Efectos del almacenamiento refrigerado en la frescura del pescado utilizando visión por computadora y modelado bajo red neuronal artificial

Palabras clave: Análisis de color, carne de pescado, color del ojo, control de calidad, tiempo de almacenamiento

Resumen

Este estudio examina el efecto del almacenamiento refrigerado en la frescura y vida útil de la lubina europea (Dicentrarchus ladrax) mediante sistemas de visión artificial y redes neuronales artificiales (RNA). Se estableció un enfoque de evaluación no destructiva mediante el análisis de las características del color de los ojos (valores RGB, Lab* y HSI) del pescado almacenado a +4 °C durante 15 días, con muestreos cada tres días. Se observaron cambios considerables en la gama de colores a lo largo del tiempo, en particular una reducción del brillo (L*), que puede ser un indicador del deterioro progresivo de la frescura del pescado. Se entrenó un perceptrón multicapa de red neuronal optimizado con 20 neuronas en la capa oculta, con un alto coeficiente de correlación (R² = 0,98) entre los valores predichos y experimentales de vida útil. Los valores de vida útil temporalmente prudentes presentaron una alta correlación con los valores estimados (R² = 0,98). Esta técnica ofrece una técnica no destructiva rápida y fiable para la determinación de la frescura del pescado, con potencial aplicación en áreas relevantes como el control de calidad y la evaluación de la seguridad natural de productos acuícolas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Erdağ M, Ayvaz Z. The use of color to determine fish freshness: European seabass (Dicentrarchus labrax). J. Aquat. Food Prod. Technol. [Internet]. 2021; 30(7):847– 867. doi: https://doi.org/pwvr DOI: https://doi.org/10.1080/10498850.2021.1949771

Mokrani D, Oumouna M, Cuesta A. Fish farming conditions affect to European sea bass (Dicentrarchus labrax L.) quality and shelf life during storage in ice. Aquaculture. [Internet]. 2018; 490:120–124. doi: https://doi.org/gdcqwq DOI: https://doi.org/10.1016/j.aquaculture.2018.02.032

Wu X, Zhang Q, Wang Z, Wang Z, Yan H, Zhu L, Chang J. Nondestructive freshness prediction of large yellow croaker (Pseudosciaena crocea) using computer vision and machine learning techniques based on pupil color. J. Food Sci. [Internet]. 2024; 89(12):9392–9406. doi: https://doi.org/pwvt DOI: https://doi.org/10.1111/1750-3841.17412

Yi Z, Xie J. Assessment of spoilage potential and amino acids deamination & decarboxylation activities of Shewanella putrefaciens in bigeye tuna (Thunnus obesus). LWT. [Internet]. 2022; 156:113016. doi: https://doi.org/gq2wg7 DOI: https://doi.org/10.1016/j.lwt.2021.113016

Cheng JH, Sun DW. Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral imaging and multivariate analysis. LWT Food Sci. Technol. [Internet]. 2015; 62(2):1060–1068. doi: https://doi.org/gq33j4 DOI: https://doi.org/10.1016/j.lwt.2015.01.021

Zhang Y, Qin N, Luo Y, Shen H. Effects of different concentrations of salt and sugar on biogenic amines and quality changes of carp (Cyprinus carpio) during chilled storage. J. Sci. Food Agric. [Internet]. 2015; 95(6):1157– 1162. doi: https://doi.org/gj89h7 DOI: https://doi.org/10.1002/jsfa.6803

Chun HN, Kim B, Shin HS. Evaluation of a freshness indicator for quality of fish products during storage. Food Sci. Biotechnol. [Internet]. 2014; 23:1719–1725. doi: https://doi.org/f6nkz3 DOI: https://doi.org/10.1007/s10068-014-0235-9

Liao Q, Wei C, Li Y, Gou L, Ouyang H. Developing a machine vision system equipped with UV light to predict fish freshness based on fish-surface color. Food Nutr. Sci. [Internet]. 2021; 12(3):239–248. doi: https://doi.org/gpbc4m DOI: https://doi.org/10.4236/fns.2021.123019

Sigurgisladottir S, Hafsteinsson H, Jonsson A, Lie Ø, Nortvedt R, Thomassen M, Torrissen O. Textural properties of raw salmon fillets as related to sampling method. J. Food Sci. [Internet]. 1999; 64(1):99–104. doi: https://doi.org/dmntwv DOI: https://doi.org/10.1111/j.1365-2621.1999.tb09869.x

Prabhakar PK, Vatsa S, Srivastav PP, Pathak SS. A comprehensive review on freshness of fish and assessment: Analytical methods and recent innovations. Food Res. Int. [Internet]. 2020; 133:109157. doi: https://doi.org/mpdk DOI: https://doi.org/10.1016/j.foodres.2020.109157

Wu L, Pu H, Sun DW. Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments. Trends Food Sci. Technol. [Internet]. 2019; 83:259–273. doi: https://doi.org/gjvdn3 DOI: https://doi.org/10.1016/j.tifs.2018.12.002

Gümüş B, Gümüş E, Balaban MO. Color of rainbow trout (Oncorhynchus mykiss) fillets by image and sensory analysis, and correlation with SalmoFan numbers. J. Food Sci. [Internet]. 2023; 88(1):430–446. doi: https://doi.org/pwv2 DOI: https://doi.org/10.1111/1750-3841.16409

Korel F, Luzuriaga DA, Balaban MÖ. Objective quality assessment of raw tilapia (Oreochromis niloticus) fillets using electronic nose and machine vision. J. Food Sci. [Internet]. 2001; 66(7):1018–1024. doi: https://doi.org/cv9zq7 DOI: https://doi.org/10.1111/j.1365-2621.2001.tb08228.x

Cengizler C. Fish spoilage classification based on color distribution analysis of eye images. Mar. Sci. Technol. Bull. [Internet]. 2023; 12(1):63–69. doi: https://doi.org/pwv4 DOI: https://doi.org/10.33714/masteb.1244937

Yasin ET, Ozkan IA, Koklu M. Detection of fish freshness using artificial intelligence methods. Eur. Food Res. Technol. [Internet]. 2023; 249(8):1979–1990. doi: https://doi.org/pwv5 DOI: https://doi.org/10.1007/s00217-023-04271-4

Huang X, Xu H, Wu L, Dai H, Yao L, Han F. A data fusion detection method for fish freshness based on computer vision and near-infrared spectroscopy. Anal. Methods. [Internet]. 2016; 8(14):2929–2935. doi: https://doi.org/gjvdpb DOI: https://doi.org/10.1039/C5AY03005F

Gümüş B, Balaban MO. Prediction of the weight of aquacultured rainbow trout (Oncorhynchus mykiss) by image analysis. J. Aquat. Food Prod. Technol. [Internet]. 2010; 19(3–4):227–237. doi: https://doi.org/cgs3pv DOI: https://doi.org/10.1080/10498850.2010.508869

Misimi E, Erikson U, Digre H, Skavhaug A, Mathiassen JR. Computer vision-based evaluation of pre- and postrigor changes in size and shape of Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar) fillets during rigor mortis and ice storage: effects of perimortem handling stress. J. Food Sci. [Internet]. 2008; 73(2):E57–E68. doi: https://doi.org/b48bbd DOI: https://doi.org/10.1111/j.1750-3841.2007.00626.x

Huang Y, Kangas LJ, Rasco BA. Applications of artificial neural networks (ANNs) in food science. Crit. Rev. Food Sci. Nutr. [Internet]. 2007; 47(2):113–126. doi: https://doi.org/bffx3k DOI: https://doi.org/10.1080/10408390600626453

Gonzalez-Fernandez I, Iglesias-Otero MA, Esteki M, Moldes OA, Mejuto JC, Simal-Gandara J. A critical review on the use of artificial neural networks in olive oil production, characterization and authentication. Crit. Rev. Food Sci. Nutr. [Internet]. 2019; 59(12):1913–1926. doi: https://doi.org/ggb42s DOI: https://doi.org/10.1080/10408398.2018.1433628

Lakehal S, Lakehal B, Chadi H, Bennoune O, Ayachi A. Effects on beef microstructure using fractal dimension and ANN modelling. J. Hellenic. Vet. Med. Soc. [Internet]. 2024; 75(4):8281–8290. doi: https://doi.org/pwv6 DOI: https://doi.org/10.12681/jhvms.36854

Lalabadi HM, Sadeghi M, Mireei SA. Fish freshness categorization from eyes and gills color features using multi-class artificial neural network and support vector machines. Aquacult. Eng. [Internet]. 2020; 90:102076. doi: https://doi.org/kgdk DOI: https://doi.org/10.1016/j.aquaeng.2020.102076

Zheng Y, Zhang Q, Wang X, Guo Q. Classifying the freshness of large yellow croaker (Larimichthys crocea) at 12-and 24-hour intervals using computer vision technique and convolutional neural network. Smart Agric. Technol. [Internet]. 2025; 10:100767. doi: https://doi.org/pwv7 DOI: https://doi.org/10.1016/j.atech.2025.100767

Lakehal S, Lakehal B. Storage time prediction of frozen meat using artificial neural network modeling with color values. Rev. Cient. FCVLUZ. [Internet]. 2023; 33(2):1–6. doi: https://doi.org/pwv8 DOI: https://doi.org/10.52973/rcfcv-e33268

Lakehal B, Dibi Z, Lakhdar N, Dendouga A. Electrical equivalent model of intermediate band solar cell using PSpice. Sadhana. [Internet]. 2015; 40:1473–1479. doi: https://doi.org/kgdn DOI: https://doi.org/10.1007/s12046-015-0398-y

Dowlati M, Mohtasebi SS, Omid M, Razavi SH, Jamzad M, De La Guardia M. Freshness assessment of gilthead sea bream (Sparus aurata) by machine vision based on gill and eye color changes. J. Food Eng. [Internet]. 2013; 119(2):277–287. doi: https://doi.org/pwv9 DOI: https://doi.org/10.1016/j.jfoodeng.2013.05.023

Masniyom P. Deterioration and shelf-life extension of fish and fishery products by modified atmosphere packaging. Songklanakarin J. Sci. Technol. [Internet]. 2011 [cited Feb 25 2025]; 33(2):181–192. Available in: https://goo.su/XjfL

Stoknes IS, Økland HM, Falch E, Synnes M. Fatty acid and lipid class composition in eyes and brain from teleosts and elasmobranchs. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. [Internet]. 2004; 138(2):183–191. doi: https://doi.org/bcb45h DOI: https://doi.org/10.1016/j.cbpc.2004.03.009

Jia Z, Li M, Shi C, Zhang J, Yang X. Determination of salmon freshness by computer vision based on eye color. Food Packag. Shelf Life. [Internet]. 2022; 34:100984. doi: https://doi.org/pwwb DOI: https://doi.org/10.1016/j.fpsl.2022.100984

Chmiel M, Słowiński M, Dasiewicz K, Florowski T. Use of computer vision system (CVS) for detection of PSE pork meat obtained from m. semimembranosus. LWT Food Sci. Technol. [Internet]. 2016; 65:532–536. doi: https://doi.org/pwwc DOI: https://doi.org/10.1016/j.lwt.2015.08.021

Shi C, Qian J, Han S, Fan B, Yang X, Wu X. Developing a machine vision system for simultaneous prediction of freshness indicators based on tilapia (Oreochromis niloticus) pupil and gill color during storage at 4°C. Food Chem. [Internet]. 2018; 243:134–140. doi: https://doi.org/gjvdpk DOI: https://doi.org/10.1016/j.foodchem.2017.09.047

Zhou B, Elazab A, Bort J, Vergara O, Serret MD, Araus JL. Low-cost assessment of wheat resistance to yellow rust through conventional RGB images. Comput. Electron. Agric. [Internet]. 2015; 116:20–29. doi: https://doi.org/f7pgr6 DOI: https://doi.org/10.1016/j.compag.2015.05.017

Cheng HD, Jiang XH, Sun Y, Wang J. Color image segmentation: Advances and prospects. Pattern Recognit. [Internet]. 2001; 34(12):2259–2281. doi: https://doi.org/dgw93m DOI: https://doi.org/10.1016/S0031-3203(00)00149-7

Dhandra BV, Hegadi R, Hangarge M, Malemath VS. Analysis of abnormality in endoscopic images using combined HSI color space and watershed segmentation. In: 18th International Conference on Pattern Recognition (ICPR’06). Vol. 4. China: IEEE; 2006. p. 695–698. doi: https://doi.org/cxkh5f DOI: https://doi.org/10.1109/ICPR.2006.268

Aggabou LK, Lakehal B, Mouda M. An Artificial Neural Network Approach for Construction Project Risk Management. Int. J. Saf. Secur. Eng. [Internet]. 2024; 14(2):553–561. doi: https://doi.org/pwwd DOI: https://doi.org/10.18280/ijsse.140222

Liu X, Jiang Y, Shen S, Luo Y, Gao L. Comparison of Arrhenius model and artificial neuronal network for the quality prediction of rainbow trout (Oncorhynchus mykiss) fillets during storage at different temperatures. LWT Food Sci. Technol. [Internet]. 2015; 60(1):142–147. doi: https://doi.org/gsrqzm DOI: https://doi.org/10.1016/j.lwt.2014.09.030

Rezende-de-Souza JH, de Moraes-Neto VF, Cassol GZ, dos Santos Camelo MC, Savay-da-Silva LK. Use of colorimetric data and artificial neural networks for the determination of freshness in fish. Food Chem. Adv. [Internet]. 2022; 1:100129. doi: https://doi.org/pwwf DOI: https://doi.org/10.1016/j.focha.2022.100129

Publicado
2025-07-23
Cómo citar
1.
Lakehal S, Lakehal B. Efectos del almacenamiento refrigerado en la frescura del pescado utilizando visión por computadora y modelado bajo red neuronal artificial. Rev. Cient. FCV-LUZ [Internet]. 23 de julio de 2025 [citado 26 de julio de 2025];35(3):7. Disponible en: https://mail.produccioncientificaluz.org/index.php/cientifica/article/view/44129
Sección
Ciencia y Tecnologia de Alimentos