Perfil fitoquímico HPLC–DAD, propiedades antioxidantes, antiinflamatorias y analgésicas de Sanguisorba minor L.: Una evaluación in vitro e in vivo

Palabras clave: Sanguisorba minor, HPLC–DAD, actividad antioxidante, actividad antiinflamatoria, Parueba analgésica

Resumen

Sanguisorba minor L., una especie vegetal de la familia de las rosáceas, se utiliza para el tratamiento de diversas enfermedades. El objetivo de esta investigación es determinar mediante HPLC– DAD, el perfil fitoquímico del extracto de S. minor y evaluar sus propiedades antioxidantes, antiinflamatorias y analgésicas La eficacia antiinflamatoria del extracto se evaluó in vitro mediante la prueba de desnaturalización de la albúmina sérica bovina (BSA). El modelo de edema de pata inducido por carragenina y el modelo de pie edematoso inducido por xileno, se utilizaron para evaluar la eficacia antiinflamatoria in vivo. Finalmente, se evaluaron las propiedades analgésicas del extracto mediante la prueba de retorcimiento inducido por ácido acético. El extracto etanólico exhibió un alto contenido de fenoles totales (623,33 ± 0,01μg EAG·mg-1 extracto), pero una concentración relativamente baja de flavonoides (8,71 ± 0,04 μg·mg-1 extracto). Los valores de CI50 de los extractos etanólicos fueron 11,00 ± 0,00 μg·mg-1 de radical DPPH mostraron que era un antioxidante significativo; 3 ± 0,00 μg·mg-1 para la eliminación de radicales OH; y 7± 0,00 μg·mg-1 para el ensayo FRAP. El metil galato y otros químicos, incluyendo ácido gálico, rutina, ácido siríngico, ácido ferúlico y ácido cafeico fueron identificados por el análisis HPLC–DAD, sugiriendo que la muestra contenía una alta concentración de compuestos fenólicos. La potente capacidad del extracto para eliminar y reducir radicales libres indicó que exhibió una alta capacidad antioxidante. A dosis de 150 y 300 mg·kg-1, el extracto etanólico de S. minor mostró una notable acción antiinflamatoria, con porcentajes de inhibición de 87,22 ± 0,38 % y del 57,65 ± 0,42%, respectivamente. La concentración de 150 mg·kg-1 del extracto etanólico, exhibió mayor acción analgésica (84,30%), observándose mayor efecto inhibidor de los calambres abdominales en comparación con la concentración de 300 mg·kg-1. El extracto de la planta de S. minor es rico en polifenoles, lo que demuestra importantes propiedades antioxidantes, antiinflamatorias y analgésicas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Cruvinel WM, Mesquita Jr D, Preira Araújo JA, Takao Catelan TT, Silva de Souza AW, Pereira da Silva N, Coelho Andrade LE. Immune system – part I. Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response. Rev. Bras. Reumatol. [Internet]. 2010 [cited Feb 12, 2025]; 50(4):434-461. PMID: 21125178. Available in: https://goo.su/IE9S DOI: https://doi.org/10.1590/S0482-50042010000400008

Rossi JF, Lu ZY, Massart C, Levon K. Dynamic immune/ inflammation precision medicine: the good and the bad inflammation in infection and cancer. Front. Immunol. [Internet]. 2021; 12:595722. doi: https://doi.org/gntqtt DOI: https://doi.org/10.3389/fimmu.2021.595722

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev. [Internet]. 2017; 2017:8416763. doi: https://doi.org/gkgcv7 DOI: https://doi.org/10.1155/2017/8416763

Belaïch R, Boujraf S. Facteurs inflammatoires et stress oxydant chez les hémodialysés: effets et stratégies thérapeutiques. Med. Mal. Metab. [Internet]. 2016; 10(1):38–42. doi: https://doi.org/pv29 DOI: https://doi.org/10.1016/S1957-2557(16)30009-8

Soubrier M, Rosenbaum D, Tatar Z, Lahaye C, Dubost JJ, Mathieu S. Antiinflammatoires non stéroïdiens et vaisseaux. Rev. Rhum. [Internet]. 2013; 80(3):204–208. doi: https://doi.org/pv3b DOI: https://doi.org/10.1016/j.rhum.2012.11.012

Panicker VP, George S, Krishna BD. Toxicity study of butylated hydroxyl toluene (BHT) in rats. World J Pharm Pharm Sci. [Internet]. 2014 [cited Feb 12, 2025]; 3(8): 758–763. Available in: https://goo.su/IlxAAg

Cuccioloni M, Bonfili L, Mozzicafreddo M, Cecarini V, Eleuteri AM, Angeletti M. Sanguisorba minor extract suppresses plasmin–mediated mechanisms of cancer cell migration. Biochim. Biophys. Acta Gen. Subj. [Internet]. 2012; 1820(7):1027–1034. doi: https://doi.org/f33k2n DOI: https://doi.org/10.1016/j.bbagen.2012.02.002

Sanchez–Bel P, Romojaro A, Egea I, Pretel MT. Wild edible plants as potential antioxidant or nutritional supplements for beverages minimally processed. LWT Food Sci. Technol. [Internet]. 2015; 62(1-Part 2):830–837. doi: https://doi.org/pv3d DOI: https://doi.org/10.1016/j.lwt.2014.06.017

Sabbatini A, Jurnatan Y, Fraatz MA, Govori S, Haziri A, Millaku F, Zorn H, Zhang Y. Aroma characterization of a wild plant (Sanguisorba albanica) from kosovo using multiple headspace solid phase microextraction combined with gas chromatography–mass spectrometry–olfactometry. Food Res. Int. [Internet]. 2019; 120:514–522. doi: https://doi.org/pv3f DOI: https://doi.org/10.1016/j.foodres.2018.10.093

Zhou P, Li J, Chen Q, Wang L, Yang J, Wu A, Jiang N, Liu Y, Chen J, Zou W, Zeng J, Wu J. A comprehensive review of genus sanguisorba: traditional uses, chemical constituents and medical applications. Front. Pharmacol. [Internet]. 2021; 12:750165. doi: https://doi.org/gtjhvz DOI: https://doi.org/10.3389/fphar.2021.750165

Ferreira A, Proença C, Serralheiro MLM, Araújo MEM. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. [Internet]. 2006: 108(1):31–37 doi: https://doi.org/fjb9ft DOI: https://doi.org/10.1016/j.jep.2006.04.010

Zhao Z, He X, Zhang Q, Wei X, Huang L, Cheng–Fang J, Wang X, Zhao M, Bai Y, Zheng X. Traditional uses, chemical constituents and biological activities of plants from the genus Sanguisorba L. Am. J. Chin. Med. [Internet]. 2017; 45(2):199–224. doi: https://doi.org/f96stf DOI: https://doi.org/10.1142/S0192415X17500136

Josifovic M. Flora of Serbia. Rosaceae family. Volume 4. Belgrade: SANU; 1972. p. 66-71.

Akbari S, Soodi M, Hajimehdipoor M, Ataei N. Protective effects of Sanguisorba minor and Ferulago angulata total extracts against beta–amyloid induced cytotoxicity and oxidative stress in cultured cerebellar granule neurons. J. Herbmed Pharmacol. [Internet]. 2019; 8(3):248–255. doi: https://doi.org/pv3g DOI: https://doi.org/10.15171/jhp.2019.36

Ennerfelt HE, Lukens JR. The role of innate immunity in Alzheimer ’s disease. Immunol. Rev. [Internet]. 2020; 297(1):225–246. doi: https://doi.org/ghs4hv DOI: https://doi.org/10.1111/imr.12896

Karbab A, Charef N, Abu–zarga M, Qadri M, Mubarek MS. Ethnomedicinal documentation and anti–inflammatory effects of n–butanol extract and of four compounds isolated from the stems of Pituranthos scoparius: An in vitro and in vivo investigation. J. Ethnopharmacol. [Internet]. 2021; 267:113488. doi: https://doi.org/pqp2 DOI: https://doi.org/10.1016/j.jep.2020.113488

Nouri A, Gasmi L, Safsaf A, Harzallah D, Khennouf S, Dahamna S. Secondary metabolite contents and safety assessment study of the aqueous extract from the Algerian Echium trygorrhizum Pomel roots. J. Ethnopharmacol. [Internet].2023; 301:115771. doi: https://doi.org/pv3h DOI: https://doi.org/10.1016/j.jep.2022.115771

Guemmaz T, Arrar L, Baghiani A. Total phenolic contents and antioxidant properties of algerian alkanna tinctoria aerial part extracts. J. Drug Deliv. Ther. [Internet]. 2020; 10(5):39–44. doi: https://doi.org/pv3j DOI: https://doi.org/10.22270/jddt.v10i5.4349

Nouri A, Gasmi L, Bensouici C, Harzallah D, Khennouf S, Dahamna S. The inhibitory effect of hydroalcoholic extract from the algerian Echium trygorrhizum pomel roots on α– amylase activity. Curr. Enzyme Inhib. [Internet]. 2022; 18(1):40-46. doi: https://doi.org/pv3k DOI: https://doi.org/10.2174/1573408018666211224092636

Karbab A, Charef N, Arrar L. Phenolic contents, in vitro antioxidant, and in vivo anti–inflammatory studies of aqueous extract from Pituranthos scoparius (Coss. & Dur.) growing in Algeria. Iran. J. Pharmacol. Ther. [Internet]. 2019 [cited 12 Feb, 2025]; 17(1):1-7. Available in: https://goo.su/wIicrOr

Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. [Internet]. 1999; 269(2):337–341. doi: https://doi.org/d4gm9f DOI: https://doi.org/10.1006/abio.1999.4019

Smirnoff N, Cumbes QJ, Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. [Internet]. 1989; 28(4):1057-1060. doi: https://doi.org/d3687q DOI: https://doi.org/10.1016/0031-9422(89)80182-7

Hamoudi M, Amroun D, Baghiani A, Khennouf S, Dahamna S. Antioxidant, anti–inflammatory, and analgesic activities of alcoholic extracts of Ephedra nebrodensis from eastern Algeria. Turkish J. Pharm. Sci. [Internet]. 2021; 18(5):574–580. doi: https://doi.org/gh3m9z DOI: https://doi.org/10.4274/tjps.galenos.2021.24571

Karbab A, Mokhnache K, Ouhida S, Charef N, Djabi F, Arrar L, Mubarak MS. Anti–inflammatory, analgesic activity, and toxicity of Pituranthos scoparius stem extract: An ethnopharmacological study in rat and mouse models. J. Ethnopharmacol. [Internet]. 2020; 258:112936. doi: https://doi.org/grsd8s DOI: https://doi.org/10.1016/j.jep.2020.112936

Mayouf N, Charef N, Saoudi S, Baghiani A, Khennouf S, Arrar L. Antioxidant and anti–inflammatory effect of Asphodelus microcarpus methanolic extracts. J. Ethnopharmacol. [Internet]. 2019; 239:111914. doi: https://doi.org/pv3m DOI: https://doi.org/10.1016/j.jep.2019.111914

Karbab A. Extraction, isolation, structure elucidation and evaluation oftoxicity, anti–inflammatory and analgesic activity of Pituranthos scoparius constituents. [dissertation on the Internet]. Argelia: Ferhat ABBAS University – Sétif 1; 2020 [cited Feb 12, 2025]. 128 p. doi: https://doi.org/pv3n

Abidullah S, Rauf A, Khan–S W, Ayaz A, Liaquat F, Saqib S. A comprehensive review on distribution, paharmacological uses and biological activities of Argyrolobium roseum (Cambess.) Jaub. & Spach. Acta Ecol. Sin. [Internet]. 2022; 42(3):198–205. doi:https://doi.org/pv3q DOI: https://doi.org/10.1016/j.chnaes.2021.03.009

Ginwala R, Bhavsar R, Chigbu GI, Jain P, Khan ZK. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti–inflammatory activity of apigenin. Antioxidants [Internet]. 2019; 8(2):35. doi: https://doi.org/gg9f28 DOI: https://doi.org/10.3390/antiox8020035

Liang H, Huang Q, Zou L, Wei P, Lu J, Zhang Y. Methyl gallate: Review of pharmacological activity. Pharmacol. Res. [Internet]. 2023; 194:106849. doi: https://doi.org/pv3r DOI: https://doi.org/10.1016/j.phrs.2023.106849

Yun N, Kang J, Lee S. Protective effects of chlorogenic acid against ischemia /reperfusion injury in rat liver: molecular evidence of its antioxidant and anti–inflammatory properties. J. Nutr. Chem. 2012; 23(10):1249-1255. doi: https://doi.org/fz3hbw DOI: https://doi.org/10.1016/j.jnutbio.2011.06.018

Haouem CH, Boudiba S, Tamfu AN, Kucukaydin S, Hanini K, Zohra HF, Hioun S, Botezatu AD, Ceylen O, Boudiba L, Duru ME, Dinica RM. Assessment of chemical composition and in vitro antioxidant, antidiabetic, anticholinesterase and microbial virulence–quenching effects of salad burnet (Sanguisorba minor L.) harvested from Algeria. Plants [Internet] 2023; 12(24):4134. doi: https://doi.org/pv3s DOI: https://doi.org/10.3390/plants12244134

Yang Y, Wang S, Liu X, Zhang W, Tong W, Luo H, Zhao L. Interactions of ferulic acid and ferulic acid methyl ester with endogenous proteins: Determination using the multi–methods. Heliyon [Internet]. 2024;10(2):e24605. doi: https://doi.org/pv3t DOI: https://doi.org/10.1016/j.heliyon.2024.e24605

Liu EH, Qi LW, LiP. Structural relationship and binding mechanisms of five flavonoids with bovine serum albumin. Molecules [Internet]. 2010; 15(12):9092-9103. doi: https://doi.org/cszjzn DOI: https://doi.org/10.3390/molecules15129092

Ben–Khedir S, Mzid M, Bardaa S, Moalla D, Sahnoun Z, Rebai T. In vivo evaluation of the anti–inflammatory effect of Pistacia lentiscus fruit oil and its effects on oxidative stress. Evid. Based Complement. Altern. Med. [Internet]. 2016; 1: 6108203. doi: https://doi.org/f9h87z DOI: https://doi.org/10.1155/2016/6108203

Boussouf L, Boutennoune H, Kebieche M, Adjeroud N, AlQaoud K, Madani K. Anti–inflammatory, analgesic and antioxidant effects of phenolic compound from Algerian Mentha rotundifolia leaves on experimental animals. S. Afr. J. Bot. [Internet]. 2017; 113:77-83. doi: https://doi.org/gcn6s5 DOI: https://doi.org/10.1016/j.sajb.2017.07.003

Sobeh M, Rezq S, Cheurfa M, Abdelfattah MAO, Rashied RMH, El–Shazly AM, Yasri A, Wink M, Mahmoud MF. Thymus algeriensis and Thymus fontanesii: Chemical composition, in vivo anti–inflammatory, pain killing and antipyretic activities: A comprehensive comparison. Biomolecules [Internet]. 2020; 10(4):599. doi: https://doi.org/pv3v DOI: https://doi.org/10.3390/biom10040599

Hadidi M, Liñán–Atero R, Tarahi M, Christodoulou MC, Aghababaei F. The potential health benefits of gallic acid: therapeutic and food applications. Antioxidants [Internet]. 2024; 13(8):1001. doi: https://doi.org/pv3w DOI: https://doi.org/10.3390/antiox13081001

Choubey S, Varughese LR, Kumar V, Beniwal V. Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharm. Pat. Anal. [Internet]. 2015; 4(4):305-315. doi: https://doi.org/gpz9w8 DOI: https://doi.org/10.4155/ppa.15.14

Dludla PV, Nkambule BB, Jack B, Mkandla Z, Mutize T, Silvestri S, Orlando P, Tiano L, Louw J, Mazibuko–Mbeje SE. Inflammation and oxidative stress in an obese state and the protective effects of gallic acid. Nutrients [Internet]. 2019; 11(1):23. doi: https://doi.org/gf5psh DOI: https://doi.org/10.3390/nu11010023

Mucha P, Skoczyńska A, Małecka M, Hikisz P, Budzisz E. Overview of the antioxidant and anti–inflammatory activities of selected plant compounds and their metal ion complexes. Molecules [Internet]. 2021; 26 (16):4886. doi: https://doi.org/gmtd8n DOI: https://doi.org/10.3390/molecules26164886

Kulesza A, Paczek L, Burdzinska A. The role of COX-2 and PGE2 in the regulation of immunomodulation and other functions of mesenchymal stromal cells. Biomedicines [Internet]. 2023; 11(2):445. doi: https://doi.org/pv3x DOI: https://doi.org/10.3390/biomedicines11020445

Heo SJ, Yoon WJ, Kim KN, Ahn GN, Kang SM, Kang DH, Jeon YJ. Evaluation of anti–inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide–stimulated RAW 264.7 macrophages. Food Chem. Toxicol. [Internet]. 2010; 48(8-9):2045-2051. doi: https://doi.org/fqxhx6 DOI: https://doi.org/10.1016/j.fct.2010.05.003

Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. SaudiPharm. J. [Internet]. 2017; 25(2):149-164. doi: https://doi.org/gsh8kn DOI: https://doi.org/10.1016/j.jsps.2016.04.025

Silveira P, Vashist U, Cabral A, Amaral KB, Soares GL, Dagosto Effect of rutin and chloroquine on White Leghorn chickens infected with Plasmodium (Bennettinia) juxtanucleare. Trop. Anim. Health Prod. [Internet]. 2009; 41(7):1319–1323. doi: https://doi.org/bw6wxg DOI: https://doi.org/10.1007/s11250-009-9317-8

Hernandez–Leon A, Fernández–Guasti A, González–Trujano ME. Rutin antinociception involves opioidergic mechanism and descending modulation of ventrolateral periaqueductal grey matter in rats. Eur. J. Pain. [Internet]. 2016; 20(2):274-283. doi: https://doi.org/pv3z DOI: https://doi.org/10.1002/ejp.720

Publicado
2025-07-26
Cómo citar
1.
Ghedjati S, Karbab A, Nouri A, Charef N, Khennouf S, Hamoudi M, Dahamna S. Perfil fitoquímico HPLC–DAD, propiedades antioxidantes, antiinflamatorias y analgésicas de Sanguisorba minor L.: Una evaluación in vitro e in vivo. Rev. Cient. FCV-LUZ [Internet]. 26 de julio de 2025 [citado 29 de julio de 2025];35(3):9. Disponible en: https://mail.produccioncientificaluz.org/index.php/cientifica/article/view/44156
Sección
Medicina Veterinaria