin. Neurobiol. [Internet]. 2009; 19(5):498–504. doi: https://doi.org/fpw5rn
Nakaguchi K, Masuda H, Kaneko N, Sawamoto K. Strategies for regenerating striatal neurons in the adult brain by using endogenous neural stem cells. Neurol. Res. Int. [Internet]. 2011; 898012. doi: https://doi.org/b9t997
Hofer S, Grandgirard D, Burri D, Fröhlich TK, Leib SL. Bacterial meningitis impairs hippocampal neurogenesis. J. Neuropathol. Exp. Neurol. [Internet]. 2011; 70(10):890–899. https://doi.org/b3pfpg
Parthasarathy G, Philip MT. Review. apoptotic mechanisms in bacterial infections of the central nervous system. Front. Immunol. [Internet]. 2012; 3(306):1–13. doi: https://doi.org/nhqd
Svedin P, Hagberk H, Sävman K, Zhu C, Mallard C. Matrix metalloproteinase–9 gene knock–out protects the immature brain after cerebral hypoxia–ischemia. J. Neurosci. [Internet]. 2007; 27(7):1511–1518. doi: https://doi.org/fv7c4x
Engelhardt S, Patkar S, Ogunshola OO. Cell–specific blood–brain barrier regulation in health and disease: a focus on hypoxia. Br. J. Pharmacol. [Internet]. 2014; 171(5):1210–1230. doi: https://doi.org/f5zq45
Derechos de autor 2024 Mehmet Önder Karayigit, Mehmet Halıgür, Mehmet Ekici
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.