Efecto del espino amarillo (Hippophae Rhamnoides) sobre el daño renal y testicular, la calidad del esperma y la expresión de Irisina y Asprosina en ratas diabéticas inducidas por Estreptozotocina
Resumen
En los últimos años, se han utilizado muchos antioxidantes contra la hiperglucemia y el daño oxidativo en la diabetes. El objetivo de este estudio es investigar los efectos protectores del espino amarillo (Hippophae rhamnoides) contra los efectos adversos de la diabetes en los tejidos testicular y renal. Se asignaron 39 ratas macho Sprague-Dawley a 5 grupos: control, citrato, SBT, diabetes y diabetes+SBT. Se indujo diabetes mediante estreptozotocina (50 mg/kg por vía intraperitoneal) a los grupos diabetes y diabetes+SBT. Se administró aceite SBT al grupo SBT y diabetes+SBT (50mg/kg/48h por sonda oral). Al final del estudio, se recogieron muestras testiculares y renales para exámenes histoquímicos e inmunohistoquímicos, muestras de suero para exámenes bioquímicos y muestras de esperma para exámenes espermatogénicos. Los resultados de los análisis mostraron que el SBT reducía la pérdida de peso corporal y disminuía los niveles de glucosa en sangre al reducir los efectos nocivos del estrés oxidativo inducido por la diabetes. Cuando se evaluaron los niveles séricos de TAS y TOS, se determinó que el nivel de TAS era el más alto en el grupo SBT y el nivel de TAS aumentó en el grupo diabetes + SBT en comparación con la diabetes y los otros grupos. Mientras que el nivel de TOS aumentó en el grupo de diabetes, disminuyó en el grupo de diabetes + SBT. El SBT también aumentó la densidad y la motilidad espermáticas y redujo la anormalidad total (cabeza-cola) en las ratas diabéticas. En las ratas diabéticas tratadas con SBT, los cambios histopatológicos tras la diabetes se redujeron significativamente. Además, la disminución de la expresión de irisina en el tejido renal y la disminución de la expresión de irisina y asprosina en el tejido testicular en el grupo diabético se normalizaron significativamente en el grupo diabetes+SBT.En este estudio, se descubrió que la aplicación de aceite SBT prevenía significativamente la hiperglucemia y el estrés oxidativo en la diabetes, y protegía los tejidos testicular y renal de los cambios funcionales e histopatológicos en estos órganos causados por la hiperglucemia y el estrés oxidativo en animales diabéticos.Estos resultados demostraron que el aceite de SBT era un suplemento nutricional eficaz que puede utilizarse para proteger contra los efectos adversos de la diabetes.
Descargas
Citas
Balaji R, Duraisamy R, Kumar MPS. Complications of diabetes mellitus: A review. Drug Invent. Today. 2019 [18 Nov, 2024]; 12(1):98-103. Available in: https://goo.su/Mtt01Kb
Öznurlu Y, Sur E, Özaydın T. Streptozotosin ile diyabet oluşturulan ratlarda Koenzim Q 10 un testis dokusu üzerine etkileri, Eurasian J. Vet. Sci. [Internet]. 2021; 37(4):235-242. doi: https://doi.org/pqjf DOI: https://doi.org/10.15312/EurasianJVetSci.2021.348
Zafar M, Naeem-ul-Hassan Naqvi S. Effects of STZ- Induced Diabetes on the Relative Weights of Kidney, Liver and Pancreas in Albino Rats: A Comparative Study. Int. J. Morphol. [Internet]. 2010; 28(1):135-142. doi: https://doi.org/bdd56n DOI: https://doi.org/10.4067/S0717-95022010000100019
Vincent AM, Russell JW, Low P, Feldman EL. Oxidative Stress in the Pathogenesis of Diabetic Neuropathy. Endocr. Rev. [Internet]. 2004; 25(4):612-628. doi: https://doi.org/czk3x7 DOI: https://doi.org/10.1210/er.2003-0019
Sharma M, Siddique MW, Shamim AM, Gyanesh S, Pillai KK. Evaluation of Antidiabetic and Antioxidant Effects of Seabuckthorn (Hippophae rhamnoides L.) in Streptozotocin-Nicotinamide Induced Diabetic Rats. Open Conf. Proc. J. [Internet]. 2011; 2:53-58. doi: https://doi.org/d95p5k DOI: https://doi.org/10.2174/2210289201102010053
Beveridge T, Li TSC, Oomah BD, Smith A. Sea Buckthorn Products: Manufacture and Composition. J. Agric. Food Chem. [Internet]. 1999; 47(9):3480-3488. doi: https://doi.org/cght9n DOI: https://doi.org/10.1021/jf981331m
Suryakumar G, Gupta A. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). J. Ethnopharmacol. [Internet]. 2011; 138(2):268-278. doi: https://doi.org/cpwkbw DOI: https://doi.org/10.1016/j.jep.2011.09.024
Vashishtha V, Barhwal K, Kumar A, Hota SK, Chaurasia OP, Kumar B. Effect of seabuckthorn seed oil in reducing cardiovascular risk factors: A longitudinal controlled trial on hypertensive subjects. Clin. Nutr. [Internet]. 2017; 36(5):1231-1238. doi: https://doi.org/pqjg DOI: https://doi.org/10.1016/j.clnu.2016.07.013
Yuan H, Zhu X, Wang W, Meng L, Chen D, Zhang C. Hypoglycemic and anti-inflammatory effects of seabuckthorn seed protein in diabetic ICR mice. Food Funct. [Internet]. 2016; 7(3):1610-1615. doi: https://doi.org/g654vg DOI: https://doi.org/10.1039/C5FO01600B
Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. [Internet]. 2012; 481(7382):463-468. doi: https://doi.org/fz2h25 DOI: https://doi.org/10.1038/nature10777
Aydin S. Three new players in energy regulation: Preptin, adropin and irisin. Peptides. [Internet]. 2014; 56:94-110. doi: https://doi.org/f545rv DOI: https://doi.org/10.1016/j.peptides.2014.03.021
Liu TY, Shi CX, Gao R, Sun HJ, Xiong XQ, Ding L, Chen Q, Li YH, Wang JJ, Kang YM, Zhu GQ. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin. Sci. [Internet]. 2015; 129(10):839-850. doi: https://doi.org/f7rgpv DOI: https://doi.org/10.1042/CS20150009
Romere C, Duerrschmid C, Bournat J, Constable P, Jain M, Xia F, Saha PK, Del Solar M, Zhu B, York B, Sarkar P, Rendon DA, Gaber MW, LeMaire SA, Coselli JS, Milewicz DM, Sutton VR, Butte NF, Moore DD, Chopra AR. Asprosin, a Fasting-Induced Glucogenic Protein Hormone. Cell. [Internet]. 2016; 165(3):566-579. doi: https://doi.org/bd8m DOI: https://doi.org/10.1016/j.cell.2016.02.063
Yuan M, Li W, Zhu Y, Yu B, Wu J. Asprosin: A Novel Player in Metabolic Diseases. Front Endocrinol. [Internet]. 2020; 11:64. doi: https://doi.org/gjp6hr DOI: https://doi.org/10.3389/fendo.2020.00064
Erel O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. [Internet]. 2005; 38(12):1103-1111. doi: https://doi.org/dzjwc5 DOI: https://doi.org/10.1016/j.clinbiochem.2005.08.008
Türk G, Ateşşahin A, Sönmez M, Yüce A, Çeribaşi AO. Lycopene protects against cyclosporine A-induced testicular toxicity in rats. Theriogenology. [Internet]. 2007; 67(4):778-785. doi: https://doi.org/fxghnh DOI: https://doi.org/10.1016/j.theriogenology.2006.10.013
Johnsen SG. Testicular Biopsy Score Count – A Method for Registration of Spermatogenesis in Human Testes: Normal Values and Results in 335 Hypogonadal Males. Hormones. [Internet]. 1970; 1(1):2-25. doi: https://doi.org/bvxfrs DOI: https://doi.org/10.1159/000178170
Gur FM, Timurkaan S, Taskin E, Guven C, Gur HE, Senturk M, Dastan S, Nurdinov N, Unalan A, Cankut S, Tatyuz I. Thymoquinone improves testicular damage and sperm quality in experimentally varicocele-induced adolescent rats. Andrologia. [Internet]. 2021; 53(5):e14033. doi: https://doi.org/pqjk DOI: https://doi.org/10.1111/and.14033
Aydin S, Kuloglu T, Aydin S, Kalayci M, Yilmaz M, Cakmak T, Albayrak S, Gungor S, Colakoglu N, Ozercan IH. A comprehensive immunohistochemical examination of the distribution of the fat-burning protein irisin in biological tissues. Peptides. [Internet]. 2014; 61:130-136. doi: https://doi.org/f6ns6r DOI: https://doi.org/10.1016/j.peptides.2014.09.014
Laddha AP, Kulkarni YA. Daidzein attenuates urinary bladder dysfunction in streptozotocin-induced diabetes in rats by NOX-4 and RAC-1 inhibition. Naunyn Schmiedebergs Arch. Pharmacol. [Internet]. 2022; 395(8):975-986. doi: https://doi.org/pqjm DOI: https://doi.org/10.1007/s00210-022-02246-y
Ghosh S, Chowdhury S, Das AK, Sil PC. Taurine ameliorates oxidative stress induced inflammation and ER stress mediated testicular damage in STZ-induced diabetic Wistar rats. Food Chem. Toxicol. [Internet]. 2019; 124:64-80. doi: https://doi.org/gtqb47 DOI: https://doi.org/10.1016/j.fct.2018.11.055
Scarano WR, Messias AG, Oliva SU, Klinefelter GR, Kempinas WG. Sexual behaviour, sperm quantity and quality after short-term streptozotocin-induced hyperglycaemia in rats. Int. J. Androl. [Internet]. 2006; 29(4):482-488. doi: https://doi.org/c763qn DOI: https://doi.org/10.1111/j.1365-2605.2006.00682.x
Wolf G, Ziyadeh FN. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int. [Internet]. 1999; 56(2):393-405. doi: https://doi.org/crtpqs DOI: https://doi.org/10.1046/j.1523-1755.1999.00590.x
Romen W, Takahashi A. Autoradiographic studies on the proliferation of glomerular and tubular cells of the rat kidney in early diabetes. Virchows Arch. B. Cell. Pathol. Incl. Mol. Pathol. [Internet]. 1982; 40(3):339-345. doi: https://doi.org/dfr9jv DOI: https://doi.org/10.1007/BF02932875
Zeb A, Ullah S. Sea buckthorn seed oil protects against the oxidative stress produced by thermally oxidized lipids. Food Chem. [Internet]. 2015; 186:6-12. doi: https://doi.org/pqjn DOI: https://doi.org/10.1016/j.foodchem.2015.03.053
Xue Y, Miao Q, Zhao A, Zheng Y, Zhang Y, Wang P, Kallio H, Yang B. Effects of sea buckthorn (Hippophaë rhamnoides) juice and L-quebrachitol on type 2 diabetes mellitus in db/db mice. J. Funct. Foods. [Internet]. 2015; 16:223-233. doi: https://doi.org/f7kq55 DOI: https://doi.org/10.1016/j.jff.2015.04.041
Yang X, Wang Q, Pang ZR, Pan MR, Zhang W. Flavonoid-enriched extract from Hippophae rhamnoides seed reduces high fat diet induced obesity, hypertriglyceridemia, and hepatic triglyceride accumulation in C57BL/6 mice. Pharm. Biol. [Internet]. 2017; 55(1):1207-1214. doi: https://doi.org/pqjp DOI: https://doi.org/10.1080/13880209.2016.1278454
Navarro-Casado L, Juncos-Tobarra MA, Cháfer-Rudilla M, De Onzoño LÍ, Blázquez-Cabrera JA, Miralles-García JM. Effect of Experimental Diabetes and STZ on Male Fertility Capacity. Study in Rats. J. Androl. [Internet]. 2010; 31(6):584-592. doi: https://doi.org/fgfb4k DOI: https://doi.org/10.2164/jandrol.108.007260
Khaki A, Fathiazad F, Nouri M, Khaki A, Maleki NA, Khamnei HJ, Ahmadi P. Beneficial effects of quercetin on sperm parameters in streptozotocin-induced diabetic male rats. Phytother. Res. [Internet]. 2010; 24(9):1285- 1291. doi: https://doi.org/cnfpqg DOI: https://doi.org/10.1002/ptr.3100
Shoorei H, Khaki A, Khaki AA, Hemmati AA, Moghimian M, Shokoohi M. The ameliorative effect of carvacrol on oxidative stress and germ cell apoptosis in testicular tissue of adult diabetic rats. Biomed. Pharmacother. [Internet]. 2019; 111:568-578. doi: https://doi.org/gncbp8 DOI: https://doi.org/10.1016/j.biopha.2018.12.054
Barsiah S, Behnam-Rassouli M, Shahabipour F, Rostami S, Sabbaghi MA, Momeni Z,Tavassoli A, Sahebkar A. Evaluation of testis hormonal and histopathological alterations in type I and type II diabetic rats. J. Cell. Biochem. [Internet]. 2019; 120(10):16775-16785. doi: https://doi.org/gncbp5 DOI: https://doi.org/10.1002/jcb.28936
Gu MJ, Lee HW, Yoo G, Kim D, Kim Y, Choi IW, Cha YS, Ha SK. Hippophae rhamnoides L. leaf extracts alleviate diabetic nephropathy via attenuation of advanced glycation end product-induced oxidative stress in db/db mice. Food Funct. [Internet]. 2023; 14(18):8396-8408. doi: https://doi.org/pqjr DOI: https://doi.org/10.1039/D3FO01364B
Saleem B, Hussain G, Rasul A, Anwar H, Hassan M. Antidiabetic Potential of Mushroom-Based Herbal Formulation in Streptozotocin-Induced Diabetic Rats. Scientifica. [Internet]. 2024; 7468975:1-13. doi: https://doi.org/pqjs DOI: https://doi.org/10.1155/2024/7468975
Eser N, Yoldas A, Turk A, Kalaycı Yigin A, Yalcin A, Cicek M. Ameliorative effects of garlic oil on FNDC5 and irisin
sensitivity in liver of streptozotocin-induced diabetic rats. J. Pharm. Pharmacol. [Internet]. 2021; 73(6):824-834. doi: https://doi.org/pqjt DOI: https://doi.org/10.1093/jpp/rgab023
Zhu D, Wang H, Zhang J, Zhang X, Xin C, Zhang F, Lee Y, Zhang L, Lian K, Yan W, Ma X, Liu Y, Tao L. Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. J. Mol. Cell. Cardiol. [Internet]. 2015; 87:138-147. doi: https://doi.org/f7zsvw DOI: https://doi.org/10.1016/j.yjmcc.2015.07.015
Timurkaan S, Gür FM, Tarakçı BG, Yalçın MH, Girgin M. Identification of irisin immunoreactivity in porcupine (Hystrix cristata) adrenal glands and kidneys. Anat. Histol. Embryol. [Internet]. 2018; 47(5):405-409. doi: https://doi.org/pqjv DOI: https://doi.org/10.1111/ahe.12371
Hekim MG, Kelestemur MM, Bulmus FG, Bilgin B, Bulut F, Gokdere E,Ozdele MR, Kelestimur H, Canpolat S, Ozcan M. Asprosin, a novel glucogenic adipokine: a potential therapeutic implication in diabetes mellitus. Arch. Physiol. Biochem. [Internet]. 2023; 129(5):1038-1044. doi: https://doi.org/pqjw DOI: https://doi.org/10.1080/13813455.2021.1894178
Kocaman N, Kuloğlu T. Expression of asprosin in rat hepatic, renal, heart, gastric, testicular and brain tissues and its changes in a streptozotocin-induced diabetes mellitus model. Tissue Cell. [Internet]. 2020; 66:101397. doi: https://doi.org/pqjx DOI: https://doi.org/10.1016/j.tice.2020.101397
Wang R, Lin P, Sun H, Hu W. Increased serum asprosin is correlated with diabetic nephropathy. Diabetol. Metab. Syndr. [Internet]. 2021; 13(1):51. doi: https://doi.org/gmdv47 DOI: https://doi.org/10.1186/s13098-021-00668-x
Maurya S, Singh A. Asprosin modulates testicular functions during ageing in mice. Gen. Comp. Endocrinol. [Internet]. 2022; 323-324:114036. doi: https://doi.org/pqjz DOI: https://doi.org/10.1016/j.ygcen.2022.114036
Keskin T, Erden Y, Tekin S. Intracerebroventricular asprosin administration strongly stimulates hypothalamic- pituitary-testicular axis in rats. Mol. Cell. Endocrinol. [Internet]. 2021; 538:111451. doi: https://doi.org/g66wqt DOI: https://doi.org/10.1016/j.mce.2021.111451