Efectos de la Silimarina sobre la expresión inmunohistoquímica de los marcadores Bax y 8-OHDG sobre los parámetros espermáticos en un modelo experimental de varicocele

Palabras clave: Proteína de choque térmico (HSP), silimarina, varicocele, factor de crecimiento transformante alfa (TGF-α), factor de crecimiento endotelial vascular A (VEGF-A)

Resumen

En este estudio se investigó los efectos de la silimarina sobre la expresión inmunohistoquímica de la proteína X asociada a Bcl-2 (Bax) y la 8-hidroxi-2’-desoxiguanosina (8-OHdG), los marcadores bioquímicos y los parámetros espermáticos con un modelo de varicocele inducido experimentalmente en ratas. El estudio se realizó en 36 ratas albinas Wistar. La distribución de ratas dentro del grupo se realizó en igual número. A las ratas del grupo de control se les administró diariamente solución salina fisiológica por sonda oral. En el grupo simulado, se practicó una incisión en la línea media y se hizo visible la vena renal (situada a la izquierda). Se colocó una sonda en esta vena. La sonda se enrolló con la vena pero no se ligó. En el grupo de la silimarina, ésta se administró por sonda oral a una dosis de 75 mg/kg 3 veces por semana durante 8 semanas. La ligadura se realizó en las ratas del grupo varicocele, a diferencia del grupo simulado. Se creó varicocele en los grupos varicocele+silimarina (50 mg/kg, 75 mg/kg). La aplicación de silimarina se inició 8 semanas después de la inducción del varicocele y se aplicó 3 días a la semana durante 8 semanas. Tras el análisis, se observó que los parámetros espermáticos se veían afectados negativamente en el grupo con varicocele. Además, se detectaron expresiones graves de caspasa 3, 8-OHdG y Bax. La administración de silimarina redujo la intensidad de la expresión y tuvo efectos positivos en la espermatología. Estos efectos positivos fueron aún más pronunciados con la dosis de 75 mg. Según los resultados obtenidos, la silimarina puede tener el potencial de reducir tanto los síntomas clínicos como los patológicos en los casos de varicocele.

Descargas

La descarga de datos todavía no está disponible.

Citas

Lipshultz LI, Corriere Jr JN. Progressive testicular atrophy in the varicocele patient. J. Urol. [Internet]. 1977; 117(2):175–176. doi: https://doi.org/n8g9

Hargreave TB. Varicocele - a clinical enigma. Br. J. Urol. [Internet]. 1993; 72(4):401-408. doi: https://doi.org/frjqx7

Asadi N, Kheradmand A, Gholami M, Saidi SH, Mirhadi SA. Effect of royal jelly on testicular antioxidant enzymes activity, MDA level and spermatogenesis in rat experimental varicocele model. Tissue Cell. [Internet]. 2019; 57:70–77. doi: https://doi.org/gmzdwt

Soni KK, Zhang LT, Choi BR, Karna KK, You JH, Shin YS, Lee SW, Kim CY, Zhao C, Chae HJ, Kim HK, Park JK. Protective effect of MOTILIPERM in varicocele-induced oxidative injury in rat testis by activating phosphorylated inositol requiring kinase 1α (p-IRE1α) and phosphorylated c-Jun N-terminal kinase (p-JNK) pathways. Pharm. Biol. [Internet]. 2018; 56(1):94–103. doi: https://doi.org/n8hb

Aitken RJ, Clarson JS. Cellular bais of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J. Reprod. Fertil. [Internet]. 1987; 81(2):459–469. doi: https://doi.org/b33prx

Alvarez JG, Touchstone JC, Blasco L, Storey BT. Spontaneous lipid peroxidation and production of hydrogene peroxide and superoxide in human spermatozoa: superoxide dismutase as major enzyme protectant against oxygen toxicity. J. Androl. [Internet]. 1987; 8(5):330–348. doi: https://doi.org/n8hc

Fretz PC, Sandlow JI. Varicocele: current concepts in pathophysiology, diagnosis, and treatment. Urol. Clin. North. Am. [Internet]. 2002; 9(4):921–37. doi: https://doi.org/br3q28x|

Ozbek E, Yurekli M, Soylu A, Davarci M, Balbay MD. The role of adrenomedullin in varicocele and impotence. BJU Int. [Internet]. 2000; 86(6):694–698. doi: https://doi.org/b3xh4b

Nöske HD, Weidner W. Varicocele historical perspective. World J. Urol. [Internet]. 1999; 17(3):151–157. doi: https://doi.org/dd79vb

Bosisio E, Benelli C, Pirola O. Effect of the flavanolignans of Silybum marianum L. on lipid peroxidation in rat liver microsomes and freshly isolated hepatocytes. Pharmacol. Res. [Internet]. 1992; 25(2):147–54. doi: https://doi.org/cqzww3

Agrawal R, Agrawal C, Ichikawa H, Singh RP, Aggarwal BB. Anticancer potential of silymarin:from bench to bed side. Anticancer Res. [Internet]. 2006 [cited July 12, 2024]; 26(6B):4457–4498. PMID: 17201169. Available in: https://goo.su/1GoZBh

Dehmlow C, Erhard J, de Groot H. Inhibition of Kupffer cell functions as an explanation for the hepatoprotective properties of silibinin. Hepatology. [Internet]. 1996; 23(4):749–754. doi: https://doi.org/dwrdpr

El-Shitany NA, El-Haggar S, El-Desoky K. Silymarin prevents adriamycin-induced cardiotoxicity and nephrotoxicity in rats. Food. Chem. Toxicol. [Internet]. (2008); 46(7):2422– 2428. doi: https://doi.org/dz5dqg

Nencini C, Giorgi G, Micheli L. Protective effect of silymarin on oxidative stress in rat brain. Phytomedicine. [Internet]. 2007; 14(2-3):129–135. doi: https://doi.org/bm8tvp

Pasqualotto FF, Lucon AM, Hallak J, Góes PM, Saldanha LB, Arap S. Induction of spermatogenesis in azoospermic men after varicocele repair. Hum. Reprod. [Internet]. 2003; 18(1):108–112. doi: https://doi.org/d2jttx

Sonmez M, Türk G, Yüce A. The effect of ascorbic acid supplementation on sperm quality, lipid peroxidation and testosterone levels of male Wistar rats. Theriogenology. [Internet]. 2005; 63(7): 2063–2072. doi: https://doi.org/cn6kn5

Türk G, Ateşşahin A, Sönmez M, Ceribaşi AO, Yüce A. Improvement of cisplatin-induced injuries to sperm quality, the oxidant–antioxidant system, and the histologic structure of the rat testis by ellagic acid. Fertil. Steril. [Internet]. 2008; 89(5):1474–1481. doi: https://doi.org/cxxqrg

Abo El Gheit RE, Soliman NA, Nagla SA, El-Sayed RM, Badawi GA, Emam MN, Abdel Ghafar MT, Ibrahim MAA, Elswaidy NRM, Radwan DA, Alshenawy HA, Khaled HE, Kamel S, El-Saka ME, Madi NM, Younis RL. Melatonin Epigenetic Potential on Testicular Functions and Fertility Profile in Varicocele Rat Model Is Mediated by Silent Information Regulator 1. Br. J. Pharmacol. [Internet]. 2022; 179(13):3363–3381. doi: https://doi.org/n8hg

Chen Q, Zhou R, Yang C, Jiang Q, Yuan H, Qiu X, Tian H, Zhou J, Liu C. Ergothioneine attenuates varicocele- induced testicular damage by upregulating HSP90AA1 in rats. J. Biochem. Mol. Toxicol. [Internet]. 2023; 37(4):e23301. doi: https://doi.org/n8hh

Taghizadeh L, Eidi A, Mortazavi P, Rohani AH. Effect of selenium on testicular damage induced by varicocele in adult male Wistar rats. J. Trace Elem. Med. Biol. [Internet]. 2017; 44:177–185. doi: https://doi.org/gcfzht

Kang C, Punjani N, Lee RK, Li PS, Goldstein, M. Effect of varicoceles on spermatogenesis. Semin. Cell. Dev. Biol. [Internet]. 2022; 121:114–124. doi: https://doi.org/n8hj

Xu YW, Ou NJ, Song YX, Wang XH, Kang JQ, Yang YJ, Chen YG, Liu XQ. Seminal plasma miR-210- 3p induces spermatogenic cell apoptosis by activating caspase-3 in patients with varicocele. Asian J. Androl. [Internet]. 2020; 22(5):513–518. doi: https://doi.org/gk4wrm

Hosseini M, Shaygannia E, Rahmani M, Eskandari A, Golsefid AA, Tavalaee M, Gharagozloo P, Drevet JR, Nasr-Esfahani MH. Endoplasmic Reticulum Stress (ER Stress) and Unfolded Protein Response (UPR) Occur in a Rat Varicocele Testis Model. Oxid. Med. Cell. Longev. [Internet]. 2020; 2020: 5909306. doi: https://doi.org/n8hk

Zhang J, Jin PP, Gong M, Guo JH, Fang K, Yi QT, Zhu RJ. Roles of Fas/FasL-mediated apoptosis and inhibin B in the testicular dysfunction of rats with left-side varicocele. Andrologia. [Internet]. 2018; 50(2):e12850. doi: https://doi.org/gbngs4

Abo El Gheit RE, Soliman NA, Nagla SA, El-Sayed RM, Badawi GA, Emam MN, Ghafar MTA, Ibrahim MAA, Elswaidy NRM, Radwan DA, Alshenawy HA, Khaled HE, Kamel S, El-Saka MH, Madi NM, Younis RL. Melatonin epigenetic potential on testicular functions and fertility profile in varicocele rat model is mediated by silent information regulator 1. Br. J. Pharmacol. [Internet]. 2022; 179(13):3363–3381. doi: https://doi.org/n8hg

Khosravanian N, Razi M, Farokhi F, Khosravanian H. Testosterone and vitamin E administration up-regulated varicocele-reduced Hsp70-2 protein expression and ameliorated biochemical alterations. J. Assist. Reprod. Genet. [Internet]. 2014; 31(3):341–354. doi: https://doi.org/f5vg5s

Chan CC, Sun GH, Shui HA, Wu GJ. Differential spermatozoal protein expression profiles in men with varicocele compared to control subjects: upregulation of heat shock proteins 70 and 90 in varicocele. Urology. [Internet]. 2013; 81(6):1379.e1–1379.e8. doi: https://doi.org/f2mgdv

Rashtbari H, Razi M, Hassani-Bafrani H, Najaran H. Berberine reinforces Sertoli cells niche and accelerates spermatogonial stem cells renewal in experimentally- induced varicocele condition in rats. Phytomedicine. [Internet]. 2018; 40:68–78. doi: https://doi.org/n8hn

Velickovic LJ, Stefanovic V. Hypoxia and spermatogenesis. Int. Urol. Nephrol. [Internet]. 2014; 46(5):887–894. doi: https://doi.org/f53fjx

Kilinç F, Kayaselcuk F, Aygun C, Guvel S, Egilmez T, Ozkardes H. Experimental varicocele induces hypoxia inducible factor-1a, vascular endothelial growth factor expression and angiogenesis in the rat testis. J. Urol. [Internet]. 2004; 172(3):1188–1191. doi: https://doi.org/ftxbgm

Seval-Celik Y, Akkoyunlu G, Kocamaz E, Köksal IT, Özer S, Baykara M, Demir R. Expression of vascular endothelial growth factor and transforming growth factor alpha in rat testis during chronic renal failure. Folia Histochem. Cytobiol. [Internet]. 2014; 52(4):308–316. doi: https://doi.org/n8hp

Dolatkhah MA, Khezri S, Shokoohi M, Alihemmati A. The effect of Fumaria parviflora on the expression of sexual hormones along with their receptors in testicles of adult rats induced by varicocele. Andrologia. [Internet]. 2022; 54(9):e14512. doi: https://doi.org/n8hq

Publicado
2025-03-11
Cómo citar
1.
Belhan S, Kayikci C, Kömüroğlu AU, Özdek U, Yildirim S. Efectos de la Silimarina sobre la expresión inmunohistoquímica de los marcadores Bax y 8-OHDG sobre los parámetros espermáticos en un modelo experimental de varicocele. Rev. Cient. FCV-LUZ [Internet]. 11 de marzo de 2025 [citado 12 de marzo de 2025];35(1):8. Disponible en: https://mail.produccioncientificaluz.org/index.php/cientifica/article/view/43630
Sección
Medicina Veterinaria