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Abstract

The purpose of this paper is to investigate the 1-set-contractive perturbations of accretive
operators and discuss the solution of a special type of operator equations in fuzzy normed
spaces. Also we shall study the perturbations, and the existence, problems of zero points for
nonlinear equations with accretive mappings in fuzzy normed spaces.
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Resumen

El propósito de este art́ıculo es investigar las perturbaciones 1-conjunto contractivas de
operadores acumulativos y discutir la solución de un tipo especial de ecuaciones de opera-
dores en espacios normados difusos. También, estudiaremos las perturbaciones y existencia
de problemas de puntos cero para ecuaciones no lineales con mapeo acumulativo en espacios
normados difusos.

Palabras y frases clave: operador acumulativo, método iterativo, teorema del punto
fijo, mapeo no expansivo, punto cero.

1 Introduction

It is well known that the concept of fuzzy metric space, which was initiated by O. Kramosil and
J. Michalek in 1975, is an important generalization of metric space, and the fixed point theory in
fuzzy metric spaces has been studied by many authors. The topological degree is a fundamental
concept in algebraic topology and in analysis, and the number of its applications to nonlinear
differential equations has increased at an impressive rate during the whole second half of the 20th
century.
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Li et al. introduced and studied the topological degree of 1-set-contractive fields in Banach
spaces ([?]). Recently, by using the topological degree method, Li and Xu obtained many new
results for 1-set-contractive operators in Banach space ([?, ?]). The topological degree for com-
pact continuous operators in PN-spaces was first defined by Chang and Chen ([?]). Since then,
the topological degrees of compact continuous operators, k-set-contractive operators, condensing
operators and the A-proper degree in PN-spaces and the corresponding fixed point theorems
have been studied extensively ([?, ?, ?, ?, ?, ?, ?]). Also, the accretive (m-accreitve) operators
in PN spaces were introduced and studied ([?, ?]). In [?],they established the topological degree
of 1-set-contractive fields in PN-spaces, and obtained some new fixed point theorems.

The purpose of this paper is to further investigate the 1-set-contractive perturbations of
accretive operators and discuss the solution of a special type of operator equations in fuzzy
normed spaces.

For the sake of convenience, we first recall some definitions, notations as well as some lemmas
which are useful in proving our main results in Section 2.

Definition 1.1. [?] A binary operation T : [0, 1]× [0, 1]→ [0, 1] is said to be a continuous t-norm
if ([0, 1], T ) is a topological monoid with unit 1 such that T (a, b) ≤ T (c, d) whenever a ≤ c, b ≤ d
for all a, b, c, d ∈ [0, 1].

Some typical examples of t-norm are the following:

T (a, b) = ab, (product)

T (a, b) = min{a, b}, (minimum)

T (a, b) = max{a+ b− 1, 0}, (Lukasiewicz)

T (a, b) =
ab

a+ b− ab
, (Hamacher)

Definition 1.2. [?] Let X be a vector space over a field K (where K is R or C) and T be a
continuous t-norm. A fuzzy set N in X × [0,∞) is called a fuzzy norm if it satisfies the following
conditions:

(FN1:) N(x, 0) = 0, for all x ∈ X;

(FN2:) N(x, t) = 0 for all t > 0 if and only if x = 0;

(FN3:) N(λx, t) = N
(
x, t
|λ|

)
for all x ∈ X and all scalar λ 6= 0;

(FN4:) N(x+ y, t+ s) ≥ T (N(x, t), N(y, s) for all x, y ∈ X and all t, s > 0;

(FN5:) for all x ∈ X, N(x, .) is left continuous and lim
t→∞

N(x, t) = 1.

The triple (X,N, T ) will be called fuzzy normed linear space (briefly, FNLS).

Lemma 1.1. [?] Let (X,N, T ) be a FNLS. Then N(x, .) is non-decreasing, for all x ∈ X.

Theorem 1.1. [?] Let (X,N, T ) be a FNLS. For x ∈ X, r ∈ (0, 1), t > 0, we define the open
ball

Bx(r, t) := {y ∈ X : N(x− y, t) > r}.
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Then
τA := {A ⊂ X : x ∈ A⇐⇒ ∃t > 0, r ∈ (0, 1) : Bx(r, t) ⊂ A

is a topology on X. Moreover, if the t-norm T satisfies sup
t∈(0,1)

T (t, t) = 1, then (X, τN ) is Haus-

dorff.

Theorem 1.2. [?] Let (X,N, T ) be a FNLS. Then (X, τN ) is a metrizable topological vector
space.

Definition 1.3. [?] Let (X,N, T ) be a FNLS and {xn} be the sequence in X.

1. The sequence {xn} is said to be convergent if there exists x ∈ X such that

lim
t→∞

N(xn − x, t) = 1, for all t > 0.

In this case x is called the limit of the sequence {xn} and we denote lim
n→∞

xn = x or xn → x.

2. The sequence {xn} is called Cauchy sequence if

lim
n→∞

N(xn+p − xn, t) = 1

for all t > 0 and all p ∈ N.

3. (X,N, T ) is said to be complete if every Cauchy sequence in X is convergent to a point in
X. A complete FNLS will be called a fuzzy Banach space.

Definition 1.4. Let (X,N, T ) be a a fuzzy normed space and D be a subset of X. A mapping
A : D → X is said to be compact if A(D) is a compact subset of X.

Lemma 1.2. Let (X,N, T ) be a fuzzy normed space, T is a t-norm satisfying T (t, t) ≥ t for all
t ∈ [0, 1], Ω be a nonempty subset of X, S : Ω → X be a compact continuous mapping. Then
for any neighborhood of θ, u(ε, λ), ε > 0, λ > 0, there exists a finite dimension-valued compact
mapping Sε,λ such that

Sx− Sε,λ ∈ u(ε, λ), x ∈ Ω.

Lemma 1.3. Let (X,N, T ) satisfy all the conditions of Lemma ??. Let Ω be a nonempty open
subset of X and S : Ω → X be a compact continuous mapping. Then R = I − S is a closed
mapping.

Definition 1.5. Let (X,N, T ) be a fuzzy normed space, T is a t-norm satisfying T (t, t) ≥ t for
all t ∈ [0, 1]. Let Ω be a nonempty open subset of X and S : Ω → X be a compact continuous
mapping. Let R = I − S and p ∈ X \R(∂Ω). By Lemma ??, R is a closed mapping, R(∂Ω) is a
closed subset of X, and, consequently, there exists a neighborhood of θ, u(ε, λ), such that

(p+ u(ε, λ)) ∩R(∂Ω) = ∅.

By Lemma ??, there exists a finite dimension subspace X(n) of X with p ∈ X(n) and a
continuous compact mapping Sn : Ω → X(n) such that N(Sx − Snx, ε) > 1 − λ for all x ∈ Ω.
Letting Ωn = Ω ∩X(n) and Rn = I − Sn, we are going to prove p /∈ Rn(∂Ω).

In fact, if there exists some x0 ∈ ∂Ω such that p = Rnx0, then we have

N(Rx0 − p, ε) = N(Sx0 −Rnx0, ε) = N(Sx0 − Snx0, ε) > 1− λ.
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This contradicts (p+u(ε, λ))∩R(∂Ω) = ∅. Beside, since (I − (I − Sn))(Ωn) is a compact set, the
topological degree degn(Rn,Ωn, p) in finite dimensional space X(n) is significant. We define the
Leray-Schauder topological degree of R as follows:

Deg(R,Ω, p) = degn(Rn,Ωn, p). (1.1)

2 Accretive mappings in fuzzy normed spaces

Definition 2.1. Let (X,N, T ) is a fuzzy normed space and A be a nonempty subset of X. The
function

DA(t) = sup
s<t

inf
x,y∈A

N(x− y, s), t ∈ R

is called the fuzzy diameter of A. If we have supt>0DA(t) = 1, then A is called a fuzzy bounded
subset; if supt>0DA(t) = 0, then A is called a fuzzy unbounded subset.

Remark 2.1. In the sequel, we call the nonnegative number αA(t) = sup{ε ≥ 0 : there exist finite
subsets Ai, i = 1, · · · , n such that A ⊂ ∪ni=1Ai and DAi

(t) ≥ ε} the fuzzy noncompactness mea-
sure of A.

The fuzzy noncompactness measure has many important basic properties. The following will
be useful in the sequel:

(i) αA(t) = 1 for all t > 0 if and only if A is a relatively compact set.

(ii) Assume that S : Dom(S) ⊂ X → X is a mapping and A is a fuzzy bounded set of Dom(S).
If there exists a k ∈ (0, 1) such that

αSA(t) ≥ αA
(
t

k

)
, t ∈ R,

then S is called a k-set contraction mapping. If for any fuzzy bounded set A ⊂ Dom(S)
with αA(t) 6= 1, αSA(t) > αA(t) for all t > 0, then S is called a condensing mapping.

Definition 2.2. Let (X,N, T ) is a fuzzy normed space. Then

1. A mapping S : Dom(S) ⊂ X → 2X is said to be accretive if

N(x− y, t) ≥ N(x− y + λ(u− v), t), u ∈ Sx, v ∈ Sy, x, y ∈ Dom(S), λ > 0.

2. The mapping S is said to be maximal accretive if

N(x− y0, t) ≥ N(x− y0 + λ(u− v0), t), x ∈ Dom(S), λ > 0, u ∈ Sx,

then for any y0 ∈ Dom(S), we have v0 ∈ Sy0.

3. The mapping S is said to be m-accretive if S is accretive and I + S is surjective.

4. The mapping S is said to be strongly accretive if there exists a k ∈ (0, 1) such that

N((λ− k)(x− y), t) ≥ N((λ− 1)(x− y) + u− v, t) (2.1)

for all λ > k, x, y ∈ Dom(S), u ∈ Sx, v ∈ Sy.
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5. The mapping S is said to be dissipative (resp., maximal dissipative) if (−S) is accretive
(resp., maximal accretive).

Proposition 2.1. Let (X,N, T ) be a complete fuzzy normed space with T (t, t) ≥ t for all t ≥ 0.
Then S is m-accretive if and only if for any λ > 0, I + λS is surjective.

Proof. The sufficient condition is obvious.
Necessity: Let S be a m-accretive mapping. Then I+S is surjective. Hence for any given y0 ∈ X,
the equation y0 ∈ (I + λS)x has a solution x if and only if x = (I + S)−1(λ−1y0 + λ−1(λ− 1)x).
Now we define a mapping R as follows:

R : x→ X, Rx = (I + S)−1[λ−1y0 + λ−1(λ− 1)x]. (2.2)

It follows from (??) that for each x ∈ X,λ−1y0 + λ−1(λ− 1)x− Rx ∈ Sx. By the accretiveness
of S, we have

N(Rx−Ry, t) ≥ N((x− y)λ−1(λ− 1), t)

= N

(
x− y, λ

|λ− 1|
t

)
, x, y ∈ X.

When λ > 1/2, R : X → X is a contraction mapping. By [?], R has a unique fixed point in X,
i.e., there exists an w ∈ X such that

w = Rw = (I + S)−1[λ−1y0 + λ−1(λ− 1)w].

This means that for any given y0 ∈ X, the equation y0 ∈ (I + S)(x) has a solution w and so
ran(I + λS) = X for all λ > 1/2.

Similarly, by the induction, we can prove that ran(I+λnS) = X for all n ≥ 1, λ > 1/2. From
this we can especially obtain ran(I + λS) = X for all λ > 0. This achieves the proof.

Now, we give some properties of accretive mappings and their resolvents in fuzzy normed spaces.
Let (X,N, T ) be a fuzzy normed space and let A be an accretive mapping in X. We put

Jr = (I + rA)−1 and Ar = 1
r (I − Jr) for every r > 0. Then Dom(Jr) = ran(I + rA), ran(Jr) =

Dom(A) and Dom(Ar) = Dom(Jr) for every r > 0.
Firstly, we consider the properties of Jr:

Lemma 2.1. Let (X,N, T ) be a fuzzy normed space. Then Jr is single-valued and

N(Jrx− Jry, t) ≥ N(x− y, t)

for every x, y ∈ Dom(Jr), r > 0 and t ∈ R.

Proof. Let x, y ∈ Dom(Jr), r > 0 and t ∈ R. Suppose that y1, y2 ∈ Jrx. Since A is accretive in
X,

N(y1 − y2, t) ≥ N(y1 − y2 + r(
1

r
(x− y1)− 1

r
(x− y2)), t)

= N(0, t) = 1.

Hence we have N(y1 − y2, t) = 1 and so y1 = y2. There exist [x1, y1], [x2, y2] ∈ A such that
x = x1 + ry1 and y = x2 + ry2 and thus Jrx = x1, Jry = x2. Since A is accretive in X,

N(Jrx− Jry, t) = N(x1 − x2, t) ≥ N(x1 − x2 + r(y1 − y2), t) = N(x− y, t).

This achieves the proof.
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Proposition 2.2. Let (X,N, T ) be a fuzzy normed space. Then

1. If T (t, t) ≥ t for every t ∈ [0, 1], then we have

N(
1

n
(Jnr x− x), t) ≥ N(Jrx− x, t)

for all x ∈ Dom(Jnr ), r > 0, t ∈ R and n = 1, 2, · · · .

2. r
px + p−r

p Jpx ∈ Dom(Jr) and Jpx = Jr(
r
px + p−r

p Jpx) for all x ∈ Dom(Jp), p, r > 0 and
t ∈ R.

3. N(Jpx− Jry, t) ≥ N( r
p+r (x− Jry)− p

p+r (y − Jpx), t) for all x ∈ Dom(Jp), y ∈ Dom(Jr),
p, r > 0 and t ∈ R.

Proof. (1) Let x ∈ Dom(Jnr ), r > 0, t ∈ R and n = 1, 2, · · · . By the assumption and Lemma ??,
we have

N(
1

n
(Jnr x− x), t) = N(Jnr x− x, nt)

≥ T (N(Jnr x− Jn−1
r x, t), N(Jn−1

r x− x, (n− 1)t))

≥ T (N(Jnr x− Jn−1
r x, t), T (N(Jn−1

r x− Jn−2
r x, t), · · ·

T (N(J2
r x− Jrx, t), N(Jrx− x, t), · · · )))

≥ T (N(Jrx− x, t), T (N(Jrx− x, t), · · · ,
T (N(Jrx− x, t), N(Jrx− x))))

≥ N(Jrx− x, t).

(2) The proof follows similarity as in [?].
(3) Let x ∈ Dom(Jp), y ∈ Dom(Jr), p, r > 0 and t ∈ R. Putting q = p−r

p+r , by (2),

q

p
x+

p− q
p

Jpx ∈ Dom(Jq),

Jpx = Jq

(
q

p
x+

p− q
p

Jpx

)
= Jq

(
r

p+ r
x+

p

p+ r
Jpx

)
,

q

r
y +

r − q
r

Jry,

Jry = Jq

(
q

r
y +

r − q
r

Jry

)
= Jq

(
p

p+ r
y +

r

r + p
Jry

)
.

By Lemma ??, we have

N(Jpx− Jry, t) = N

(
Jq

(
r

p+ r
x+

p

p+ r
Jpx

)
− Jq

(
p

p+ r
y +

p

p+ r
Jpy

)
, t

)
≥ N

(
r

p+ r
(x− Jry)− p

p+ r
(y − Jpx), t

)
.

Next, we consider the properties of Ar:
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Proposition 2.3. Let (X,N, T ) be a fuzzy normed space. Then

1. If T (t, t) ≥ t for every t ∈ [0, 1], then we have

N(Arx−Ary, t) ≥ N(
2

r
(x− y), t)

for every x, y ∈ Dom(Jr), r > 0 and t ∈ R.

2. Arx ∈ AJrx for every x ∈ Dom(Jr) and r > 0, and

N(Arx, t) ≥ sup
y∈Ax

N(y, t)

for every x ∈ Dom(A) ∩Dom(Jr) and r > 0.

Proof. (1) Let x, y ∈ Dom(Jr), r > 0 and t ∈ R. Then by Lemma ??,

N(Arx−Ary, t) = N

(
1

r
(x− y)− 1

r
(Jrx− Jry), t

)
≥ T

(
N

(
1

r
(x− y),

t

2

)
, N

(
1

r
(Jrx− Jry),

rt

2

))
≥ T

(
N

(
1

r
(x− y), t

)
, N

(
1

r
(x− y), t

))
≥ N

(
1

r
(x− y), t

)
.

(2) Let x ∈ Dom(Jr) and r > 0. By the definition, Arx ∈ AJrx. Let x ∈ Dom(A) ∩Dom(Jr)
and r > 0. Suppose y ∈ Ax. There exists [x1, y1] ∈ A such that x = x1 + ry1 and so Jrx = x1.
By Lemma ??, we have

N(Arx, t) = N(x− Jrx, rt) = N(Jr(x+ ry)− Jrx, rt)
≥ N(x+ ry − x, rt) = N(y, t).

Thus, it follows that N(Arx, t) ≥ supy∈AxN(y, t). This achieves the proof.

Definition 2.3. Let (X,N, T ) be a fuzzy normed space and let A,B : X → 2X be operators. B
is said to be an extension of A if Dom(A) ⊂ Dom(B) and Ax ⊂ Bx for every x ∈ Dom(A). We
denote it by A ⊂ B.

Proposition 2.4. Let (X,N, T ) be a fuzzy normed space. If A is an m-accretive operator of X,
then A is a maximal accretive operator of X.

Proof. Let B be accretive in X with A ⊂ B. Let r > 0 and t ∈ R. Let [x, y] ∈ B. Since A is
m-accretive in X, x + ry ∈ ran(I + rA). There exists [x1, y1] ∈ A such that x + ry = x1 + ry1.
Since B is accretive and [x1, y1] ∈ B,

N(x− x1, t) ≥ N(x− x1 + r(y − y1), t) = N(0, t) = 1.

Hence we have x = x1 and thus y = y1. Therefore, [x, y] ∈ A, that is, B ⊂ A and thus A = B.
Consequently, A is maximal accretive in X. This achieves the proof.
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Proposition 2.5. Let (X,N, T ) be a fuzzy normed space and [x0, y0] ∈ X × X. Then A is
maximal accretive in X if and only if

N(x− x0, t) ≥ N(x− x0 + r(y − y0), t)

for every [x, y] ∈ A, r > 0 and t ∈ R implies [x0, y0] ∈ A.

Proof. Let A be maximal accretive in X. Put Â = A ∪ [x0, y0]. Then A is accretive in X and

A ⊂ Â. Since Â is maximal accretive in X, Â = A. Hence [x0, y0] ∈ A. Conversely,let B be
accretive in X with A ⊂ B. Let [u, v] ∈ B. Since B is accretive in X, for every [x, y] ∈ A, r > 0
and t ∈ R, we have

N(x− u, t) ≥ N(x− u+ r(y − v), t).

By the assumption, [u, v] ∈ A and so B ⊂ A. Hence A = B. Therefore A is maximal accretive in
X.

Proposition 2.6. Let (X,N, T ) be a fuzzy normed space and A be accretive in X. Then there
exists a maximal accretive operator containing A.

Proof. Let B = {B : B is accretive in X and A ⊂ B}. Then (B,⊂) is a partially ordered set.
Let T be a totally ordered set with T ⊂ B. it is easy to show that T has an upper bound. By
Zorn’s lemma, there exists a maximal element in B. This is a maximal accretive operator of X
containing A.

Next, consider the closeness of accretive operators

Proposition 2.7. Let (X,N, T ) be a fuzzy normed space and let A be accretive in X. Then the
closure A of A is also accretive in X.

Proof. Let [x1, y1], [x2, y2] ∈ A. Then there exist [x1n, y1n], [x2n, y2n] ∈ A such that x1n →
x1, x2n → x2, y1n → y1 and y2n → y2. Let r > 0 and t ∈ R. Since A is accretive,

N(x1n − x2n, t) ≥ N(x1n − x2n + r(y1n − y2n), t).

Since N is lower semi-continuous on X, as n→∞, we have

N(x1 − x2, t) ≥ N(x1 − x2 + r(y1 − y2), t).

Hence, A is accretive in X. This achieves the proof.

Proposition 2.8. Let (X,N, T ) be a complete fuzzy normed space and let T be continuous with
T (t, t) ≥ t for every t ∈ [0, 1]. Let A be accretive in X. If A is closed, then ran(I + rA) is also
closed fir every r > 0.

Proof. Let zn ∈ ran(I + rA) such that zn → z. Then by assumption, {zn} is also a Cauchy
sequence in X. There exists [xn, yn] ∈ A such that xn + ryn = zn and so Jrzn = xn. Since A is
accretive, for every t ∈ R, we have

N(xn − xm, t) = N(Jrzn − Jrzm, t) ≥ N(zn − zm, t).

Hence, it follows that

lim
n,m→∞

N(xn − xm, t) ≥ lim
n,m→∞

N(zn − zm, t) = N(0, t) = 1
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for every t > 0. Thus limn,m→∞N(xn − xm, t) = 1 for every t > 0. Therefore, {xn} is a Cauchy
sequence in X. there exists x ∈ X such that xn → x and so yn = 1

r (zn − xn)→ 1
r (z − x). Since

A is closed, [x, 1
r (z − x)] ∈ A. Hence z ∈ x+ rAx ∈ r(I + rA). Therefore, ran(I + rA) is closed.

This achieves the proof.

Proposition 2.9. Let (X,N, T ) be a fuzzy normed space and A be maximal accretive in X. Then
A is closed.

Proof. Let [xn, yn] ∈ A and xn → x0, yn → y0. Let r > 0 and t ∈ R. Since A is accretive, for
every [x, y] ∈ A, we have

N(x− xn, t) ≥ N(x− xn + r(yn − y0), t).

Since N is lower semi-continuous on X, as n→∞,

N(x− x0, t) ≥ N(x− x0 + r(y − y0), t).

Since A is maximal accretive, by Proposition ??, [x0, y0] ∈ A. Hence A is closed. This achieves
the proof.

Corollary 2.1. Let (X,N, T ) be a fuzzy normed space. Then

1. If A is m-accretive in X, then A is closed.

2. If A is maximal accretive in X, then Ax is a closed subset of X for every x ∈ Dom(A).

Proposition 2.10. Let (X,N, T ) be a fuzzy normed space and A be accretive in X. Let C be a
closed convex subset of X and p > r > 0. If C ⊂ ran(I+rA) and JrC ⊂ C, then C ⊂ ran(I+pA)
and JpC ⊂ C.

Proof. Let x ∈ C and p > r > 0. Define S : C → C by Sz = Jr

(
r
px+ p−r

p z
)

for every z ∈ C.

Let t ∈ R. By Lemma ??, for every z1, z2 ∈ C, we have

N(Sz1 − Sz2, t) = N

(
Jr

(
r

p
x+

p− r
p

z1

)
− Jr

(
r

p
x+

p− r
p

z2

)
, t

)
≥ N

(
p− r
p

(z1 − z2), t

)
.

Since 0 < p−r
p < 1, by [?], there exists a point z ∈ C uniquely such that Sz = z. It follows that

x ∈ z + pAz ⊂ ran(I + pA). Thus C ⊂ ran(I + pA) and JpC ⊂ C. This achieves the proof.

Finally, we consider the convergence of resolvents of accretive mappings in fuzzy normed
spaces.

Proposition 2.11. Let (X,N, T ) be a fuzzy normed space and Jr be the resolvent of an accretive
operator A for every r > 0 and T be continuous. Then

lim
r→0+

Jrx = x, x ∈
⋂
r>0

Dom(Jr) ∩Dom(A).
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Proof. Let x ∈
⋂
r>0Dom(Jr) ∩Dom(A) and t ∈ R. By (2) of Proposition ??, as r → 0+,

N(Jrx− x, t) = N

(
Arx,

t

r

)
≥ sup
y∈Ax

N

(
y,
t

r

)
→ 1

for every t > 0. Thus we have limr→0+ N(Jrx− x, t) = 1 for every t > 0. Hence limr→0+ Jrx =
x.

Proposition 2.12. Let (X,N, T ) be a fuzzy normed space and Jr be the resolvent of an accretive
operator A for every r > 0 and T (t, t) ≥ t for every t ∈ [0, 1]. Then

lim
r→∞

N

(
Jrx

r
, t

)
= lim
r→∞

N(Arx, t) = sup
y∈ran(A)

N(y, t)

for every x ∈
⋂
r>0Dom(Jr) and t ∈ R.

Proof. Let x ∈
⋂
r>0Dom(Jr) and t ∈ R. Put dt = supy∈ran(A)N(y, t). Since Arx ∈ AJrx ⊂

ran(A) by (2) of Proposition ??, N(Arx, t) ≥ supy∈ran(A)N(y, t) = dt. Thus limr→∞N(Arx, t) ≥
dt. Let α ∈ (0, 1). By the definition of dαt, for every ε > 0, dαt − ε < N(y0, αt) for some
[x0, y0] ∈ A. By Proposition ??, we have

N(Arx, t) = N(Arx−Arx0 +Arx0, (1− α)t+ αt)

≥ T (N(Arx−Arx0, (1− α)t), N(Arx0, αt))

≥ T
(
N

(
2

r
(x− x0), (1− α)t

)
, N(Arx0, αt)

)
.

Thus, it follows that

lim
r→∞

N(Arx, t) ≥ lim
r→∞

T

(
N

(
2

r
(x− x0), (1− α)t

)
, N(Arx0, αt)

)
≥ T

(
lim
r→∞

N

(
2

r
(x− x0), (1− α)t

)
, lim
r→∞

N(Arx0, αt)

)
= T (1, lim

r→∞
N(Arx0, αt))

≥ sup
y∈Ax0

N(y, αt) ≥ N(y, αt) > dαt − ε.

Since ε is arbitrary, as ε→ 0+, limr→∞N(Arx, t) ≥ dαt. Since limα→1− dαt = dt, limr→∞N(Arx, t) ≥
dt. Therefore, limr→∞N(Arx, t) = dt. The second equality holds.

Next, consider the first equality. Let α ∈ (0, 1). From

N

(
Jrx

r
, t

)
= N

(
Arx−

x

r
, t
)
≥ T

(
N(Arx, αt), N

(x
r
, (1− α)t

))
,

we have

lim
r→∞

N

(
Jrx

r
, t

)
≥ lim
r→∞

T
(
N(Arx, αt), N

(x
r
, (1− α)t

))
≥ T

(
lim
r→∞

N(Arx, αt), lim
r→∞

N
(x
r
, (1− α)t

))
≥ lim
r→∞

N(Arx, αt).

Divulgaciones Matemáticas Vol. 20, No. 1(2019), pp. ??–??



Perturbations and zero points for equations with accretive mappings in fuzzy normed spaces 49

As α→ 1−, limr→∞N
(
Jrx
r , t

)
≥ limr→∞N(Arx, t). Similarly, limr→∞N(Arx, t) ≥ limr→∞N

(
Jrx
r , t

)
.

limr→∞N(Arx, t) = limr→∞N
(
Jrx
r , t

)
. This achieves the proof.

3 Perturbations and Zero Points for Equations with Ac-
cretive Mappings in Fuzzy normed spaces

In this section, we shall study the perturbation and the existence problems of zero points for
nonlinear equations with accretive mappings in fuzzy normed spaces. In the sequel we al-
ways assume that (X,N, T ) is a fuzzy normed space and T is a continuous t-norm satisfying
sup0<t<1 T (t, t) = 1.

Lemma 3.1. Let D be a nonempty open set of X and S : D → 2X be a strongly accretive
mapping.

1. Let C = {x ∈ D : there exists t < 0 such that tx ∈ Sx}. If θ ∈ D, then C is fuzzy bounded,

2. Let un ∈ Sxn and {xn−un} be fuzzy bounded. If tn ∈ (0, 1] and tn → t0, zn = (1−tn)xn+tn,
un → y, then {xn} is a Cauchy sequence of X.

Proof. (1) If x ∈ C, then there exists a t < 0 such that tx ∈ Sx. Since S is strongly accretive,
we have

N((λ− k)(x− θ), s) ≥ N((λ− 1)(x− θ) + (tx− v), s) (3.1)

for all λ > k, k ∈ (0, 1) and v ∈ Sθ is a given point. Let λ = 1 − t and so λ > k. By (??), we
have

N((1− t− k)x, s) ≥ N(−v, s) = N(v, s)

and so N(v, s) ≥ N(v, (1− t− k)s) ≥ N(v, (1− k)s). This implies that C is fuzzy bounded.
(2) Since

N((λ− k)(xn − xm), s) ≥ N((λ− 1)(xn − xm) + (un − um), s) (3.2)

for all λ > k, letting λ = t−1
n and substituting it into (??), we have

N((1− ktn)t−1
n (xn − xm), s) ≥ N((1− tn)xn + tnun − (1− tn)xm − tnum, tns).

This implies that

N(xn − xm, s) ≥ N(zn − zm + (tm − tn)(xm − um), (1− ktn)s).

So, we have

N(xn − xm, s) ≥ T
(
N

(
zn − zm,

1− ktn
2

s

)
, N

(
xm − um,

1− ktn
tm − tn

.
s

2

))
.

Hence we have limn,m→∞N(xn − xm, s) = 1 for all s > 0 and so {xn} is a Cauchy sequence of
X. This achieves the proof.

Theorem 3.1. Let (X,N, T ) be a complete fuzzy normed space with a continuous t-norm T ,
D ⊂ X be an open subset and S : D → X a single-valued continuous strongly accretive mapping.
Suppose further that the following conditions are satisfied:
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(i) S maps a fuzzy bounded set into a fuzzy bounded set,

(ii) for any t ∈ [0, 1], tI + (1− t)S is an open mapping,

(iii) there exists some z ∈ D such that for each x ∈ ∂D and each t < 0, t(x− z) 6= Sx.

Then the equation Sx = θ has a solution in D.

Proof. Without loss of generality, we can assume that z = θ (otherwise, we can make a translation
for D and S). Define a mapping Lt : D → X by

Lt(x) = (1− t)x+ tSx, t ∈ [0, 1],

and let M = {t ∈ [0, 1] : there exists x ∈ D such that θ = qt(x)}. It is obvious that θ ∈ M and
so M 6= ∅.

Now we prove that M is a closed set. In fact, let {tn} be a sequence in M and tn → t0. Hence
there exists xn ∈ D such that θ = Ltn(xn), n = 1, 2, · · · . Then we have

1− tn
tn

xn = Sxn, n = 1, 2, · · · .

By Lemma ??, {xn} is fuzzy bounded and so {xn−Sxn}∞n=1 is a fuzzy bounded set. By Lemma
??, {xn}∞n=1 is a Cauchy sequence. Let xn → x0. Hence (1 − t0)xn + t0Sx0 = θ, i.e., t0 ∈ M .
This shows that M is a closed set.

Now we use the method of reduction to absurdity to prove supM = 1. If supM 6= 1, then
there exist t1 ∈ M and a sequence {tn} ⊂ [0, 1], tn ∈ M such that tn → t1. Since θ = Lt1(x1),
where x1 is a point in D, let C be an open neighborhood of x1 and C ⊂ D. It is obvious that

yn = Ltn ∈ Ltn(C), n = 1, 2, · · · .

Since θ /∈ Ltn(C) and Ltn(C) is an open set, {tyn : t ∈ [0, 1]} ∩Ltn(∂C) 6= ∅. Now we prove that
Ltn(D) is a closed set for n = 1, 2, · · · . In fact, if (1 − tn)x1 + tnSx1 → z as n → ∞, it follows
from

N((1− tnk)t−1
n (xi1 − xi2), t) ≥ N((1− tn)t−2

n (xi1 − xi2) + (Sxi1 − Sxi2), t)

for all t > 0 that
N((1− tnk)(xi1 − xi2), t) ≥ N(Ltn(xi1)− Ltn(xi2), t)

for all t > 0. Hence we have xi → x0 ∈ C and so z = Ltn(x0) ∈ Ltn(C). This implies that
Ltn(C) is a closed set.

Next, we have ∂Ltn(C) ⊂ Ltn(∂C) and there exists a point xn ∈ ∂C such that Ltn(xn) ∈
{tyn : t ∈ [0, 1]}. Since yn → θ, Ltn(xn)→ θ. Let zn = Ltn(xn) = (1− tn)xn + tnSxn. Since we
have

N((λ− k)(xn − θ), s) ≥ N((λ− 1)(xn − θ)− (1− tn)t−1
n xn + t−1

n zn − v, s)

for all λ > k, s > 0, where v = Sθ, taking λ = t−1
n , we have N((1− tnk)t−1

n xn, s) ≥ N(t−1
n (zn −

tnv), s) for all s > 0, i.e.,
N(xn, s) ≥ N(xn − tnv, s(1− k)).

This implies that {xn} is fuzzy bounded and so {xn−Sxn} is fuzzy bounded. By Lemma ??(2),
xn → x2 ∈ ∂C and hence we have

(1− t1)x2 + t1Sx2 = θ.

Divulgaciones Matemáticas Vol. 20, No. 1(2019), pp. ??–??



Perturbations and zero points for equations with accretive mappings in fuzzy normed spaces 51

Since N((λ− k)(x2 − x1), s) ≥ N((λ− 1)(x2 − x1) + Sx2 − Sx1, s), letting λ = t−1
1 , we have

N((1− t1)t−1
1 (x2 − x1), s) ≥ 1,

which implies that x1 = x2, which is a contradiction. Hence supM = 1 and so there exist tn → a,
xn ∈ D such that (1− tn)xn + tnSxn = θ.

By the same way stated above, we can prove that {xn} is fuzzy bounded and so xn → x0 ∈ D,
Sx0 = θ. This implies that the equation Sx = θ has a solution in D. This achieves the proof.

Corollary 3.1. Let (X,N, T ) be a complete fuzzy normed space, Ω be an open set of X, θ ∈ Ω,
S : Ω→ X be a continuous strongly pseudo-contraction mapping, I − tS an open mapping I − tS
be a mapping from a fuzzy bounded set into a fuzzy bounded set. Suppose that for each x ∈ ∂Ω,
Sx 6= λx for all λ ≥ 1. Then S has a fixed point in Ω.

Proposition 3.1. Let (X,N, T ) be a complete fuzzy normed space with T (t, t) ≥ t for all t ∈ [0, 1].
Let S : D → 2X be a strongly accretive mapping and D be a nonempty closed set of X. If
D ⊂ (I + S)(D), then S has a zero point in D.

Proof. Since S is a strongly accretive mapping,

N((λ− k)(x− y), t) ≥ N((λ− 1)(x− y) + u− v, t)

for all u ∈ Sx, v ∈ Sy, x, y ∈ D, λ > k, k ∈ (0, 1). Letting λ = 2, we have

N((2− k)[(I + S)−1z − (I + S)−1w], t) ≥ N(z − w, t)

for all z, w ∈ (I + S)D. This implies that (I + S)−1 : D → D is a contraction mapping and so
there exists a fixed point in D, i.e., there exists x0 such that x0 = (I + S)−1x0. Hence we have
θ ∈ Sx0. This achieves the proof.

Corollary 3.2. Let (X,N, T ) be a complete fuzzy normed space with T (t, t) ≥ t for all t ∈ [0, 1].
Let S : D → 2X be a strongly accretive mapping and D be a nonempty closed set of X. If
(I + S)D = D, then ran(S) = X.

Proof. For any given p ∈ X, let S0 = S − p. By Proposition ??, the equation p ∈ Sx has a
solution in D. This achieves the proof.

Remark 3.1. Assume that (X,N, T ) is a complete fuzzy normed space with T (t, t) ≥ t for all
t ∈ [0, 1], Ω is a nonempty open subset of X, S1 : Ω → 2X is accretive mapping, S2 : Ω → X is
a continuous condensing mapping such that S2(Ω) is fuzzy bounded and S2(Ω) ⊂ (I + S1)(Ω).
Now we consider the existence problem of solutions for the following multi-valued equation:

θ ∈ (I + S1 − S2)(x). (3.3)

Since S1 is accretive, (I + S1)−1 is a nonexpansion mapping. Therefore the equation (??) is
equivalent to the following equation:

x ∈ (I + S1)−1S2x. (3.4)

It is easy to know that (I + S1)−1S2 is a condensing mapping.
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If S : Ω→ X is a continuous k-set contraction mapping, k ∈ (0, 1), S(Ω) is a fuzzy bounded
set, θ /∈ (I − S)(∂Ω), and denote

D =

∞⋂
n=1

Dn; D1 = co(S(Ω)), Dn = co(Dn−1 ∩ Ω), n ≥ 2.

If there exists an n0 such that Dn0
= ∅, then we define the topological degree as:

deg(I − S,Ω, θ) = 0.

If D is a nonempty set of X, it is easy to see that D is a compact convex subset of X. By J.
Dugundji [?], there exists a retraction r : X → D. Letting

Sr = S.r : Ω→ D,

then Sr is a compact mapping and θ /∈ (I −Sr)(∂Ω). The topological degree deg(I −S,Ω, θ) has
meaning [?], and we define

deg(I − Sr,Ω, θ) = deg(I − S,Ω, θ). (3.5)

It is easy to prove that the topological degree defined by (??) is well-defined (see [?, ?] and [?]).
If S : Ω → X is a continuous condensing mapping, S(Ω) is a fuzzy bounded set and θ /∈

(I − S)(∂Ω), then there exists a t0 > 0 such that

sup
x∈∂Ω

N(x− Sx, t0) = ρ < 1.

Since S(Ω) is fuzzy bounded, when k ∈ (0, 1) and k is sufficiently near 1, then we have

inf
x∈∂Ω

N

(
Sx,

t0
2(1− k)

)
> ρ.

Let Sk = kS. Then Sk is a k-set contraction mapping, 0 < k < 1. When k is sufficently near 1,
it follows from the following inequality:

N(x− Sx, t0) ≥ min

{
N

(
x− Sx, t0

2

)
, N

(
Sx,

t0
2(1− k)

)}
for all x ∈ ∂Ω that

N(x− Sx, t0) ≥ N
(
x− Skx,

t0
2

)
, x ∈ ∂Ω.

Therefore, we have θ /∈ (I−Sk)(∂Ω) and so the topological degree deg(I−Sk,Ω, θ) is well-defined.
We define

deg(I − S,Ω, θ) = deg(I − Sk,Ω, θ). (3.6)

Now we turn to discuss the existence problem of solutions of equation (??). If θ /∈ (I + S1 −
S2)(x) for all x ∈ ∂Ω, then x /∈ (I + S1)−1S2x for all x ∈ ∂Ω. Hence the topological degree
deg(I − (I + S1)−1S2,Ω, θ) is well-defined.
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Theorem 3.2. Let (X,N, T ) be a complete fuzzy normed space with T (t, t) ≥ t for all t ∈ [0, 1],
Ω ⊂ X be an open subset and θ ∈ Ω. Suppose that S1 : Ω → 2X is an accretive mapping,
S2 : Ω → X is a continuous condensing mapping and S2(Ω) is a fuzzy bounded set and for any
t ∈ (0, 1], tS2(Ω) ⊂ (I + tS1)(Ω). If for any x ∈ ∂Ω and any λ ≥ 1, λx /∈ (S2 − S1)(x), then the
equation θ ∈ (I + S1 − S2)(x) has a solution in Ω.

Proof. Since λx /∈ (S2 − S1)(x) for any x ∈ ∂Ω and any λ ≥ 1 and S1 is accretive, we have

x 6= (I + tS1)−1.tS2x, x ∈ ∂Ω.

Since (I + tS1)−1.tS2 : [0, 1] × Ω → X is continuous condensing, the topological degree deg(I −
(I + S1)−1.tS2,Ω, θ) is well-defined and it is independent of t ∈ [0, 1]. Hence we have

deg(I − (I + S1)−1S2,Ω, θ) = deg(I − θ,Ω, θ) = 1.

This implies that the equation θ ∈ (x + S1x − S2x) has a solution in Ω. This achieves the
proof.

Corollary 3.3. Let (X,N, T ), Ω be the same as in Theorem ??. Suppose that S1 : Ω → 2X

is an m-accretive mapping, S2 : Ω → X is a continuous condensing mapping and S2(Ω) is
fuzzy bounded. If for any x ∈ ∂Ω and for any λ ≥ 1, λx /∈ (S2 − S1)(x). Then the equation
θ ∈ (I + S1 − S2)(x) has a solution in Ω.

Corollary 3.4. Let (X,N, T ), Ω be the same as in Theorem ??. Suppose that S1 : Ω→ 2X is an
accretive mapping, S2 : Ω→ X is a continuous condensing mapping and S2(Ω) is fuzzy bounded
and for any t ∈ (0, 1], tS2(Ω) ⊂ (I + tS1)(Ω). If N(S2x− f, t) ≥ N(x, t) for all x ∈ ∂Ω, f ∈ S1x,
t > 0, then θ ∈ (I + S1 − S2)(Ω).

Proof. Without loss of generality, we can assume that θ /∈ (I+S1−S2)(∂Ω). if for some x0 ∈ ∂Ω
and some λ > 1 such that λx0 ∈ S2x0 − S1x0, then we have

N(λx0, t) ≥ N(x0, t), t > 0,

and so we have x0 = θ, which is a contradiction. Hence for any x ∈ ∂Ω and λ ≥ 1, λx /∈
(I + S1 − S2)(x). The conclusion follows from Theorem ?? immediately. This achieves the
proof.

Lemma 3.2. Let (X,N, T ) be a complete fuzzy normed space with T (t, t) ≥ t for all t ∈ [0, 1].
Let Ω be an open subset of X, θ ∈ Ω. Suppose that S2 : Ω → X is a continuous mapping and

S2(Ω) is a compact set. Suppose that S1 : X → X is a continuous dissipative mapping, S1(∂Ω)
is a fuzzy bounded set and that S2(Ω) ⊂ (I − S1)(X). If

N(S2x+ S1µx, t) ≤ N(x, t), t > 0, x ∈ ∂Ω, µ ∈ [0, 1],

and for any x ∈ ∂Ω, x 6= (S1 + S2)x, then

deg(I − (I − S1)−1S2,Ω, θ) = 0.

Proof. Since S1 is dissipative, (−S1) is accretive. Next, since for any x ∈ ∂Ω, x 6= (S1 + S2)(x),
the topological degree deg(I − (I − S1)−1S2,Ω, θ) is well-defined. Now we prove that

θ /∈
⋃

µ∈[0,1]

[µI − (I − S1)−1S2](∂Ω). (3.7)
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Suppose that this is not the case. Then there exist µn → µ0, xn ∈ ∂Ω such that

−yn = µnxn − (I − S1)−1S2xn → θ.

Since we have N(xn, t) ≥ N(S1xn + S2xn, t) for all t > 0, {xn} is fuzzy bounded. In the sequel,
we discuss two cases:

(a) If µ0 = 0. Since S2xn = (I−S1)(µnxn+yn) and yn → θ, µnxn+yn → θ, by the continuity of
S1 and S2, we have S2xn+S1µnxn → θ. Besides, since N(xn, t) ≥ N(S2xn+S1µnxn, t)→ 1
for all t > 0, xn → θ ∈ ∂Ω, which is a contradiction.

(b) If µ0 6= 0. Since {(I−S1)−1S2xn} has a convergent subsequence, without loss of generality,
we can assume that (I − S1)−1S2xn → y0 and so xn → µ−1

0 y0. Hence we have

(I − S1)−1S2xn → y0 = (I − S1)−1S2(µ−1
0 )y0.

This shows that y0 = µ0(y0/µ0) = S1µ0(y0/µ0) + S2(µ0)−1y0. It is obvious that µ0 6= 1.
Again since we have

N(y0/µ0, t) ≥ N(S2(µ0)−1y0 + S1µ0µ
−1
0 y0, t) = N(µ0.y0/µ0, t)

for all t ≥ 0, N(y0/µ0, t) = 1 for all t > 0 and so we have y0 = θ ∈ Ω, which is a
contradiction.
Summing up the above discussion, we know that (??) is true. Hence by [?], we have
deg(I − (I − S1)−1S2,Ω, θ) = 0. This achieves the proof.

Theorem 3.3. Let (X,N, T ) be the same as in Lemma ??. Let Ω1,Ω2 be two open sets of X,
θ ∈ Ω1 ⊂ Ω2 and Ω1 6= Ω2. Let S1 : X → X be a continuous dissipative mapping, S2 : Ω2 → X

be a continuous mapping, S2(Ω2) be a compact set and tS2(Ω2) ⊂ (I − tS1)(X) for all t ∈ (0, 1].
If one of the following conditions is satisfied:

(i) For any x ∈ ∂Ω, N(x, t) ≤ N(S1x + S2x, t) for all t > 0; for any x ∈ ∂Ω, µ ∈ [0, 1],
N(S2x+ S1µx, t) ≤ N(x, t) for all t > 0 and S1(∂Ω1) is fuzzy bounded,

(ii) for any x ∈ ∂Ω2, µ ∈ [0, 1], N(S2x+ S1µx, t) ≤ N(x, t) for all t > 0 and S1(∂Ω2) is fuzzy
bounded; for any x ∈ ∂Ω1, N(x, t) ≤ N(S1x+ S2x, t) for all t > 0.

Then S1 + S2 has a fixed point in Ω2 \ Ω1.

Proof. It suffices to prove that the conclusion is true under under the condition (i). Without loss
of generality, we can assume that S1 + S2 has no fixed point on ∂Ω1 and ∂Ω2 (otherwise, the
conclusion has been proved). From N(x, t) ≤ N(S1 + S2x, t) for all x ∈ ∂Ω2 and for all t > 0, it
follows that for any x ∈ ∂Ω1, λ ≥ 1, λx 6= (S1 + S2)(x). Hence we have

deg(I − (I − S1)−1S2,Ω2, θ) = 1.

By Lemma ??, it follows that deg(I − (I − S1)−1S2,Ω1, θ) = 0 and so

deg(I − (I − S1)−1S2,Ω2 \ Ω1, θ) = 1.

This implies that S1 + S2 has a fixed point in Ω2 \ Ω1. This achieves the proof.
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