Eficacia del medio de células madre mesenquimales de la gelatina de Wharton en la cicatrización de quemaduras: Enfoque en apoptosis, necrosis y autofagia

Palabras clave: Apoptosis, autofagia, heridas por quemaduras, medio condicionado derivado de células madre mesenquimales de la gelatina de Wharton

Resumen

El objetivo de este estudio es evaluar la eficacia del tratamiento con Plasma Rico en Plaquetas (PRP), sulfadiazina de plata y Medio Condicionado Derivado de Células Madre Mesenquimales de Gelatina de Wharton (WJ–MSC–CM) en heridas por quemaduras utilizando un modelo animal. El estudio presentado consistió en 4 grupos, cada uno con 16 ratas, y los grupos se dividieron además en dos subgrupos (n=8) para los días 7 y 14 del proceso de tratamiento. El Grupo 1 no recibió ningún tratamiento después de la quemadura. El Grupo 2 recibió tratamiento con PRP (Plasma Rico en Plaquetas) el primer día después de la quemadura. El Grupo 3 fue tratado con sulfadiazina de plata el primer día después de la quemadura. El Grupo 4 recibió WJ–MSC–CM el primer día después de la quemadura. En el estudio actual, la expresión de los genes Caspasa–3, Bcl–2, TNF–α, p21 y Beclin–1entre los grupos se evaluó mediante PCR en tiempo real. Los grupos de tratamiento con sulfadiazina de plata y WJ–MSC–CM mostraron una menor expresión de Bcl–2 y una mayor expresión de Caspasa-3 y Beclin–1en comparación con los otros grupos. La expresión de TNF–α y p21 fue alta en el grupo de control de quemaduras y mostró una menor expresión en los grupos tratados. Los hallazgos actuales demuestran que WJ–MSC–CM presenta una eficacia de curación en las heridas por quemaduras comparable al medicamento de referencia (sulfadiazina de plata) al inducir apoptosis y autofagia y reducir la necroptosis y el daño del ADN. Además, el PRP proporcionó algunos beneficios positivos en comparación con el grupo de control, pero fue menos eficaz que los otros tratamientos.

Descargas

La descarga de datos todavía no está disponible.

Citas

Martin N, Falder S. A review of the evidence for threshold of burn injury. Burns [Internet]. 2017; 43(8):1624–1639. doi: https://doi.org/gcqqx5 DOI: https://doi.org/10.1016/j.burns.2017.04.003

Smolle C, Cambiaso–Daniel J, Forbes AA, Wurzer P, Hundeshagen G, Branski LK, Huss F, Kamolz LP. Recent trends in burn epidemiology worldwide: a systematic review. Burns [Internet]. 2017; 43(2):249–257. doi: https://doi.org/f3tr38 DOI: https://doi.org/10.1016/j.burns.2016.08.013

Bolcato M, Roccaro M, Gentile A, Peli A. First report on medical treatment and outcome of burnt Cattle. Vet. Sci. [Internet]. 2023; 10(3):187. doi: https://doi.org/n8bt DOI: https://doi.org/10.3390/vetsci10030187

Jolly CJ, Dickman CR, Doherty TS, van Eeden LM, Geary WL, Legge SM, Woinarski JCZ, Nimmo DG. Animal mortality during fire. Glob. Change Biol. [Internet] 2022; 28(6):2053–2065. doi: https://doi.org/gn2mv5 DOI: https://doi.org/10.1111/gcb.16044

Vigani A, Culler CA. Systemic and local management of burn wounds. Vet. Clin. North Am. Small Anim. Pract. [Internet]. 2017; 47(6):1149–1163. doi: https://doi.org/gck2x7 DOI: https://doi.org/10.1016/j.cvsm.2017.06.003

Oryan A, Alemzadeh E, Moshiri A. Burn wound healing: present concepts, treatment strategies and future directions. J. Wound Care. [Internet]. 2017; 26(1):5–19. doi: https://doi.org/f9nbs5 DOI: https://doi.org/10.12968/jowc.2017.26.1.5

Ibrahim NI, Mohamed IN, Mohamed N, Mohd Ramli ES, Shuid AN. The effects of aqueous extract of Labisia Pumila (Blume) Fern.–Vill Var. Alata on wound contraction, hydroxyproline content and histological assessments in superficial partial thickness of second–degree burn model. Front. Pharmacol. [Internet]. 2022;13:968664. doi: https://doi.org/n8b3 DOI: https://doi.org/10.3389/fphar.2022.968664

Thakur K, Mahajan A, Sharma G, Singh B, Raza K, Chhibber S, Katare, OP. Implementation of Quality by Design (QbD) approach in development of silver sulphadiazine loaded egg oil organogel: An improved dermatokinetic profile and therapeutic efficacy in burn wounds. Int. J. Pharm. [Internet]. 2020; 576:118977. doi: https://doi.org/n8b5 DOI: https://doi.org/10.1016/j.ijpharm.2019.118977

Zheng W, Zhao DL, Zhao YQ, Li ZY. Effectiveness of platelet rich plasma in burn wound healing: a systematic review and meta–analysis. J. Dermatol. Treat. [Internet]. 2022; 33(1):131–137. doi: https://doi.org/n8b6 DOI: https://doi.org/10.1080/09546634.2020.1729949

Venter NG, Marques RG, Santos JS, Monte–Alto–Costa A. Use of platelet–rich plasma in deep second – and third–degree burns. Burns [Internet]. 2016; 42(4):807–814. doi: https://doi.org/f8qp82 DOI: https://doi.org/10.1016/j.burns.2016.01.002

Hosseini Mansoub N, Gürdal M, Karadadaş E, Kabadayi H, Vatansever S, Ercan G. The role of PRP and adipose tissue–derived keratinocytes on burn wound healing in diabetic rats. Biolmpacts [Internet]. 2018; 8(1):5–12. doi: https://doi.org/gdf8mz DOI: https://doi.org/10.15171/bi.2018.02

Marck RE, Gardien KLM, Stekelenburg CM, Vehmeijer M, Baas D, Tuinebreijer WE, Breederveld RS, Middelkoop E. The application of platelet–rich plasma in the treatment of deep dermal burns: A randomized, double–blind, intra–patient controlled study. Wound Rep. Reg. [Internet]. 2016; 24(4): 712–720. doi: https://doi.org/f9dtd9 DOI: https://doi.org/10.1111/wrr.12443

D’arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell. Biol. Int. [Internet]. 2019; 43(6):582–592. doi: https://doi.org/ghrvdg DOI: https://doi.org/10.1002/cbin.11137

Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell. Death. Differ. [Internet]. 2015; 22(4):526–539. doi: https://doi.org/f64v6w DOI: https://doi.org/10.1038/cdd.2014.216

Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb. Perspect. Biol. [Internet]. 2013; 5:a008672. doi: https://doi.org/gbdkjg DOI: https://doi.org/10.1101/cshperspect.a008672

Kazak F, Akcakavak G, Alakus I, Alakus H, Kirgiz O, Karatas O, Deveci MZY, Coskun P. Proanthocyanidin alleviates testicular torsion/detorsion–induced ischemia/reperfusion injury in rats. Tissue Cell. [Internet]. 2024; 89:102459. doi: https://doi.org/n8b7 DOI: https://doi.org/10.1016/j.tice.2024.102459

Akcakavak G, Karataş O, Tuzcu N, Tuzcu M. Determination of apoptosis, necroptosis and autophagy markers by real–time PCR in naturally infected pneumonic pasteurellosis caused by Pasteurella multocida and Mannheimia haemolytica in cattle. Pak. Vet. J. [Internet]. 2024; 44(2):483–489. doi: https://doi.org/n8b8

Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. [Internet]. 2005; 1:112–119. doi: https://doi.org/ddvxwq DOI: https://doi.org/10.1038/nchembio711

Ma D, Wang X, Liu J, Cui Y, Luo S, Wang F. The development of necroptosis: what we can learn. Cell Stress Chaperones [Internet]. 2023; 28(6):969–987. doi: https://doi.org/n8fg DOI: https://doi.org/10.1007/s12192-023-01390-5

Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature [Internet]. 2015; 517:311–320. doi: https://doi.org/f6vrbw DOI: https://doi.org/10.1038/nature14191

Degterev A, Zhou W, Maki JL, Yuan J. Chapter one – Assays for necroptosis and activity of RIP kinases. In: Ashkenazi A, Wells JA, Yuan J, editors. Methods in Enzymology. Vol. 545. [Internet]. Cambridge (MA, USA): Academic Press; 2014. p. 1–33. doi: https://doi.org/f6kc5h DOI: https://doi.org/10.1016/B978-0-12-801430-1.00001-9

Singer AJ, McClain SA, Taira BR, Guerriero JL, Zong W. Apoptosis and necrosis in the ischemic zone adjacent to third degree burns. Acad. Emerg. Med. [Internet]. 2008; 15(6):549–554. doi: https://doi.org/b5cqbb DOI: https://doi.org/10.1111/j.1553-2712.2008.00115.x

Dutto I, Tillhon M, Cazzalini O, Stivala LA, Prosperi E. Biology of the cell cycle inhibitor p21CDKN1A: molecular mechanisms and relevance in chemical toxicology. Arch. Toxicol. [Internet]. 2015; 89:155–178. doi: https://doi.org/f6xd4b DOI: https://doi.org/10.1007/s00204-014-1430-4

el–Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D,Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell [Internet]. 1993; 75:817–825. doi: https://doi.org/b2vd5m DOI: https://doi.org/10.1016/0092-8674(93)90500-P

el–Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, Wiman KG, Mercer WE, Kastan MB, Kohn KW, Elledge SJ, Kinzler KW, Vogelstein B. WAF1/CIP1 is induced in p53–mediated G1 arrest and apoptosis. Cancer Res. [Internet]. 1994 [cited 2 Jul. 2024]; 54(5):1169–1174. Available in: https://goo.su/FgjG2

Niculescu AB 3rd, Chen X, Smeets M, Hengst L, Prives C, Reed SI. Effects of p21Cip1/Waf1 at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol. Cell. Biol. [Internet]. 1998; 18(1):629–643. doi: https://doi.org/n8fh DOI: https://doi.org/10.1128/MCB.18.1.629

Ogryzko VV, Wong P, Howard BH. WAF1 retards S–phase progression primarily by inhibition of cyclin–dependent kinases. Mol. Cell. Biol. [Internet]. 1997; 17(8):4877–4882. doi: https://doi.org/n8fj DOI: https://doi.org/10.1128/MCB.17.8.4877

Radhakrishnan SK, Feliciano CS, Najmabadi F, Haegebarth A, Kandel ES, Tyner AL, Gartel AL. Constitutive expression of E2F–1 leads to p21–dependent cell cycle arrest in S phase of the cell cycle. Oncogene [Internet]. 2004; 23:4173–4176. doi: https://doi.org/fjdsdb DOI: https://doi.org/10.1038/sj.onc.1207571

Gartel AL, Radhakrishnan SK. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. [Internet]. 2005; 65(10):3980–3985. doi: https://doi.org/cm4xvk DOI: https://doi.org/10.1158/0008-5472.CAN-04-3995

Gartel AL. The conflicting roles of the cdk inhibitor p21(CIP1/WAF1) in apoptosis. Leuk. Res. [Internet]. 2005; 29(11):1237–1238. doi: https://doi.org/dkmrqq DOI: https://doi.org/10.1016/j.leukres.2005.04.023

Ahmadi AR, Chicco M, Huang J, Qi L, Burdick J, Williams GM, Cameron AM, Sun Z. Stem cells in burn wound healing: A systematic review of the literature. Burns [Internet]. 2019; 45(5):1014–1023. doi: https://doi.org/gkzfsm DOI: https://doi.org/10.1016/j.burns.2018.10.017

Pourfath MR, Behzad–Behbahani A, Hashemi SS, Derakhsahnfar A, Taheri MN, Salehi S. Monitoring wound healing of burn in rat model using human Wharton’s jelly mesenchymal stem cells containing cGFP integrated by lentiviral vectors. Iran. J. Basic Med. Sci. [Internet]. 2018; 21(1):70–76. doi: https://doi.org/g7dvzv

Xiao M, Li L, Li C, Zhang P, Hu Q, Ma L, Zhang H. Role of autophagy and apoptosis in wound tissue of deep second–degree burn in rats. [Internet]. Acad. Emerg. Med. 2014; 21(4):383–391. doi: https://doi.org/f5xwgk DOI: https://doi.org/10.1111/acem.12352

Pfaffl MW. A new mathematical model for relative quantification in real–time RT–PCR. Nucleic Acids Res. [Internet]. 2001; 29(9):e45. doi: https://doi.org/b7shzz DOI: https://doi.org/10.1093/nar/29.9.e45

Pfaffl MW, Hageleit M. Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real–time RT–PCR. Biotechnol. Lett. [Internet]. 2001; 23:275–282. doi: https://doi.org/dg5gvk DOI: https://doi.org/10.1023/A:1005658330108

Tan JQ, Zhang HH, Lei ZJ, Ren P, Deng C, Li XY, Chen SZ. The roles of autophagy and apoptosis in burn wound progression in rats. Burns [Internet]. 2013; 39(8):1551–1556. doi: https://doi.org/f5nmn5 DOI: https://doi.org/10.1016/j.burns.2013.04.018

Gravante G, Palmieri MB, Esposito G, Delogu D, Santeusanio G, Filingeri V, Montone A. Apoptotic death in deep partial thickness burns vs. normal skin of burned patients. J. Surg. Res. [Internet]. 2007; 141(2):141–145. doi: https://doi.org/bjnkm3 DOI: https://doi.org/10.1016/j.jss.2006.07.031

Publicado
2025-03-03
Cómo citar
1.
Çelik–Kenar Z, Tuzcu M, Akçakavak G, Majidov N, Öner M, Tural–Çifçi A, Şahin R. Eficacia del medio de células madre mesenquimales de la gelatina de Wharton en la cicatrización de quemaduras: Enfoque en apoptosis, necrosis y autofagia. Rev. Cient. FCV-LUZ [Internet]. 3 de marzo de 2025 [citado 12 de marzo de 2025];35(1):7. Disponible en: https://mail.produccioncientificaluz.org/index.php/cientifica/article/view/43605
Sección
Medicina Veterinaria