Prevalencia y control de Cotylophoron spp.: Un problema emergente infección parasitaria entre rebaños de ganado lechero establecidos en zonas rurales áreas de los Andes tropicales, Mérida, Venezuela.
Resumen
Con el propósito de determinar la prevalencia y el efecto control de dos antihelmínticos sobre Cotylophoron spp. en rebaños bovinos de Mérida-Venezuela, se visitaron cuatro granjas lecheras donde fueron seleccionadas al azar por cada una, 30 vacas de 449,54 ± 59,20 kg promedio y condición corporal media de 2,98 ± 0,62, todas, naturalmente infectadas con Cotylophoron spp. Para el diagnóstico parasitológico, se tomaron muestras fecales directamente del recto y depositadas en bolsas plásticas rotuladas para ser conservadas a 4ºC hasta su llegada al laboratorio; seguidamente, se organizaron aleatoriamente tres grupos conformados por 10 animales cada uno, al primero, le fue administrado vía subcutánea 3 mg de rafoxanida/kg de peso vivo; el siguiente, recibió vía oral la mezcla antihelmíntica 15 mg de oxiclozanida/kg + 7,5 mg de levamisol/kg y, el grupo control, permaneció sin medicación. Para monitorear la efectividad de los fármacos, se realizaron análisis coprológicos mediante la prueba modificada sedimentación y tamizado los días 0, 15, 30, 60 y 90 post-tratamiento, así como el registro de peso corporal La prevalencia de Cotylophoron spp. se ubicó en 97,29 ± 2,19% promediándose 140,5 ± 83,21 huevos en el total de heces evaluadas; entre tanto, los animales desparasitados con oxiclozanida + levamisol mostraron una reducción significativa (P≤0,05) del 92,23 ± 4,70% sobre la carga parasitaria al día 15 del tratamiento, mientras los tratados con rafoxanida redujeron en 43,88 ± 18,80% los huevos presentes en las heces; asimismo, hubo un incremento de peso (P≤0,05) en las vacas que recibieron oxiclozanida + levamisol, un valor muy distante al obtenido entre los animales tratados con rafoxanida y el control, siendo estos estadísticamente similares (P≥0,05). Se concluye que Cotylophoron spp. es resistente al uso de rafoxanida, mientras la mezcla oxiclozanida + levamisol ejerció eficacia reducida para su control.
Descargas
Citas
Terfa W, Kumsa B, Ayana D, Maurizio A, Tessarin C, Cassini R. Epidemiology of gastrointestinal parasites of cattle in three Districts in Central Ethiopia. Animals [Internet]. 2023; 13(2):285. doi: https://doi.org/n5ht DOI: https://doi.org/10.3390/ani13020285
Kahl A, Samson-Himmelstjerna G, Krücken J, Ganter M. Chronic wasting due to liver and rumen flukes in sheep. Animals [Internet]. 2021; 11(2):549. doi: https://doi.org/n5hv DOI: https://doi.org/10.3390/ani11020549
Conga D, Gomez-Puerta L, Mayor P. Cotylophoron panamensis (Trematoda: Paramphistomidae) in Mazama americana (Artiodactyla: Cervidae) free-living in remote areas in the Peruvian Amazon. Vet. Parasitol. (Amst.) [Internet]. 2022; 27:100667. doi: https://doi.org/n5hw DOI: https://doi.org/10.1016/j.vprsr.2021.100667
Mitchell G, Ketzis J, Metzler D, Alvarado J, Skuce P, Lawton S. Identification of Cotylophoron cotylophorum (Fischoeder, 1901) in cattle on St. Kitts, West Indies and its relationship with African and Asian populations. Parasitol. Int. [Internet]. 2023; 95:102751. doi: https://doi.org/n5hx DOI: https://doi.org/10.1016/j.parint.2023.102751
Tookhy N, Nur-Mahiza M, Mansor R, Yasmin A, Ahmad I, Hamzah N, Idris L. Rumen fluke in cattle and buffaloes in Asia: a review. Pertanika J. Trop. Agric. Sci. [Internet]. 2022; 45(3):781-803. doi: https://doi.org/n5hz DOI: https://doi.org/10.47836/pjtas.45.3.15
Priya P, Veerakumari L. Morphological and histological analysis of Cotylophoron cotylophorum treated with Acacia concinna. Trop. Parasitol. [Internet]. 2017; 7(2):92-97. doi: https://doi.org/10.4103/tp.TP_65_16
Sivaraman S, Desingu-Raja D, Arulmozhi A, Rajkumar R. Case study: Successful therapeutic management of ascites in a crossbred Jersey cow due to amphistomiasis. Int. J. Curr. Microbiol. Appl. Sci. [Internet]. 2021; 10(2):524-527. doi: https://doi.org/n5h2 DOI: https://doi.org/10.20546/ijcmas.2021.1002.061
Amaral V, Sousa D, Benigno R, Pinheiro R, Gonçalves E, Giese E. Cotylophoron marajoensis n. sp. (Digenea: Paramphistomidae) a parasite of Bubalus bubalis on Marajó Island, Pará, Brazilian Amazon. Rev. Bras. Parasitol. Vet. [Internet]. 2020; 29(4):e018320. doi: https://doi.org/n5h3 DOI: https://doi.org/10.1590/s1984-29612020101
Kebede I, Beriso T, Mengistu T, Gebremeskel H. Study on cattle Trematodiasis and related risk factors in Damot Sore District, Wolaita Zone, southern Ethiopia. J. Parasitol. Res. [Internet]. 2023; 10:6687665. doi: https://doi.org/n5h4 DOI: https://doi.org/10.1155/2023/6687665
Hajipour N, Mirshekar F, Hajibemani A, Ghorani M. Prevalence and risk factors associated with amphistome parasites in cattle in Iran. Vet. Med. Sci. [Internet]. 2021; 7(1):105-111. doi: https://doi.org/gs6z62 DOI: https://doi.org/10.1002/vms3.330
Forstmaier T, Knubben-Schweizer G, Strube C, Zablotski Y, Wenzel C. Rumen (Calicophoron/Paramphistomum spp.) and liver flukes (Fasciola hepatica) in cattle-prevalence, distribution, and impact of management factors in Germany. Animals. [Internet]. 2021; 11(9):2727. doi: https://doi.org/n5h5 DOI: https://doi.org/10.3390/ani11092727
Strydom T, Lavan R, Torres S, Heaney K. The economic impact of parasitism from nematodes, trematodes and ticks on beef cattle production. Animals [Internet]. 2023; 13(10):1599. doi: https://doi.org/gs6vrv DOI: https://doi.org/10.3390/ani13101599
Villa P, Pérez-Sánchez A, Nava F, Acevedo A, Cadenas D. Local-scale seasonality shapes anuran community abundance in a cloud forest of the tropical andes. Zool. Stud. [Internet]. 2019; 58:17. doi: https://doi.org/n5h7
Win S, Win M, Thwin E, Htun L, Hmoon M, Chel H, Thaw Y, Soe N, Phyo T, Thein S, Khaing Y, Than A, Bawm S. Occurrence of gastrointestinal parasites in small ruminants in the central part of Myanmar. J. Parasitol. Res. [Internet]. 2020; 2020:8826327. doi: https://doi.org/n5h8 DOI: https://doi.org/10.1155/2020/8826327
Althubaiti A. Sample size determination: a practical guide for health researchers. J. Gen. Fam. Med. [Internet]. 2023; 24(2):72-78. doi: https://doi.org/n5h9 DOI: https://doi.org/10.1002/jgf2.600
Batista-Carneiro M, Freire-Martins I, Rauta De Avelar B, Barbour-Scott F. Sedimentation technique (Foreyt, 2005) for quantitative diagnosis of Fasciola hepatica eggs. J. Parasit. Dis. Diagn. Ther. [Internet]. 2018; 3(1):6-9. doi: https://doi.org/mm9k DOI: https://doi.org/10.4066/2591-7846.1000021
Graham-Brown J, Williams D, Skuce P, Zadoks R, Dawes S, Swales H, Van Dijk J. Composite Fasciola hepatica faecal egg sedimentation test for cattle. Vet. Record. [Internet]. 2019; 184(19):589. doi: https://doi.org/gs6vsn DOI: https://doi.org/10.1136/vr.105128
Thanasuwan S, Piratae S, Tankrathok A. Prevalence of gastrointestinal parasites in cattle in Kalasin Province, Thailand. Vet. World. [Internet]. 2021; 14(8):2091-2096. doi: https://doi.org/grmkc8 DOI: https://doi.org/10.14202/vetworld.2021.2091-2096
Hasan M, Roy B, Biswas H, Rahman M, Anisuzzaman A, Zahangir M, Talukder H. Efficacy of flukicides on Fasciola gigantica, a food-borne zoonotic helminth affecting livestock in Bangladesh. Parasitology. [Internet]. 2022; 149(10):1339-1348. doi: https://doi.org/n5jb DOI: https://doi.org/10.1017/S0031182022000580
André W, Cavalcante G, Ribeiro W, Santos J, Macedo I, Paula H, Morais S, Melo J, Bevilaqua C. Anthelmintic effect of thymol and thymol acetate on sheep gastrointestinal nematodes and their toxicity in mice. Braz. J. Vet. Parasitol. Jaboticabal [Internet]. 2017; 26(3):323-330. doi: https://doi.org/gpwff3 DOI: https://doi.org/10.1590/s1984-29612017056
Nzalawahe J, Hannah R, Kassuku A, Stothard J, Coles G, [29] Gokbulut C, Yalinkilinc H, Aksit D, Veneziano V. Eisler M. Evaluating the effectiveness of trematocides Compar ative pharmacokinetics of le v amisole -against Fasciola gigantica and amphistomes infections oxyclozanide combination in sheep and goats following in cattle, using faecal egg count reduction tests in Iringa per os administration. Can. Vet. J. Res. [Internet]. Rural and Arumeru Districts, Tanzania. Parasites & 2014[Consultado 19 Ago.2024]; 78(4):316-320, PMID: Vectors. [Internet]. 2018; 11:384. doi: https://doi.org/n5jc 25356001. Disponible en: https://goo.su/GGMK
R Core Team. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. 2024 [Consultado 18 Julio 2024]. Disponible en: https://n9.cl/scu0
Hernández-Hernández J, González-Garduño R, OrtízPérez D, Villa-Mancera A, Arias-Vázquez M, PazSilva A. Prevalence of flukes (Fasciola hepatica and paramphistomids) in cattle in south-eastern Mexico. Helminthologia [Internet]. 2023; 60(2):141-151. doi: https://doi.org/n5jf DOI: https://doi.org/10.2478/helm-2023-0017
Forlano M, Henríquez H, Meléndez R. Incidencia y prevalencia de Cotylophoron spp. (Trematoda: Digenea) en bovinos del Asentamiento Campesino “Las Majaguas”. Portuguesa-Venezuela 1996-1997. Gaceta de Ciencias Veterinarias [Internet]. 2001 [Consultado 12 Ago. 2024]; 7(1):15-23. Disponible en: https://goo.su/gXglNaV
Hofmeester T, Bügel E, Hendrikx B, Maas M, Franssen F, Sprong H, Matson K. Parasite load and site-specific parasite pressure as determinants of immune indices in two sympatric rodent species. Animals [Internet]. 2019; 9(12):1015. doi: https://doi.org/n5jg DOI: https://doi.org/10.3390/ani9121015
García-Dios D, Díaz P, Viña M, Remesar S, Prieto A, LópezLorenzo G, Díaz-Cao J, Panadero R, Díez-Baños P, López C. Efficacy of oxyclozanide and closantel against rumen flukes (Paramphistomidae) in naturally infected sheep. Animals [Internet]. 2020; 10(11):1943. doi: https://doi.org/n5jh DOI: https://doi.org/10.3390/ani10111943
Ico-Gómez R, González-Garduño, R, Ortíz-Pérez D, Mosqueda-Gualito J, Flores-Santiago E, Sosa-Pérez G, Salazar-Tapia A. Assessment of anthelmintic effectiveness to control Fasciola hepatica and paramphistome mixed infection in cattle in the humid tropics of Mexico. Parasitology [Internet]. 2021; 148(12):1458-1466. doi: https://doi.org/gs6z6r DOI: https://doi.org/10.1017/S0031182021001153
Rojas-Moncada J, Sotelo-Camacho J, Torrel-Pajares S, Vargas-Rocha L. Oxyclozanide in dairy cattle in the Cajamarca valley, as an alternative in the control of Calicophoron microbothrioides. J. Selva Andin. Anim. Sci. [Internet]. 2022; 9(2):90-96. doi: https://doi.org/n5jj DOI: https://doi.org/10.36610/j.jsaas.2022.090200090x
Gokbulut C, Yalinkilinc H, Aksit D, Veneziano V. Comparative pharmacokinetics of levamisoleoxyclozanide combination in sheep and goats following per os administration. Can. Vet. J. Res. [Internet]. 2014[Consultado 19 Ago.2024]; 78(4):316-320, PMID: 25356001. Disponible en: https://goo.su/GGMK
LKiju P, Sadaula A, Thapa P, Pokheral C. Efficacy of levamisole and oxyclozanide treatment on gastrointestinal nematodes of ungulates at the Central Zoo, Nepal. J. Threat. Taxa. [Internet]. 2023; 15(10):24079–24085. doi: https://doi.org/n5jk DOI: https://doi.org/10.11609/jott.8236.15.10.24079-24085
Osman O, Goreish I. The Efficacy of triclabendazole and oxyclozanide against natural Fasciola gigantica infection in cattle. Sudan J. Vet. Res. [Internet]. 2013[Consultado 22 Julio 2024]; 28:37-42. Disponible en: https://goo.su/EKbW
Sanabria R, Moreno L, Alvarez L, Lanusse C, Ramos J. Efficacy of oxyclozanide against adult Paramphistomum leydeni in naturally infected sheep. Vet. Parasitol. [Internet]. 2014; 206(3-4):277-281. doi: https://doi.org/f6v842 DOI: https://doi.org/10.1016/j.vetpar.2014.09.022
Dong Z, Sun J, Bai Y, Wang W, Zhu Y, Li B, Cheng F, Wei X, Song E, Cheng H, Jiang F, Zhou X, Zhang J. Target animal safety testing of an oral salicylanilide suspension, oxyclozanide, for the treatment of fascioliasis in bovine in China. Regul. Toxicol. Pharmacol. [Internet]. 2019; 103:21-33. doi: https://doi.org/gq5grt DOI: https://doi.org/10.1016/j.yrtph.2019.01.012
Shaheen H, Sadek K, Bazh E. Evaluation of oxyclozanide a n d n i c l o s a m i d e c o m b i n a t i o n a s a l t e r n a t i v e antiparamphistomal therapy in buffaloes. Afr. J. Pharmacy Pharmacol. [Internet]. 2013; 7(30): 2157-2166. doi: https://n9.cl/enj5d
Atcheson E, Lagan B, McCormick R, Edgar H, Hanna R, Rutherford N, McEvoy A, Huson K, Gordon A, Aubry A, Vickers M, Robinson M, Barley J. The effect of naturally acquired rumen fluke infection on animal health and production in dairy and beef cattle in the UK. Front. Vet. Sci. [Internet]. 2022; 9:968753. doi: https://doi.org/n5jn DOI: https://doi.org/10.3389/fvets.2022.968753
Alí M, Carlile G, Giasuddin M. Impact of global climate change on livestock health: Bangladesh perspective. Open Vet. J. [Internet]. 2020; 10(2):178-188. doi: https://doi.org/n5jp DOI: https://doi.org/10.4314/ovj.v10i2.7
Trenberth k. Changes in precipitation with climate change. Clim. Res. [Internet]. 2011; 47(1-2):123-138. doi: https://doi.org/ckmtbq DOI: https://doi.org/10.3354/cr00953
Pfukenyi D, Mukaratirwa S. Amphistome infections in domestic and wild ruminants in East and Southern Africa: a review. Onderstepoort J. Vet. Res. [Internet]. 2018; 85(1):e1-e13. doi: https://doi.org/gfjncz DOI: https://doi.org/10.4102/ojvr.v85i1.1584
Davy J, Forero L, Strickler S, Gillespie J, Maier G. Comparison of deworming strategies for pre-weaned beef calves. Vet. Parasitol. [Internet]. 2023; 322:110005. doi: https://doi.org/n5jq DOI: https://doi.org/10.1016/j.vetpar.2023.110005
Ibrahiem H, Alsenosy A, El-Ktany E, Ata E, Abas O. Anthelmintic efficacy and pharmcodynamic effects of levamisole oxyclozanide combination as (Levanide®) in fattening calves. Egypt. J. Vet. Sci. [Internet]. 2023; 54(6):1245-1254. doi: https://doi.org/n5jr DOI: https://doi.org/10.21608/ejvs.2023.219811.1532
