Concentraciones de adipocinas en ovejas con toxemia de gestación experimental. Un ensayo clínico controlado y aleatorizado

  • Sefer Türk Sivas Cumhuriyet University, Faculty of Veterinary Medicine, Department of Internal Medicine. Sivas, Türkiye
  • İhsan Keleş Erciyes University, Faculty of Veterinary Medicine, Department of Internal Medicine. Kayseri, Türkiye
Palabras clave: Toxemia de la gestación, apelina, leptina, insulina, adipocinas, Kangal ovejas

Resumen

La toxemia del embarazo (PT) es una enfermedad metabólica de los pequeños rumiantes que se desarrolla durante el último período de la gestación y puede provocar la muerte. Teniendo en cuenta la alta tasa de mortalidad, el diagnóstico precoz de la enfermedad es importante para minimizar las pérdidas económicas. Por lo tanto, este estudio tuvo como objetivo investigar las concentraciones de algunas adipocinas (Leptina, Apelina, Resistina) y algunos otros parámetros bioquímicos por su papel en el diagnóstico y pronóstico del PT. En el estudio se utilizaron 50 ovejas de la raza Kangal que tenían entre 2 y 4 años. Los animales incluidos en el estudio fueron sometidos a sincronización de estro. Se introdujeron carneros a todas las ovejas sometidas a sincronización. Las hembras gestantes fueron diagnosticadas mediante ecografía los días 25, 60 y 110 después del apareamiento. Se incluyeron en el estudio 16 ovejas con fetos gemelos, cuya viabilidad fetal continuaba, después de exámenes generales. Durante los primeros 110 días de gestación, las ovejas se mantuvieron en condiciones de pastoreo. Al final del día 110, las 16 ovejas preñadas con gemelos se dividieron aleatoriamente en dos grupos (Control y PT). Las ovejas del grupo de control fueron alimentadas para satisfacer los requerimientos nutricionales. Las ovejas del grupo PT experimental fueron alimentadas con el equivalente al 50% de las necesidades diarias durante 20 días y luego ayunaron durante 72 horas (141–143). Durante el estudio, se tomaron muestras de sangre a través de la vena yugular cada 5 días desde el día 120 hasta el día 140. En las muestras se midieron BHBA, glucosa, leptina, resistina, insulina y apelina. Se recogieron muestras de biopsia hepática dos veces de todas las ovejas los días 120 y 143. Como resultado, en el grupo PT, las concentraciones de BHBA y leptina aumentaron significativamente mientras que los niveles de glucosa se redujeron significativamente. Las concentraciones de Resistina, Insulina y Apelina fueron similares en ambos grupos. En conclusión, la monitorización de BHBA, glucosa y leptina en PT puede ser útil.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ji X, Liu N, Wang Y, Ding K, Huang S, Zhang C. Pregnancy Toxemia in Ewes: A Review of Molecular Metabolic Mechanisms and Management Strategies. Metabolites. [Internet]. 2023; 13(2):149. doi: https://doi.org/g5rcpq

Takci A, Kivrak MB, Murat H, Cizmeci SU. Reproductive and economic evaluation of sexual stimulation during the anestrous period in a commercial farm with neonatal lamb losses. Arq. Bras. Med. Vet. Zoot. [Internet]. 2023; 75(4):687–695. doi: https://doi.org/g5rcpr

Takci A, Kivrak MB. Determination of the efficacy of human Chorionic Gonadotropin (hCG) administrations on reproductive performance, placentation, parturition, and neonatal parameters on different post–mating days in Kangal ewes sexually induced during anestrus. Rev. Cient. FCV–LUZ. [Internet]. 2023; 33(2):e33275. doi: https://doi.org/g5rcps

Rook JS. Pregnancy toxemia of ewes, does, and beef cows. Vet. Clin. North. Am. Food Anim. Pract. [Internet]. 2000; 16(2):293–317. doi: https://doi.org/njpx

Schlumbohm C, Harmeyer J. Twin–pregnancy increases susceptibility of ewes to hypoglycaemic stress and pregnancy toxaemia. Res. Vet. Sci. [Internet]. 2008; 84(2):286–299. doi: https://doi.org/czcs8p

Fasshauer M, Blüher M. Adipokines in health and disease. Trends Pharmacol. Sci. [Internet]. 2015; 36(7):461–470. doi: https://doi.org/gh2fcr

Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. [Internet]. 2010; 316(2):129–139. doi: https://doi.org/bssxr7

Mattu HS, Randeva HS. Role of adipokines in cardiovascular disease. J. Endocrinol. [Internet]. 2013; 216(1):17–36. doi: https://doi.org/f4gsr3

O’Dowd BF, Heiber M, Chan A, Heng HHQ, Tsui LC, Kennedy JL, Shi X, Petronis A, George SR, Nguyen T. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene [Internet]. 1993; 136(1–2):355–360. doi: https://doi.org/dc2sxm

Tekin S, Erden Y, Sandal S, Etem Onalan E, Ozyalin F, Ozen H, Yilmaz B. Effects of apelin on reproductive functions: relationship with feeding behavior and energy metabolism. Arch. Physiol. Biochem. [Internet]. 2017; 123(1):9–15. doi: https://doi.org/g5rcp4

Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA. The hormone resistin links obesity to diabetes. Nature. [Internet]. 2001; 409(6818):307–312. doi: https://doi.org/cctkn4

Mostafazadeh M, Haiaty S, Rastqar A, Keshvari M. Correlation between resistin level and metabolic syndrome component: a review. Horm. Metab. Res. [Internet]. 2018; 50(7):521–536. doi: https://doi.org/gdtwtv

Fujita H, Fujishima H, Morii T, Koshimura J, Narita T, Kakei M, Ito S. Effect of metformin on adipose tissue resistin expression in db/db mice. Biochem. Biophys. Res. Commun. [Internet]. 2002; 298(3):345–349. doi: https://doi.org/fd8q9m

Obradovic M, Sudar–Milovanovic E, Soskic S, Essack M, Arya S, Stewart A, Gojobori T, Isenovic ER. Leptin and obesity: role and clinical implication. Front. Endocrinol. [Internet]. 2021; 12:585887. doi: https://doi.org/gqfdz9

Mongini A, Van Saun RJ. Pregnancy toxemia in sheep and goats. Vet. Clin. N. Am. Food Anim. Pract. [Internet]. 2023; 39(2):275–291. doi: https://doi.org/g5rcp6

Olfati A, Moghaddam G, Bakhtiari M. Diagnosis, treatment and prevention of pregnancy toxemia in ewes. Int. J. Adv. Biol. Biomed. Res. [Internet]. 2013 [cited 24 Feb. 2024]; 1(11):1452–1456. Available in: https://goo.su/ghjCsqt

Ekici M, Takcı A, Kıvrak MB. Comparison of some hematological and serum biochemical variables in Kangal Akkaraman, Texel and Île De France ewes in lactation period within Sivas province. Eurasian J. Vet. Sci. [Internet]. 2021; 37(4):296–302. doi: https://doi.org/g5rcp8

Ferguson JD, Galligan DT, Thomsen N. Principal descriptors of body condition score in Holstein cows. J. Dairy Sci. [Internet]. 1994; 77(9):2695–2703. doi: https://doi.org/dm64q7

Kivrak MB, Turk S, Takci A, Bolukbas B, Agaoglu RT, Coskun A. Pulse wave Doppler ultrasound of umbilical cord in experimentally induced pregnancy toxemia in sheep. Res. Vet. Sci. [Internet]. 2023; 160:18–25. doi: https://doi.org/g5rcqc

National Research Council. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids [Internet]. Washington (DC, USA): Nat. Acad. Press. 2007; 384 p. doi: https://doi.org/gjrvgb

AOAC International. Official methods of analysis of AOAC International. 16th ed. Gaithersburg (MD, USA): AOAC International; 1995. 1015 p.

Mertens DR. Gravimetric determination of amylase–treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J. AOAC Int. 2002; 85(6):1217–1240. PMID: 12477183

Pichler M, Damberger A, Schwendenwein I, Gasteiner J, Drillich M, Iwersen M. Thresholds of whole–blood β–hydroxybutyrate and glucose concentrations measured with an electronic hand–held device to identify ovine hyperketonemia. J. Dairy Sci. [Internet]. 2014; 97(3):1388–1399. doi: https://doi.org/g5rcqd

Ferreira AV, Van der Merwe HJ, Slippers SC. A technique for obtaining liver biopsies from mature sheep. Small Rumin. Res. [Internet]. 1996; 22(1):89–92. doi: https://doi.org/fwxvzh

Duehlmeier R, Fluegge I, Schwert B, Ganter M. Insulin sensitivity during late gestation in ewes affected by pregnancy toxemia and in ewes with high and low susceptibility to this disorder. J. Vet. Intern. Med. [Internet]. 2013; 27(2):359–366. doi: https://doi.org/f4rb2w

González FHD, Hernández F, Madrid J, Martínez–Subiela S, Tvarijonaviciute A, Cerón JJ, Tecles F. Acute phase proteins in experimentally induced pregnancy toxemia in goats. J. Vet. Diagn. Investig. [Internet]. 2011; 23(1):57–62. doi: https://doi.org/dsbjxx

Hefnawy AE, Youssef S, Shousha S. Some immunohormonal changes in experimentally pregnant toxemic goats. Vet. Med. Int. [Internet]. 2010; 2010:768438. doi: https://doi.org/cj3gcn

Cal L, Borteiro C, Benech A, Rodas E, Abreu MN, Cruz JC, González–Montaña JR. Histological changes of the liver and metabolic correlates in ewes with pregnancy toxemia. Arq. Bras. Med. Vet. Zoot. [Internet]. 2009; 61(2):306–312. doi: https://doi.org/d3cwfs

Kabakci N, Yarim G, Yarim M, Duru O, Yagci B, Kisa U. Pathological, clinical and biochemical investigation of naturally occurring pregnancy toxemia of sheep. Acta Vet. [Internet]. 2003; 53(2–3):161–169. doi: https://doi.org/fdqpp3

Wang M, Li E, Wang G. Histopathological analysis of liver during pregnancy toxemia in small–tailed han sheep. Agric. Sci. Technol. [Internet]. 2014 [cited 15 Mar. 2024]; 15(3):470–473. Available in: https://goo.su/C47SWX

Öztürk M, Mamak N. Current energy and lipid metabolism biomarkers in sheep with subclinical and clinical pregnancy toxemia. Med. Weter. [Internet]. 2023; 79(3):123–129. doi: https://doi.org/g5ggcb

Souto RJC, Afonso JAB, Mendonça CL, Carvalho CCD, Silva–Filho AP, Cajueiro JFP, Lima EHF, Soares PC. Achados bioquímicos, eletrolíticos e hormonais de cabras acometidas com toxemia da prenhez. [Biochemical, electrolytic and hormonal findings in goats affected with pregnancy toxemia]. Pesq. Vet. Bras. [Internet]. 2013 [cited 12 Feb. 2024]; 33(10):1174–1182. Portuguese. Available in: https://goo.su/3HAl7Z

Sargison ND. Pregnancy toxaemia. Aitken ID, editor. Diseases of sheep. 4th ed. Oxford (United Kingdom): Blackwell Publishing; 2007. p. 359–362.

Henze P, Bickhardt K, Fuhrmann H, Sallmann HP. Spontaneous pregnancy toxaemia (ketosis) in sheep and the role of insulin. J. Vet. Med. A [Internet]. 1998; 45(5):255–266. doi: https://doi.org/bnrk88

Souto RJC, Afonso JAB, Mendonça CL, Dantas AFM, Cajueiro JFP, Gonçalves DNA, Olivera Filho EF, Soares PC. Biochemical, endocrine, and histopathological profile of liver and kidneys of sheep with pregnancy toxemia. Pesq. Vet. Bras. [Internet]. 2019; 39(10):780–788. doi: https://doi.org/g5rcqj

Iqbal R, Beigh SA, Mir AQ, Shaheen M, Hussain SA, Nisar M, Dar AA. Evaluation of metabolic and oxidative profile in ovine pregnancy toxemia and to determine their association with diagnosis and prognosis of disease. Trop. Anim. Health Prod. [Internet]. 2022; 54(6):338. doi: https://doi.org/g5ggb8

Friend MA, Bhanugopan MS, McGrath SR, Hocking Edwards J, Hancock S, Loudon K, Miller D, Mcgilchrist P, Refshauge G, Robertson SM, Thompson AN, Masters DG. Do calcium and magnesium deficiencies in reproducing ewes contribute to high lamb mortality? Anim. Prod. Sci. [Internet]. 2020; 60(6):733–751. doi: https://doi.org/g5rcqp

Brozos C, Mavrogianni VS, Fthenakis GC. Treatment and control of peri–parturient metabolic diseases: pregnancy toxemia, hypocalcemia, hypomagnesemia. Vet. Clin. N. Am. Food Anim. Pract. [Internet]. 2011; 27(1):105–113. doi: https://doi.org/d95tfz

Bani Ismail ZA, Al–Majali AM, Amireh F, Al–Rawashdeh OF. Metabolic profiles in goat does in late pregnancy with and without subclinical pregnancy toxemia. Vet. Clin. Pathol. [Internet]. 2008; 37(4):434–437. doi: https://doi.org/bxp8cn

Andrews A. Pregnancy toxaemia in the ewe. In Pract. [Internet]. 1997; 19(6):306–314. doi: https://doi.org/cqddsn

Aly MA, Elshahawy II. Clinico–Biochemical Diagnosis of Pregnancy Toxemia in Ewes with Special Reference to Novel Biomarkers. Alexandria J. Vet. Sci [Internet]. 2016 [cited 12 Feb. 2024]; 48(2):96–102. Available in: https://goo.su/QqnD

Mustafa MK, Saed OS, Ismaeel MA. Clinical and biochemical study of pregnancy toxemia in Iraqi ewes. Arch. Razi. Inst. [Internet]. 2023; 78(3):1131–1139. Available in: https://goo.su/MOTofzK

Constable PD, Hinchcliff KW, Done SH, Grünberg W. Veterinary medicine: a textbook of the diseases of cattle, horses, sheep, pigs and goats. 11th ed. St. Louis (MO, USA): Elsevier Health Science; 2016. 1717 p.

Rebelo–Marques A, Lages A, Andrade R, Ribeiro CF, Mota–Pinto A, Carrilho F, Espregueira–Mendes J. Aging hallmarks: the benefits of physical exercise. Front. Endocrinol. 2018; 9:258 doi: https://doi.org/gdpmcd

Sargison ND, Scott PR, Penny CD, Pirie RS, Kelly JM. Plasma enzymes and metabolites as potential prognostic indices of ovine pregnancy toxaemia—a preliminary study. Br. Vet. J. [Internet]. 1994; 150(3):271–277. doi: https://doi.org/g5rcqv

Holmgren PA, Stigbrand T, Damber MG, Von Schoultz B. Serum levels of placental alkaline phosphatase in high–risk pregnancies. Obstet. Gynecol. 1979; 54(5):631–634. PMID: 503392

Titaux C, Ternynck C, Pauchet M, Stichelbout M, Bizet G, Maboudou P, Onraed B, Clement G, Lenne X, Potier G, Damien S, Chudzinski A. Total alkaline phosphatase levels by gestational age in a large sample of pregnant women. Placenta. [Internet]. 2023; 132:32–37. doi: https://doi.org/g5rcqx

González FHD, da Silva SC. Introdução à bioquímica clínica veterinária. 3th ed. Porto Alegre (Brazil): UFRGS Editora. 2017. 506 p

Kerl ME. Diabetic ketoacidosis: pathophysiology and clinical and laboratory presentation. Compendium [Internet]. 2001 [cited 14 Feb. 2024]; 23(3):220–228. Available in: https://goo.su/ewEMeRW

Oetzel GR. Fresh cow metabolic diseases: Old myths and new data. In: Smith RA, editor [Internet]. Proceedings of the 50th Annual conference of American Association of Bovine Practitioners, Dairy Session; 2017 Sep. 14–16; Omaha (Nebraska, USA); 2017. p. 70–80. doi: https://doi.org/g5rcqz

Petterson JA, Dunshea FR, Ehrhardt RA, Bell AW. Pregnancy and undernutrition alter glucose metabolic responses to insulin in sheep. J. Nutr. [Internet]. 1993; 123(7):1286–1295. doi: https://doi.org/g5rcq3

WeiLi Z, ChangBin X, Lei G,RuiXia X, GuangChao S, Wei Z, ShouRen L, XinHua W, JingQuan Y, JunLiang Y, ShangQuan G. [Cloning and sequence analysis of sheep (Ovis aries) resistin gene (RETN) and its expression pattern in starving model]. J. Agricult. Biotechnol. [Internet]. 2015 [cited 25 Feb. 2024]; 23(8):981–990 Chinese. Available in: https://goo.su/5sUVD

Oliver P, Ribot J, Rodriguez AM, Sanchez J, Pico C, Palou A. Resistin as a putative modulator of insulin action in the daily feeding/fasting rhythm. Pflügers Arch. [Internet]. 2006; 452(3):260–267. doi: https://doi.org/cbd673

Maekawa H, Shioya S, Orita H, Sakurada M, Kushida T, Sato K. Changes of Plasma Levels of Adipocytokines During 120 Hours of Fasting After Endoscopic Treatment. J. Nutr. Disord. Ther. [Internet]. 2017; 7(3):217. doi: https://doi.org/g5rcq6

Nieva–Vazquez A, Pérez–Fuentes R, Torres–Rasgado E, López–López JG, Romero JR. Serum resistin levels are associated with adiposity and insulin sensitivity in obese Hispanic subjects. Metab. Syndr. Relat. Disord. [Internet]. 2014; 12(2):143–148. doi: https://doi.org/g5rcq8

Guo L, Li Q, Wang W, Yu P, Pan H, Li P, Sun Y, Zhang J. Apelin inhibits insulin secretion in pancreatic β–cells by activation of PI3–kinase–phosphodiesterase 3B. Endocr. Res. [Internet]. 2009; 34(4):142–154. doi: https://doi.org/crfzq7

Bertrand C, Valet P, Castan–Laurell I. Apelin and energy metabolism. Front. Physiol. [Internet]. 2015; 6:115. doi: https://doi.org/g5rcrc

Ehrhardt RA, Slepetis RM, Bell AW, Boisclair YR. Maternal leptin is elevated during pregnancy in sheep. Domest. Anim. Endocrinol. [Internet]. 2001; 21(2):85–96. doi: https://doi.org/bdt9d9

Temizel EM, Cihan H, Levent P, Saril A, Özarda Y, Yilmaz Z. Comparison of pre–and postpartum serum leptin, ghrelin, and lipid levels in sheep. Turkish J. Vet. Anim. Sci. [Internet]. 2018; 42(3):177–183. doi: https://doi.org/g5rcrh

Kasimanickam RK. Subclinical pregnancy toxemia–induced gene expression changes in ovine placenta and uterus. Front. Vet. Sci. [Internet]. 2016; 3:69. doi: https://doi.org/g5rcrk

Nørgaard JV, Nielsen MO, Theil PK, Sørensen MT, Safayi S, Sejrsen K. Development of mammary glands of fat sheep submitted to restricted feeding during late pregnancy. Small Rumin. Res. [Internet]. 2008; 76(3):155–165. doi: https://doi.org/dqxhgc

Youssef MA, El–Ashker MR, El–Sayed AA, Ibrahim FA, Awad ME. Hepatic ultrasonography and biochemical alterations in Barki sheep under negative energy balance. Egypt. J. Chem. Environ. Health. [Internet]. 2016; 2(2):265–281. doi: https://doi.org/g5rcrn

Marie M, Findlay PA, Thomas L, Adam CL. Daily patterns of plasma leptin in sheep: effects of photoperiod and food intake. J. Endocrinol. [Internet]. 2001; 170(1):277–286. doi: https://doi.org/c86zkt

Szczesna M, Zieba DA. Phenomenon of leptin resistance in seasonal animals: the failure of leptin action in the brain. Domest. Anim. Endocrinol. [Internet]. 2015; 52:60–70. doi: https://doi.org/f7gcwk

Al–Qudah KM. Oxidant and antioxidant profile of hyperketonemic ewes affected by pregnancy toxemia. Vet. Clin. Pathol. [Internet]. 2011; 40(1):60–65. doi: https://doi.org/crtmvf

Ford EJH, Evans J, Robinson I. Cortisol in pregnancy toxaemia of sheep. Br. Vet. J. [Internet]. 1990; 146(6):539–542. doi: https://doi.org/g5rcrq

Leal–Cerro A, Soto A, Martínez MA, Dieguez C, Casanueva FF. Influence of cortisol status on leptin secretion. Pituitary. [Internet]. 2001; 4(1–2):111–116. doi: https://doi.org/dpgt6c

Weise M, Abad V, Considine RV, Nieman L, Rother KI. Leptin secretion in Cushing’s syndrome: preservation of diurnal rhythm and absent response to corticotropin–releasing hormone. J. Clin. Endocrinol. Metab. [Internet]. 1999; 84(6):2075–2079. doi: https://doi.org/g5rcrv

Publicado
2024-10-13
Cómo citar
1.
Türk S, Keleş İhsan. Concentraciones de adipocinas en ovejas con toxemia de gestación experimental. Un ensayo clínico controlado y aleatorizado. Rev. Cient. FCV-LUZ [Internet]. 13 de octubre de 2024 [citado 21 de diciembre de 2024];34(3):15. Disponible en: https://mail.produccioncientificaluz.org/index.php/cientifica/article/view/42824
Sección
Medicina Veterinaria