Efecto protector de la silimarina y la mitoquinona (MitoQ) contra la hepatotoxicidad de las nanopartículas de puntos cuánticos de telururo de cadmio (CdTe QDs) en ratones
Resumen
Como consecuencia del creciente uso de puntos cuánticos (QD) y de la mayor exposición de los seres humanos a los mismos, el estudio de la toxicidad de las partículas se ha convertido en una cuestión importante. En este estudio se investigó la actividad protectora de la silimarina y la mitoquinona (MitoQ), conocidas por sus propiedades antioxidantes, sobre los cambios histopatológicos y bioquímicos observados en el hígado de ratones tratados con CdTe QDs. Se dividieron aleatoriamente 26 ratones suizos macho en cuatro grupos: Control (G1), CdTe QDs (G2), silimarina + CdTe QDs (G3), mitoquinona + CdTe QDs (G4) grupos de aplicación. Los animales fueron sacrificados 24 horas (h) después de las inyecciones y se obtuvieron imágenes de microscopía hiperespectral. Según los resultados de ICP–MS, los CdTe QDs inyectados a través de la vena de la cola se acumularon en el hígado al cabo de 24 h y causaron daños tisulares según el examen de hematoxilina y eosina, y se observó una mejor conservación con el pretratamiento antioxidante. Los resultados de la inmunofluorescencia mostraron un aumento de la inflamación y la apoptosis en el grupo de QDs. Se observó que la silimarina y la mitoquinona disminuyeron los niveles de anti–MMP–9, anti–IL–10, anti–IL–1b, anti–TNF–α y anti–caspasa–9, la proporción de células TUNEL positivas y los niveles de MDA hepáticos. No hubo diferencias significativas en los niveles séricos de TAS (P=0.509), TOS (P=0.588), pero los antioxidantes también aumentaron los niveles tisulares de SOD y CAT. Los antioxidantes no tuvieron un efecto significativo en los niveles de anti–MT–MMP2 y anti–caspasa–8 (P<0.001). En conclusión, se demostró que el pretratamiento de ratones tratados con CdTe QD con silimarina y mitoquinona, que tienen fuertes propiedades antioxidantes, puede reducir el estrés oxidativo en el tejido hepático y puede tener un efecto protector gracias a la reducción de la apoptosis y la inflamación.
Descargas
Citas
Yong KT, Law WC, Hu R, Ye L, Liu L, Swihart MT, Prasad PN. Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem. Soc. Rev. [Internet]. 2013; 42(3):1236–1250. doi: https://doi.org/gs9p5s
Pandit A, Sachdeva T, Bafna P. Drug–induced hepatotoxicity: a review. J. Appl. Pharm. Sci. [Internet]. 2012; 2(5):233–243.doi: https://doi.org/g8tnf6
Chen S, Chen Y, Chen Y, Yao Z. InP·ZnS–1 quantum dots cause inflammatory response in macrophages through endoplasmic reticulum stress and oxidative stress. Int. J. Nanomedicine. [Internet]. 2019; 14:9577–9586. doi: https://doi.org/g8tnf7
Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS–triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis [Internet]. 2012;17(8):852–870. doi: https://doi.org/f32tfs
Vargas–Mendoza N, Madrigal–Santillán E, Morales–González A, Esquivel–Soto J, Esquivel–Chirino C, García–Luna YG–RM, Gayosso–de–Lucio JA, Morales–González JA. Hepatoprotective effect of silymarin. World J. Hepatol. [Internet]. 2014; 6(3):144–149. doi: https://doi.org/ggj6rw
Chen IS, Chen YC, Chou CH, Chuang RF, Sheen LY, Chiu CH. Hepatoprotection of silymarin against thioacetamide–induced chronic liver fibrosis. J. Sci. Food. Agric. [Internet]. 2012; 92(7):1441–1447. doi: https://doi.org/ https://doi.org/c4s25b
Zholobenko A, Modriansky M. Silymarin and its constituents in cardiac preconditioning. Fitoterapia [Internet]. 2014; 97(1):122–132. doi: https://doi.org/f6pzgb
Smith RA, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl. Acad. Sci. USA. [Internet]. 2003; 100(9):5407–5412. doi: https://doi.org/c8rqxg
Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. [Internet]. 2007; 47:629–656. doi: https://doi.org/d342dn
Yan M, Zhang Y, Xu K, Fu T, Qin H, Zheng X. An in vitro study of vascular endothelial toxicity of CdTe quantum dots. Toxicology [Internet]. 2011; 282(3):94–103. doi: https://doi.org/cnxkz7
Li X, Zhang H, Sun F. CdSe·ZnS–1 quantum dots exhibited nephrotoxicity through mediating oxidative damage and inflammatory response. Aging [Internet]. 2020; 13(8):12194–12206. doi: https://doi.org/g8tnf8
Liu Q, Wu D, Ma Y, Cao Y, Pang Y, Tang M, Pu Y, Zhang T. Intracellular reactive oxygen species trigger mitochondrial dysfunction and apoptosis in cadmium telluride quantum dots–induced liver damage. NanoImpact [Internet]. 2022; 25:100392. doi: https://doi.org/gwkr79
Julshamn K, Maage A, Norli HS, Grobecker KH, Jorhem L, Fecher P. Determination of arsenic, cadmium, mercury, and lead by inductively coupled plasma/mass spectrometry in foods after pressure digestion: NMKL interlaboratory study. J. AOAC Int. [Internet]. 2007; 90(3):844–856. doi: https://doi.org/g8tnf9
Bancroft JD, Gamble M. Theory and practice of histological techniques. 6th ed. London: Churchill Livingstone; 2008. 725 p.
Arnao MB, Casas JL, del Río JA, Acosta M, García–Cánovas F. An enzymatic colorimetric method for measuring naringin using 2,2’–azino–bis–(3–ethylbenzthiazoline–6–sulfonic acid) (ABTS) in the presence of peroxidase. Anal. Biochem. [Internet]. 1990; 185(2):335–338. doi: https://doi.org/dmtpgv
Erel O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. [Internet]. 2005; 38(12):1103–1111. doi: https://doi.org/dzjwc5
Du Y, Zhong Y, Dong J, Qian C, Sun S, Gao L, Yan D. The effect of PEG functionalization on the in vivo behavior and toxicity of CdTe quantum dots. RSC Adv. [Internet]. 2019; 9(22):12218–12225. doi: https://doi.org/g8tngc
Zhang T, Hu Y, Tang M, Kong L, Ying J, Wu T, Xue Y, Pu Y. Liver toxicity of cadmium telluride quantum dots (CdTe QDs) due to oxidative stress in vitro and in vivo. Int. J. Mol. Sci. [Internet]. 2015; 16(10):23279–23299. doi: https://doi.org/f7x28r
Lin CH, Yang MH, Chang LW, Yang CS, Chang H, Chang WH, Tsai MH, Wang CJ, Lin P. Cd/Se/Te–based quantum dot 705 modulated redox homeostasis with hepatotoxicity in mice. Nanotoxicology [Internet]. 2011; 5(4):650–663. doi: https://doi.org/c3cbgm
Su Y, Peng F, Jiang Z, Zhong Y, Lu Y, Jiang X, Huang Q, Fan C, Lee ST, He Y. In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium–containing quantum dots. Biomaterials [Internet]. 2011; 32(25):5855–5862. doi: https://doi.org/cdsnr7
Liu J, Erogbogbo F, Yong KT, Ye L, Liu J, Hu R, Chen H, Hu Y, Yang Y, Yang J, Roy I, Karker NA, Swihart MT, Prasad PN. Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. ACS Nano [Internet]. 2013; 7(8):7303–7310. doi: https://doi.org/f48p2q
Nurunnabi M, Khatun Z, Huh KM, Park SY, Lee DY, Cho KJ, Lee YK. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano [Internet]. 2013;7(8):6858–6867. doi: https://doi.org/f48mz8
Yaghini E, Turner H, Pilling A, Naasani I, MacRobert AJ. In vivo biodistribution and toxicology studies of cadmium–free indium–based quantum dot nanoparticles in a rat model. Nanomedicine [Internet]. 2018; 14(8):2644–2655. doi: https://doi.org/gjqrpm
Figueira E, Branco D, Antunes SC, Gonçalves F, Freitas R. Are metallothioneins equally good biomarkers of metal and oxidative stress? Ecotoxicol. Environ. Saf. [Internet]. 2012; 84:185–190. doi: https://doi.org/f364ht
Lin CH, Chang LW, Chang H, Yang MH, Yang CS, Lai WH, Chang WH, Lin P. The chemical fate of the Cd/Se/Te–based quantum dot 705 in the biological system: toxicity implications. Nanotechnology [Internet]. 2009; 20(21):215101. doi: https://doi.org/d43skd
Sulaimon L, Afolab LO, Adisa RA, Ayankojo AG, Afolabi MO, Adewolu AM, Wan X. (2022). Pharmacological significance of MitoQ in ameliorating mitochondria–related diseases. Adv. Redox Res. [Internet]. 2022; 5:100037. doi: https://doi.org/g8tngd
Surai PF. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxidants [Internet]. 2015; 4(1):204–247. doi: https://doi.org/gddh4t
Parks WC, Wilson CL, López–Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. [Internet]. 2004; 4(8):617–629. doi: https://doi.org/bdzhqv
Hamada T, Fondevila C, Busuttil RW, Coito AJ. Metalloproteinase–9 deficiency protects against hepatic ischemia/reperfusion injury. Hepatology [Internet]. 2008; 47(1):186–198. doi: https://doi.org/fsmj2h
Serban AI, Stanca L, Sima C, Staicu AC, Zarnescu O, Dinischiotu A. Complex responses to Si quantum dots accumulation in carp liver tissue: Beyond oxidative stress. Chem. Biol. Interact. [Internet]. 2015; 239:56–66. doi: https://doi.org/f7rqmn
Chen L, Miao Y, Chen L, Jin P, Zha Y, Chai Y, Zheng F, Zhang Y, Zhou W, Zhang J, Wen L, Wang M. The role of elevated autophagy on the synaptic plasticity impairment caused by CdSe·ZnS–1 quantum dots. Biomaterials [Internet]. 2013; 34(38):10172–10181. doi: https://doi.org/f5j53v
Dai T, Li N, Liu L, Liu Q, Zhang Y. AMP–Conjugated Quantum Dots: Low Immunotoxicity Both In vitro and In vivo. Nanoscale Res. Lett. [Internet]. 2015;10(1):434. doi: https://doi.org/f78n5d
Chen T, Li L, Lin X, Yang Z, Zou W, Chen Y, Xu J, Liu D, Wang X, Lin G. In vitro and In vivo immunotoxicity of PEGylated Cd–free CuInS2/ZnS quantum dots. Nanotoxicology [Internet]. 2020;14(3):372–387. doi: https://doi.org/gs9p5t
Kara E, Coşkun T, Kaya Y, Yumuş O, Vatansever S, Var A. Effects of silymarin and pentoxifylline on matrix metalloproteinase–1 and –2 expression and apoptosis in experimental hepatic fibrosis. Curr. Ther. Res. Clin. Exp. [Internet]. 2008; 69(6):488–502. doi: https://doi.org/cwwn92
Ramakrishnan G, Jagan S, Kamaraj S, Anandakumar P, Devaki T. Silymarin attenuated mast cell recruitment thereby decreased the expressions of matrix metalloproteinases–2 and 9 in rat liver carcinogenesis. Invest. New Drugs [Internet]. 2009;27(3):233–240. doi: https://doi.org/fgv7ts
Kanawati GM, Al–Khateeb IH, Kandil YI. Arctigenin attenuates CCl4–induced hepatotoxicity through suppressing matrix metalloproteinase–2 and oxidative stress. Egyptian Liver J. [Internet]. 2021; 11(1):1–7. doi: https://doi.org/g58728
Wang J, Sun H, Meng P, Wang M, Tian M, Xiong Y, Zhang X, Huang P. Dose and time effect of CdTe quantum dots on antioxidant capacities of the liver and kidneys in mice. Int. J. Nanomed. [Internet]. 2017; 2017(12):6425–6435. doi: https://doi.org/gbv8fg
Negahdary M, Ezhgi M, Ajdary M. Effects of Silymarin on oxidative stress markers in rats treated with magnesium oxide nanoparticles. Annu. Res. Rev. Biol. [Internet]. 2014; 5(3):254–261. doi: https://doi.org/g8tngf
Zhou J, Wang H, Shen R, Fang J, Yang Y, Dai W, Zhu Y, Zhou M. Mitochondrial–targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2–ARE pathway. Am. J. Transl. Res. [Internet]. 2018 [cited 24 May. 2024]; 10(6):1887–1889. Available in: https://goo.su/PK4SWh
Tabet M, El–Kurdi M, Haidar MA, Nasrallah L, Reslan MA, Shear D, Shear D, Pandya JD, El–Yazbi AF, Sabra M, Mondello S, Mechref Y, Shaito A, Wang KK, El–Khoury R, Kobeissy F. Mitoquinone supplementation alleviates oxidative stress and pathologic outcomes following repetitive mild traumatic brain injury at a chronic time point. Exp. Neurol. [Internet]. 2022; 351:113987. doi: https://doi.org/gn9pbw
Turkseven S, Bolognesi M, Brocca A, Pesce P, Angeli P, Di Pascoli M. Mitochondria–targeted antioxidant mitoquinone attenuates liver inflammation and fibrosis in cirrhotic rats. Am. J. Physiol. Gastrointest. Liver. Physiol. [Internet]. 2020; 318(2):G298–G304. doi: https://doi.org/g664sp
Derechos de autor 2024 Seda Şimşek, Merve Solmaz, İsmail Hakkı Nur, Muslu Kazım Körez, Nejat Ünlükal, Ender Erdoğan
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.